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Abstract: Internet of Things (IoT) is one of the hottest research topics
in recent years, thanks to its dynamic working mechanism that integrates
physical and digital world into a single system. IoT technology, applied in
industries, is termed as Industrial IoT (IIoT). IIoT has been found to be highly
susceptible to attacks from adversaries, based on the difficulties observed
in IIoT and its increased dependency upon internet and communication
network. Intentional or accidental attacks on these approaches result in catas-
trophic effects like power outage, denial of vital health services, disruption
to civil service, etc., Thus, there is a need exists to develop a vibrant and
powerful for identification and mitigation of security vulnerabilities in IIoT.
In this view, the current study develops an AI-based Threat Detection and
Classification model for IIoT, abbreviated as AITDC-IIoT model. The pre-
sented AITDC-IIoT model initially pre-processes the input data to transform
it into a compatible format. In addition, Whale Optimization Algorithm based
Feature Selection (WOA-FS) is used to elect the subset of features. Moreover,
Cockroach Swarm Optimization (CSO) is employed with Random Vector
Functional Link network (RVFL) technique for threat classification. Finally,
CSO algorithm is applied to appropriately adjust the parameters related to
RVFL model. The performance of the proposed AITDC-IIoT model was
validated under benchmark datasets. The experimental results established the
supremacy of the proposed AITDC-IIoT model over recent approaches.
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1 Introduction

Internet of Things (IoT) has managed to pervade numerous domains from home automation to
industries with crucial frameworks. The contributions of IoT are wide enough started from attaining
the final cases or complementing/exchanging the processes involved in industrial control systems. The
extensive applicability of IoT gadgets allows the industrial technologies to flourish, in industries with
less technical maturity. Few appropriate instances are linked with exploitation of oil and electricity
production while both the domains are straightforwardly linked with national cyberdefence [1].
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Industrial Internet of Things (IIoT) combines multiple players such as sensors, gadgets, and physical
machineries with internet. Then, it utilizes software to conduct deep analytics and convert huge
volumes of both structured and unstructured data into powerful insights and information [2]. IIoT
emphasizes the application of IoT in manufacturing zones since there is a growing interest among
researchers to involve Machine-to-Machine (M2 M) transmission, big data, and Machine Learning
(ML) in industry settings. IoT can also be applied in some other domains such as linking wastewater
systems and manufacturing of robots, flow gauges, electric meters and other connected systems, and
industrial gadgets. With the incorporation of IIoT, institutions as well as manufacturing hubs gain
high efficiency and dependability upon its works [3]. Since IoT is capable of linking multiple gadgets
with internet, it allows the identification of distinct threats to perform anomalous actions. There is an
increasing number of loopholes and susceptibilities found in the protocol utilized by IIoT structure.
If it encounters risks, sophisticated attacks can be made at IIoT environment using multiple methods
[4]. The intentions of an attacker are multitude in nature such as gaining access to appropriate data,
money theft, and source corruption [5].

IoT gadgets have special features with regard to transmission. So, whenever there is an attack
made, it tends to provoke the decentralized assaults on any kind of structures [6]. These are the
difficulties faced in designing an identification algorithm for IoT which are well known in traditional
networks [7,8]. The main goal of machine learning technique is to empower the technologies so that
it learns and performs estimation based on the information scheduled earlier. Though the usage of
ML in identifying anomalous conduct is an established process, intruder identification domain has
been mostly untouched [9]. In conventional techniques, anomaly recognition has been performed by
statistical methodologies. Therefore, the increasing penetration of ML methods has unlocked new
probabilities for the identification of outlier information, thanks to the accessibility of huge volume
of information which might be leveraged using ML methods. In this perspective, such ML methods
provide an alluring viewpoint to be applied in IoT application zones. It is challenging to make use of
stationary models in this regard [10].

