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Abstract: In 2020, the reported cases were 0.12 million in the six regions to the
official report of the World Health Organization (WHO). For most children
infected with leprosy, 0.008629 million cases were detected under fifteen. The
total infected ratio of the children population is approximately 4.4 million.
Due to the COVID-19 pandemic, the awareness programs implementation has
been disturbed. Leprosy disease still has a threat and puts people in danger.
Nonlinear delayed modeling is critical in various allied sciences, including
computational biology, computational chemistry, computational physics, and
computational economics, to name a few. The time delay effect in treating
leprosy delayed epidemic model is investigated. The whole population is
divided into four groups: those who are susceptible, those who have been
exposed, those who have been infected, and those who have been vaccinated.
The local and global stability of well-known conclusions like the Routh Hur-
witz criterion and the Lyapunov function has been proven. The parameters’
sensitivity is also examined. The analytical analysis is supported by computer
results that are presented in a variety of ways. The proposed approach in
this paper preserves equilibrium points and their stabilities, the existence and
uniqueness of solutions, and the computational ease of implementation.
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1 Introduction

Leprosy is an infectious disease generated by a bacillus known as Mycobacterium leprae and lep-
romatosis. The morphology character of Mycobacterium leprae is an acid-fast, intracellular bacterium
that is aerobic and rod-shaped. This long-term infection is also called Hansen’s disease. Tuberculiod,
Lepromatous and Borderline is the types of leprosy. There is also some simple classification of leprosy
disease, known as Multibacillary and Paucibacillary leprosy. It is mostly found in poverty where there
is poor nutrition. This infection is mostly prevented in thronged areas and infects those whose immune
system is weak enough to fight such disease. This murderous infectious harms an infected person’s
nerves, respiratory, tract, skin, and eyes. As a result, nerve damage deprives the infected individual of
the ability to feel pain, resulting in the loss of limbs owing to reoccurring traumas or infection from
undiscovered wounds. Loss of eyesight and weakness of muscles is an aching part of this disease. Its
symptoms may vary from person to person. Its first symptoms may occur within a year, and for others,
it can take 20 years to exhibit any symptom. Primarily, this disease shows paler patches on the skin
and sometimes nodules on the skin. It can be complex due to diagnosing it, and other times the patient
remains misdiagnosed for years. The most common or usual symptoms of leprosy include a runny nose,
muscle and eyesight weakness, dry scalp, skin lesions, loss of sensation in some body parts, especially
fingers and toes, nasal cartilage destruction, and speech phonation and resonation of sound. These
symptoms vary from person to person. The symptoms of this disease are categorized according to their
stages. The incubation period is five years. The infected person may notice pale or pinkish skin patches
that may lead to pain or sometimes temperature or insensitive. The next stage of leprosy can result in
tissue loss, and it will affect fingers and toes to become insensitive to any pain. The immunological
response of an individual varies according to the type of leprosy. Nerve damage is also a fatal symptom
as it may cause loss of muscle function that may lead to paralysis and numbness. if treated early, this
disease can be curable but become perpetual if delayed for months. Early discovery of the disease is
significant, as it will present physical and neurological damage. The WHO recommends that those in
close contact with someone who has leprosy receive preventive treatment. A single dosage of rifampicin
(SDR) is suggested for adults and children who do not have leprosy or tuberculosis. This precaution
treatment reduces infection up to 51% within 02 years and 30% within 06 years. The Bacillus Calmette-
Guerin (BCG) is considered a great weapon against leprosy. According to WHO estimates, this vaccine
(BCG) at birth reduces the cases of leprosy, and it should be recommended in countries that have
repeated frequent leprosy cases. A 3–drug regimen of rifampicin, dapsone, and clofazimine is suggested
to cure leprosy. On the other hand, multidrug therapy (MDT) has shown efficacy, and individuals
are no longer infectious following the first monthly dose. According to the estimate of WHO in the