Aboelwafa et al. [11] proposed a novel attack detection methodology via Autoencoder (AE).
The study exploited the sensor data in correlation with time and space to sequentially recognize the
fabricated dataset. Furthermore, the fabricated dataset is refined by Denoising AE (DAE). The DAE
dataset was cleaned in an efficient manner and produced clean datasets from the corrupted (attacked)
information. Hassan et al. [12] developed a down sampler-encoder-based collective dataset generator.
This model was to ensure the effective collection of real distribution of the attack model for large-scale
IIoT attack surfaces. The presented downsampler-based data generator is upgraded simultaneously
and confirmed at the time of training Deep Neural Network (DNN) discriminators so as to ensure
robustness.

Qureshi et al. [13] presented a secure and novel architecture for identification of security threats in
RPL-based IoT and IIoT systems. The presented architecture possesses the ability to identify Version
number, HELLO-Flood, Blackhole, and Sinkhole attacks. Hassan et al. [14] enhanced the reliability
of IIoT systems using a scalable and reliable cyberattack recognition method i.e., Supervisory Control
and Data Acquisition (SCADA) technique. To be specific, an ensemble-learning method, related to
the integration of Random Subspace (RS) learning model using Random Tree (RT), was presented to
identify SCADA cyberattacks o through network traffic from SCADA-related IIoT architecture. The
researchers in the literature [15–19] developed a detection module based on Stacked Variation Auto-
Encoder (VAE) with Convolution Neural Network (CNN). This model has the capability to learn
about hidden architecture of the scheme’s activity and reveal its ransomware behaviour. Furthermore,
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a data augmentation technique was proposed based on VAE to generate a novel dataset that can be
utilized in training a system and to improve the generalized abilities of the presented method.

The current study develops an AI-based Threat Detection and Classification model for IIoT,
named AITDC-IIoT model. The presented AITDC-IIoT model initially pre-processes the input data
and transforms it into a compatible format. Then, Whale Optimization Algorithm-based Feature
Selection (WOA-FS) model has been involved to elect the subset of features. Moreover, Cockroach
Swarm Optimization (CSO) is employed with Random Vector Functional Link network (RVFL)
model for classification of threats. Finally, CSO algorithm is applied to appropriately adjust the
parameters involved in RVFL model. The performance of the proposed AITDC-IIoT model was
validated using benchmark datasets.

2 The Proposed Model

In this study, a new AITDC-IIoT model has been developed for proficient threat detection and
classification using IIoT. The presented AITDC-IIoT model initially pre-processes the input data to
convert it into a compatible format. Followed by, WOA-FS model is applied to elect the subset of
features. At last, CSO is employed with RVFL model for classification of threats. Fig. 1 depicts the
overall block diagram of AITDC-IIoT technique.

Figure 1: Block diagram of AITDC-IIoT technique

2.1 Feature Selection Module

In order to elect the features, WOA is applied in this study. In order to explore the most number
of possible solutions for the problem from searching space, whale individuals are utilized from the
community [20]. Three functions are applied in WOA such as hunting, encircling, and shrinking.
During exploitation stage, both surrounding and shrinking functions are utilized. However, under
exploration stage, the hunting function is utilized. To arrive at the optimal solution for Dimension
Optimization problem (DO), the processes of ith individual from cth generation are utilized. Following
processes are involved in WOA.

Encircling Operation

ESHij (c + 1) = ESH∗j (c) − B · Oij (c) (1)
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Shrinking Operation

ESHij (c + 1) = ESH∗j (c) + get · cos (2πt) · O
′
ij (c) (2)

Hunting Operation

ESHij (c + 1) = ESHkj (c) − B · O∗
ij (c) (3)

B = 2
(

1 − c
cmax

)
· (2rd − 1) (4)

The arbitrary number in the range of [0 1] is explained through (rd), The existing number of
iterations is demonstrated as c, maximum number of iterations is explained as cmax and the positive
vector of the optimum solution is denoted by ESH− (c). In order to define the logarithmical spiral
shape, a constant e is utilized, and the arbitrary number from −1 and 1 is demonstrated as t.
The arbitrary position vector ESH (c) is chosen from the existing population. Three distances are
subsequently found. At first, the primary distance is at

∣∣Oij (c) =∣∣ 2rd.ESH∗j (c) − ESHij (c) | while
the secondary distance is at O′

ij (c) = ∣∣ESH∗j (c) − ESHij (c)
∣∣ , and the tertiary distance is at O∗

ij (c) =∣∣2rd.ESHkj (c) − ESHij (c)
∣∣. Based on the probability prob, three Eqs. (1)–(3) are applied in WOA. The

whale individuals are upgraded in Eq. (1), if Prob < 0.5 and |B| < 1, then the individuals are adjusted
by Eq. (3), once |B| ≥ 1. Eq. (2) is utilized for updating the individuals, if prob ≥ 0.5.

In WOA, the whale moves from searching space to adapt to the position pointed in the space which
is named as ‘constant space’. The transformation can be done using S-shaped transfer function. The
possibility of altering the location vector element from 0 to 1 is adapted by the transfer function. So,
it forces the searching agent to move into a binary space. Fig. 2 depicts the flowchart of WOA.

Figure 2: WOA Flowchart
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The S-shaped function is updated as demonstrated herewith.

yk = 1

1 + e−vk
i (t)

(5)

X d
i =

{
1 if rand <

(
xk

i (t + 1)
)

0 otherwise
(6)

2.2 Threat Classification Module

Once the features are selected, they are fed as input in RVFL model for classification purpose.
RVFL model depends upon Single Layer Feed Forward Network (SLFN) [21]. In this method, the
weights are arbitrarily initialized based on the node and weight is tuned with no iteration. Consider
that RVFL network contains J improvement node and α = (α1, · · · , αP)

t is the resultant weight,
whereas = J + n . The activation function for jth trained instance is determined as Gl (xi) = g (al, b, xi)

on the �th improvement layer to � = 1, . . . , J and i =, . . . , m. Here, al = (a(l1, . . . , a(lm)t and b
correspond to weight as well as bias correspondingly. Accordingly, Hessian matrix is assumed as
H = [

G1 (U) · · · Gj (U)
]

as follows.

H =
⎡
⎣G1 (x1) · · · GJ (x1)

· · · · · · · · ·
Gl (xm) · · · GJ (xm)

⎤
⎦ .

The problem equation for RVFL is stated as

min‖y − Vα‖2 + λ‖α‖2 (7)

whereas V = [H U ] and λ refers to the fixed positive constants. At this point, the gradient of Eq. (7)
is defined in terms of α. Additionally, the gradient equates to 0 to determine the solution as follows.

α = (V tV + CI)−1V ty. (8)

At novel instance x, the regressor evaluated for RVFL is as follows.

f (x) = [h (x) x] α, (9)

whereas h (x) = [G1 (x) · · · G, (x)] .

2.3 Parameter Optimization Module

In this final stage, CSO algorithm is applied to appropriately adjust the parameters related
to RVFL model [22–25]. The CSO model imitates cockroach behavior i.e., dispersing, ruthless,
chase-swarming behaviors [26]. In D-dimension searching region RD, a cockroach cluster consists
of N cockroach individuals while i-th individual characterizes the D-dimension vector x (i) =
(xi1, xi2, . . . , xiD) , (i = 1, 2, . . . , N) and the individual position is the best possible solution.

Chase-Swarming Behavior:

xi =
{

w. xi + step.rand. (pi − xi) , xi �= pi

w. xi + step.rand.
(
pg − xi

)
, xi = pi

(10)

In this equation, windicates the inertia weight i.e., a constant step indicates a fixed value whereas
rand denotes an arbitrary value that lies in the interval of [0, 1] .

pi = Optj

{
xj, x−i − x∼j ≤ visual

}
(11)
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j = 1, 2, . . . , N, i = 1, 2, . . . N.

pi = Optj {xi} (12)

Whereas opt indicates the optimal value.