year 2018, approximately 208. Six hundred nineteen cases were reported in different countries of the
world. According to a report, in 2003, Pakistan had 20,000 leprosy cases, and its ratio decreased from
2009 to 2018. The leprosy rate is highly associated with India, the African region is considered the
second most highly affected, and Brazil is third [1]. In 2004, Meima et al. investigated the effects of the
current strategy to overcome leprosy, and the scenario presented that the following strategy will help
reduce transmission. However, it may be slow in the process [2]. In 2004, Haanpa et al. discussed the
possible dynamics, challenges in treatment, and needs in neuropathic pain, which required research
work [3]. In 2006, Scollarod et al. explained the advanced research of Mycobacterium leparo [4]. In
2009, Bakker et al. discussed GIS to reduce the leprosy disease rate. GIS was a powerful tool in disease
[5]. In 2010, Fischer et al. approached the comprehensive data of cluster leprosy within the household
[6]. In 2012, Mushayabasa et al. presented the result of different strategies aiming to overcome
leprosy disease by targeting infected and susceptible people [7]. In 2014, Barreto et al. discussed
spatial analysis to explain the temporal pattern of leprosy disease in the Brazilian Amazon region.
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Through spatial analysis, the leprosy rate in early childhood gives a better understating [8]. In 2014,
Lastoria et al. updated leprosy aspects like dermatologists on epidemiological etiopathogenic, and
clinical [9]. In 2014, Martinez et al. evaluated PCR-based techniques for diagnosing leprosy disease
[10]. In 2015, white et al. suggested some areas that play an important role for future research in
leprosy disease and some challenges in which leprosy patients survive and the physician is facing
in the treatment of Hansen’s disease [11]. In 2015, Blok et al. discussed that the eradication of
leprosy is reached at the national level by 2020, but it remains in some specific regions [12]. Oli et
al., 2017, investigated the dynamic of leprosy and its impact on the host population [13]. In 2018,
Block et al. discussed the result of a diagnostic test to find the subclinical leprosy rate [14]. Le et al.,
in 2018, presented Southwest China the epidemiological characteristics of leprosy and presented the
current situation of antigen-specific serum antibodies in humans who are suffering from leprosy and
have different types of clinical [15]. In 2018, de Souza et al. examined the relationship link between
the social degree of vulnerability and the intensity of leprosy [16]. In 2018, Mawardi et al. Leprosy
morbidity reports played an important role in epidemiology because its result was authentic [17]. Using
a mathematical model, Giraldo et al. described the involvement of multibacillary and paucibacillary
leprosy. Some mathematical simulations are taken to analyze different stages of leprosy disease [18].
Lietman et al. estimated that the spread of leprosy in different areas of India was explained using
geometric stability [19]. In 2018, Geluk et al. discussed strategies to identify leprosy reactions based
on correlations that would be useful in leprosy [20]. In 2020, Gunawan et al. presented that testicular
atrophy has many frequencies. The testicular function should be considered normal for leprosy patients
[21]. Similar research on leprosy has been discussed in [22,23]. Numerical techniques with spatio
temporal analysis of models are discussed [24,25]. In [26–36], researchers have recently focused on
computer simulations of the epidemic model with various delay tactics. The following work studied
the related models [37,38].

Delay models play a key role in real-life objects in the mathematical epidemiological field. Delay
tactics are a control strategy near nature. As a result, we strive for a highly effective leprosy cure
through delay tactics. Our scenario for the paper is as follows: Section 1 introduces leprosy as a model
of delay. Section 2 discusses the leprosy model’s equilibria. Section 3 leprosy impairs model stability on
a local and global scale. Section 4, to support theoretical analysis, some numerical results are discussed
in the model and future discussions.

2 Model Methodology

In this section, we have studied leprosy delayed epidemic model. At any time t, the entire
population N (t) is divided into four groups, with X (t) being the compartment of susceptible
humans, Y (t) is the asymptomatic infected human, Z (t) is the compartment of human infected from
multibacillary, and W (t) is the group of humans infected from paucibacillary as shown in Fig. 1.