Dispersion Behaviour:

xi = ri + rand (1, D) , i = 1, 2, . . . , N (13)

Now rand(l, D) represents the D-dimension vector that is fixed to some extent.

Ruthless Behavior

Xk = pg (14)

In this formula, k denotes an arbitrary value within [1, N] and pg indicates the global optimal
location. The steps involved in Continual space Cockroach Swarm Optimization (CCSO) method are
shown below.

1. Initialize cockroach swarm with uniform distribution of arbitrary numbers and set value for
each parameter.

2. Search pi and pg using the Eqs. (11) and (12).
3. Implement chase-swarming by Eq. (10)
4. Implement dispersion behaviour by Eq. (13)
5. Implement ruthless behavior by Eq. (14)
6. Repeat the loop until the end condition is obtained.

3 Experimental Validation

In this section, the proposed AITDC-IIoT model was experimentally validated using N-BaIoT
dataset [27]. The dataset holds 76,200 samples under 9 class labels which are given in Tab. 1.

Table 1: Sample class labels

Class labels Categories No. of instances (Attack)

C-1 Benign 49500
C-2 Ack 3400
C-3 Scan 3300
C-4 SYN 3300
C-5 UDP 3400
C-6 UDP Plain 3300
C-7 Combo 3300
C-8 Junk 3300
C-9 TCP 3400
Total 76200
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Fig. 3 demonstrates the set of confusion matrices generated by the proposed AITDC-IIoT model
on test dataset. The figures imply that the proposed AITDC-IIoT model effectively recognized all the
nine classes in the applied dataset.

Figure 3: Confusion matrices generated by AITDC-IIoT technique for (a) entire dataset, (b) 70% of
TR dataset, and (c) 30% of TS dataset
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Tab. 2 illustrates the results offered by AITDC-IIoT model on threat classification in IIoT
environment. The results indicate that the proposed AITDC-IIoT model gained significant results
under all the classes. For instance, with entire dataset, the proposed AITDC-IIoT model categorized
benign classes with accuy, precn, recal, Fscore, and Mathew Correlation Coefficient (MCC) values such
as 99.28%, 99.87%, 99.02%, 99.44%, and 98.43% respectively. Simultaneously, with entire dataset, the
AITDC-IIoT method categorized TCP class with accuy, precn, recal, Fscore, and MCC values such as
99.82%, 97.83%, 98.09%, 97.96%, and 97.86% respectively. Concurrently, with 70% of TR dataset, the
presented AITDC-IIoT approach categorized benign classes with accuy, precn, recal, Fscore, and MCC
values such as 99.27%, 99.87%, 99.01%, 99.44%, and 98.41% correspondingly. Meanwhile, with 70%
of TR dataset, the proposed AITDC-IIoT system categorized TCP class with accuy, precn, recal, Fscore,
and MCC values such as 99.82%, 98.04%, 97.91%, 97.98%, and 97.88% respectively. Eventually, with
30% of TS dataset, AITDC-IIoT model categorized benign class with accuy, precn, recal, Fscore, and
MCC values such as 99.83%, 97.58%, 98.53%, 98.05%, and 97.96% correspondingly.

Table 2: Results of the analysis of AITDC-IIoT technique under different measures

Labels Accuracy Precision Recall F-Score MCC

Entire dataset

Benign 99.28 99.87 99.02 99.44 98.43
Ack 99.80 96.85 98.71 97.77 97.67
Scan 99.80 96.81 98.55 97.67 97.57
SYN 99.86 97.93 98.76 98.34 98.27
UDP 99.80 96.67 99.00 97.82 97.72
UDP Plain 99.82 97.28 98.61 97.94 97.85
Combo 99.77 96.05 98.67 97.34 97.23
Junk 99.84 97.54 98.73 98.13 98.05
TCP 99.82 97.83 98.09 97.96 97.86

Average 99.75 97.43 98.68 98.05 97.85

Training phase (70%)

Benign 99.27 99.87 99.01 99.44 98.41
Ack 99.79 96.55 98.78 97.65 97.55
Scan 99.78 96.67 98.35 97.50 97.39
SYN 99.86 98.08 98.63 98.35 98.28
UDP 99.81 96.57 99.16 97.85 97.75
UDP Plain 99.81 97.10 98.48 97.79 97.69
Combo 99.75 95.59 98.56 97.05 96.94
Junk 99.84 97.69 98.75 98.22 98.14
TCP 99.82 98.04 97.91 97.98 97.88

Average 99.75 97.35 98.63 97.98 97.78

Training phase (30%)

Benign 99.83 97.58 98.53 98.05 97.96
Ack 99.83 97.14 99.00 98.06 97.98

(Continued)
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Table 2: Continued
Labels Accuracy Precision Recall F-Score MCC

Scan 99.86 97.57 99.07 98.31 98.24
SYN 99.80 96.91 98.62 97.76 97.65
UDP 99.85 97.71 98.89 98.29 98.22
UDP Plain 99.80 96.99 98.89 97.93 97.83
Combo 99.82 97.21 98.68 97.94 97.85
Junk 99.82 97.34 98.50 97.92 97.82
TCP 99.77 97.59 98.80 98.19 98.00

Average 99.83 97.58 98.53 98.05 97.96

Fig. 4 demonstrates the average threat classification outcomes achieved by the proposed AITDC-
IIoT model. Upon entire dataset, AITDC-IIoT model achieved average accuy, precn, recal, Fscore, and
MCC values such as 99.75%, 97.43%, 98.68%, 98.05%, and 97.85% respectively. Moreover, on 70% of
TR dataset, the proposed AITDC-IIoT technique offered average accuy, precn, recal, Fscore, and MCC
values such as 99.75%, 97.35%, 98.63%, 97.98%, and 97.78% correspondingly. Furthermore, on 30%
of TS dataset, the presented AITDC-IIoT model provided average accuy, precn, recal, Fscore, and MCC
values such as 99.83%, 97.58%, 98.53%, 98.05%, and 97.96% correspondingly.

Figure 4: Average analysis results of AITDC-IIoT technique under different measures

A brief precision-recall analysis was conducted upon AITDC-IIoT approach on test dataset and
the results are depicted in Fig. 5. As per the figure, it is clear that the proposed AITDC-IIoT method
accomplished maximum precision-recall performance under different number of class labels.
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Figure 5: Precision-recall curve analysis results of AITDC-IIoT technique

Training Accuracy (TA) and Validation Accuracy (VA) values, attained by AITDC-IIoT model
on test dataset, are demonstrated in Fig. 6. The experimental outcome imply that AITDC-IIoT model
gained the maximum TA and VA values. To be specific, VA seemed to be higher than TA.

Figure 6: TA and VA graph analyses results of AITDC-IIoT technique

Training Loss (TL) and Validation Loss (VL) values, achieved by the proposed AITDC-IIoT
technique on test dataset, are portrayed in Fig. 7. The experimental outcomes infer that AITDC-IIoT
model achieved the least TL and VL values. To be specific, VL seemed to be lower than TL.
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Figure 7: TL and VL graph analyses results of AITDC-IIoT technique

In order to validate the supremacy of the proposed AITDC-IIoT model, a detailed comparative
analysis was performed against existing models and the results are shown in Tab. 3 [28].

Table 3: Comparative analysis results of AITDC-IIoT technique and other existing approaches

Methods Precision Recall Accuracy F-Score

GRU-RNN 96.75 94.40 96.87 97.88
AutoEncoders-EDSA 96.36 95.59 97.24 97.41
Multi-CNN Model 96.79 97.65 99.11 96.81
Cu-LSTMGRU-Cu-BLSTM 96.99 98.12 99.47 97.95
Cu-DNN-LSTM Model 94.91 97.70 98.86 97.51
Cu-DNN-GRU Model 96.11 97.01 99.16 97.57
AITDC-IIoT 97.58 98.53 99.83 98.05