The parameters of the leprosy delayed model are described as follows: ρ is the natural birth
rate, βp is the rate of interaction with a human having transmission of paucibacillary, βm is the rate
of exchange with a human having information of multibacillary, θ is the developing rate between
symptomatic to the asymptomatic stage of leprosy, f represents the fraction of population who come
out with multibacillary, (1 − f ) is the fraction of population who come out with paucibacillary, μ
denotes the natural death rate. The following system of delay differential equations represents the
leprosy delayed epidemic model.

dX
dt

= ρ − (
βm X (t − τ) Z (t − τ) + βp X (t − τ) W (t − τ)

)
e−μτ − μX (1)
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dY
dt

= (
βm X (t − τ) Z (t − τ) + βp X (t − τ) W (t − τ)

)
e−μτ – θ Y − μY (2)

dZ
dt

= f θ Y − μz (3)

dW
dt

= θ (1 − f ) Y − μW (4)

Figure 1: Flow diagram of leprosy delayed epidemic model

The initial conditions are as follows: X = X0 ≥ 0, Y = Y0 ≥ 0, W = W0 ≥ 0, Z = Z0 ≥ 0.

2.1 Positivity and Boundedness of Model

The delayed Leprosy epidemic model must maintain positivity and boundedness for practical
analysis. All the state variables of the model X (t) , Y (t) , Z (t) , W (t) must be non-negative.
Therefore all the achieved outcomes of the model must be positive and bounded at any time,
t ≥ 0 τ ≤ t in a feasible region.

M =
{
(X , Y , Z, W) εR4

+ : N (t) ≤ ρ

μ
, X ≥ 0, Y ≥ 0, Z ≥ 0, W ≥ 0

}
.

For this purpose, we will investigate the following results.

Theorem: The solutions (X, Y, Z, W)εR4
+ of the system (1–4) are positive at any time t ≥ 0, τ ≤ t

with given non-negative initial conditions.

Proof : It is clear from the system (1–4) as follows:

dX
dt

∣∣∣∣
X=0

= ρ ≥ 0,
dY
dt

∣∣∣∣
Y=0

= (βmXZ + βpXW)e−μt ≥ 0,
dZ
dt

∣∣∣∣
Z=0

= f θ Y ≥ 0,
dW
dt

∣∣∣∣
W=0

= θ(1 − f ) Y ≥ 0

As desired.

Theorem [25]: The solutions (S, E, I, V)εR4
+ of the system (1–4) is bounded.

Proof: Consider the function as follows:

N (t) = X (t) + Y (t) + Z (t) + W (t) .

dN
dt

= ρ − μN
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We obtain this disparity as a result of Gronwall’s inequality.

N (t) = N (0) e−μt + ρ

μ
, t ≥ 0

lim
t→∞

Sup N (t) = ρ

μ

This demonstrates that the solution to system (1–4) is constrained and falls within the feasible
region M.

2.2 Equilibria of the Model

In this section, the equilibrium points of the model are presented as follows:

Leprosy trivial equilibrium (LTE-L0) = (
X 0, Y 0, W 0, Z0

) = (0, 0, 0, 0),

Leprosy free equilibrium (LFE-L1) = (
X 1, Y 1, Z1, W 1

) =
(

ρ

μ
, 0, 0, 0

)
Leprosy existing equilibrium (LEE-L2) = (X ∗, Y ∗, Z∗, W ∗)

Where the values of X ∗, Y ∗, Z∗ and W ∗ are given as follows:

X ∗ = μ (θ + μ)[
βmf θ + βpθ (1 − f )

]
e−μτ

Y ∗ =
[
βmf θ + βpθ (1 − f )

]
ρe−μτ − μ2 (θ + μ)

(θ + μ)
[
βmf θ + βpθ (1 − f )

]
e−μτ

W ∗ = θ (1 − f )

μ

[
βmf θ + βpθ (1 − f )

]
ρe−μτ − μ2 (θ + μ)

(θ + μ)
[
βmf θ + βpθ (1 − f )

]
e−μτ

Z∗ = f θ

μ

[
βmf θ + βpθ (1 − f )

]
ρe−μτ − μ2 (θ + μ)

(θ + μ)
[
βmf θ + βpθ (1 − f )

]
e−μτ

2.3 Reproduction Number

The reproduction rate of the leprosy delayed epidemic model is described in this section. It is
an essential component of the model denoted by R0. It plays a significant role in disease dynamics.
The disease will be in control when the value of R0 is less than 1, and if its value is greater than 1, it
represents the endemic situation. From Eqs. (2) to (4), infectious and recovered populations have been
taken as follows:⎡
⎣Y ′

Z′

W ′

⎤
⎦ =

⎡
⎣0 βm Xe−μτ βp Xe−μτ

0 0 0
0 0 0

⎤
⎦

⎡
⎣Y

Z
W

⎤
⎦ −

⎡
⎣θ + μ 0 0

−f θ μ 0
−θ (1 − f ) 0 μ

⎤
⎦

⎡
⎣Y

Z
W

⎤
⎦

where F =
⎡
⎢⎣0 βm

ρ

μ
e−μτ βp

ρ

μ
e−μτ

0 0 0
0 0 0

⎤
⎥⎦ and V =

⎡
⎣θ + μ 0 0

−f θ μ 0
−θ (1 − f ) 0 μ

⎤
⎦



5722 CMC, 2022, vol.73, no.3

FV−1
∣∣

L1
=

⎡
⎢⎢⎣

βmρe−μτμf θ + βρe−μτρμmθ (1 − f )

μ2 (θ + μ)

βmρe−μτ

μ2

βpρe−μτ

μ2

0 0 0
0 0 0

⎤
⎥⎥⎦.

By the next-generation matrix method, the largest eigenvalue represents the reproduction number

given by R0 =
(

βmf θ + βpθ (1 − f )

μ2 (θ + u)

)
ρe−μτ .

2.4 Sensitivity Analysis of Parameters

The parameters employed in the leprosy delayed epidemic model are critical to the disease’s
dynamics. The effects of small changes in parameters change the entire dynamic. We have addressed
the sensitivity analysis of the parameters in this part. For this, we proceed as follows:

Lf =
∂ R0

R0

∂f
f

= f
R0

×
(

βmθ − βpθ

μ2 (θ + μ)

)
ρe−μτ > 0, Lβm = βm

R0

×
(

f θ

μ2 (θ + μ)

)
ρe−μτ > 0,

L βp = βp

R0

×
(

θ (1 − f )

μ2 (θ + μ)

)
ρe−μτ > 0, Lρ = P

R0

×
(

βmf θ + βpθ (1 − f )

μ2 (θ + μ)

)
e−μτ > 0,

Lθ = θ

R0

[
βmf θ + βpθ (1 − f )

]
μ2 (θ + μ) ρe−μτ − μ2

[
βmf θ + βpθ (1 − f )

]
ρe−μτ

[μ2 (θ + μ)]2 > 0,

Lμ = − μ

R0

[
τμ2 (θ + μ)

[
βmf θ + βpθ (1 − f )

]
Pe−μτ + (

2μθ + 3μ2
) [

βmf θ + βpθ (1 − f )
]
ρe−μτ

[μ2 (θ + μ)]2

]
< 0,

From the above analysis, it can be seen that f , βm , βp, ρ, θ are sensitive, and the parameters μ are not

sensitive.

3 Local Stability

This section discusses the local stability of leprosy delayed epidemic model at three equilibrium
locations (LTE-L0), (LFE-L1), and (LEE-L2).

Theorem: Leprosy trivial equilibrium points, the system (1–4) is locally asymptotically stable at
(LTE-L0), if R0 = 1. Otherwise, it is unstable.

Proof : The Jacobian matrix JL of the system (1–4) is given by

JL =

⎡
⎢⎢⎣

− (
βm Z + βp W

)
e−μτ − μ 0 −βm Xe−μτ −βpX e−μτ(

βm Z + βp W
)

e−μτ –θ − μ βm Xe−μτ βp X e−μτ

0 f θ −μ 0
0 θ (1 − f ) 0 −μ

⎤
⎥⎥⎦
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At leprosy trivial equilibrium (LTE-L0), the Jacobean matrix is given by

JL|L0
=

⎡
⎢⎢⎣

−μ 0 0 0
0 –θ − μ 0 0
0 f θ −μ 0
0 θ (1 − f ) 0 −μ

⎤
⎥⎥⎦

Now,
∣∣JL|L0

− λI
∣∣ = 0 implies that all the Eigenvalues are negative. That is, λ1 = −μ < 0, λ2 =

− (μ + θ) < 0, λ3 = −μ < 0 and λ4 = −μ < 0. This shows that system is locally stable at (LTE-L0).