Fig. 8 illustrates the comparative examination results of AITDC-IIoT model and other existing
methods in terms of precn. The experimental values indicate that Cu-DNN-long Short Term Memory
(LSTM) model achieved ineffectual outcome with the least precn of 94.91%. Followed by, Gated
Recurrent Unit (GRU)-Recurrent Neural Network (RNN), AutoEncoders-EDSA, Multi-CNN, Cu-
LSTMGRU-Cu-BLSTM, and Cu-DNN-GRU models produced reasonably closer precn values such
as 96.75%, 96.36%, 96.79%, 96.99%, and 96.11% respectively. However, the proposed AITDC-IIoT
model accomplished an enhanced performance with a maximum precn of 97.58%.



5820 CMC, 2022, vol.73, no.3

Figure 8: Precn analysis results of AITDC-IIoT technique and other recent algorithms

Fig. 9 showcases the comparative analysis results achieved by the proposed AITDC-IIoT model
and other existing methods in terms of recal. The experimental values indicate that Cu-DNN-
LSTM model showcased ineffectual outcomes with a minimal recal of 97.70%. Next, GRU-RNN,
AutoEncoders-EDSA, Multi-CNN, Cu-LSTMGRU-Cu-BLSTM, and Cu-DNN-GRU models pro-
duced reasonably closer recal values such as 94.40%, 95.59%, 97.65%, 98.12%, and 97.01% corre-
spondingly. But, the proposed AITDC-IIoT model accomplished an enhanced performance with a
maximum recal of 97.58%.

Figure 9: Recal analysis results of AITDC-IIoT technique and other recent algorithms
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Fig. 10 depicts the comparative investigation results attained by the proposed AITDC-IIoT
approach and other existing methods in terms of accuy. The experimental values infer that Cu-
DNN-LSTM model achieved ineffectual outcome with the least accuy of 98.86%. Likewise, GRU-
RNN, AutoEncoders-EDSA, Multi-CNN, Cu-LSTMGRU-Cu-BLSTM, and Cu-DNN-GRU models
produced reasonably closer accuy values such as 96.87%, 97.24%, 99.11%, 99.47%, and 99.16%
correspondingly. However, the proposed AITDC-IIoT model accomplished enhanced performance
with a maximum accuy of 99.83%.

Figure 10: Accuy analysis results of AITDC-IIoT technique and other recent algorithms

Fig. 11 demonstrates the comparative analysis results achieved by AITDC-IIoT system and
other existing systems in terms of Fscore. The experimental values imply that Cu-DNN-LSTM algo-
rithm attained ineffectual outcome with a minimal Fscore of 97.51%. Along with that, GRU-RNN,
AutoEncoders-EDSA, Multi-CNN, Cu-LSTMGRU-Cu-BLSTM, and Cu-DNN-GRU techniques
produced reasonably closer Fscore values such as 97.88%, 97.41%, 96.81%, 97.95%, and 97.57%
respectively. At last, the proposed AITDC-IIoT methodology accomplished an enhanced performance
with a maximum Fscore of 98.05%.

Based on the results and discussion made above, it is apparent that the proposed AITDC-IIoT
model is an excellent performer in terms of threat detection and classification compared to the existing
techniques.
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Figure 11: Fscore analysis results of AITDC-IIoT technique with other recent algorithms

4 Conclusion

In this study, a new AITDC-IIoT model has been developed for proficient threat detection
and classification. The presented AITDC-IIoT model initially pre-processes the input data so as
to convert it to a compatible format. Followed by, WOA-FS model is involved to elect the subset
of features. Moreover, CSO is employed with RVFL model for threat classification. Finally, CSO
algorithm is applied to appropriately adjust the parameters related to RVFL model. The performance
of the proposed AITDC-IIoT model was validated under benchmark datasets. The experimental
results established the supremacy of the proposed AITDC-IIoT technique over recent approaches.
Thus, AITDC-IIoT model can be employed for effectual threat detection and classification in IIoT
environment. In future, the performance of the model can be enhanced by including outlier detection
and clustering processes.
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