Theorem: The system (1–4) is locally asymptotical stable at leprosy free equilibrium (LFE-L1) =(
ρ

μ
, 0, 0, 0

)
, if R0 < 1. Otherwise, the system is unstable.

Proof : The Jacobian matrix calculated at leprosy free equilibrium point (LFE-L1) as follows:

JL|L1
=

⎡
⎢⎢⎢⎢⎣

−μ 0 −βm

ρ

μ
e−μτ −βp

ρ

μ
e−μτ

0 –θ − μ βm

ρ

μ
e−μτ βp

ρ

μ
e−μτ

0 f θ −μm 0
0 θ (1 − f ) 0 −μ

⎤
⎥⎥⎥⎥⎦

By computing
∣∣JL|L1

− λI
∣∣ = 0, we have the Eigenvalue λ = −μ < 0 and the determinant∣∣∣∣∣∣

−a1 − λ a2 a3

f θ −μ − λ 0
a4 0 −μ − λ

∣∣∣∣∣∣ = 0.

Where, a1 = θ + μ, a2 = βm
ρ

μ
e−μτ a3 = βp ρ

μ
e−μτ a4 = θ (1 − f ).

By evaluating the above determinant, we have the following polynomial

λ3 + b0λ
2 + b1λ + b1 = 0. Where, b0 = (a1 + 2μ), b1 = (

2a1μ + μ2 − a2f θ − a3a4

)
and b2 =(

a1μ
2 − a2f θ μ − a3μa4

)
.

By Routh-Hurwitz Criterion for 3rd-degree polynomial, we have b2b0 > 0 and b0b1 > b2.

Therefore, the leprosy existence equilibria (LEE-L2) locally is stable.

Theorem: The system (1–4) is locally asymptotical stable at leprosy existence equilibrium (LEE-
L2)= (X ∗, Y ∗, Z∗, W ∗), if R0 > 1 and unstable elsewhere.

Proof: The Jacobian matrix calculated at leprosy existence equilibrium point (LEE-L2) is as
follows:

JL1
=

⎡
⎢⎢⎣

− (
β mZ∗ + βpW ∗) e−μτ − μ 0 −βmX ∗e−μτ −βp X ∗e−μτ(

βmZ∗ + βpW ∗ )
e−μτ −θ − μ βmX ∗e−μτ βp X ∗e−μτ

0 f θ −μ 0
0 θ(1 − f) 0 −μ

⎤
⎥⎥⎦

=

∣∣∣∣∣∣∣∣
−b1 − μ − λ 0 −b2 −b3

b1 −b4 − λ b2 b3

0 b5 −b6 − λ 0
0 b7 0 −b6 − λ

∣∣∣∣∣∣∣∣
= 0



5724 CMC, 2022, vol.73, no.3

where, b1 = (
β m Z∗ + βp W ∗) e−μτ , b2 = βm X ∗e−μτ , b3 = βp X ∗ e−μτ , b4 = θ, b5 = f θ, b6 = μ, and

b7 = θ (1 − f).

Now evaluating
∣∣JL|L2

− λI
∣∣ = 0, we have

λ4 + n1λ
3 + n2λ

2 + n3λ + n4 = 0

where, n1 = (b1 + b4 + 2b6 + μ), n2 = (b3b7−b1b6−b6μ−b6
2−b4b6+b2b5−b1b6−b1b4−b6μ−b4μ−b4b6),

n3 = (b3b6b7 + b3μb7 + b2b6b5 − b1b6
2 − b1b4b6 − μb6

2 − b4b6
2 − b4b6μ + b2b5μ − b1b4b6 − b4b6μ) and

n4 = (
b3b7b6μ + b2b5b6μ + b1b4b6

2
μ

)
.

By Routh-Hurwitz Criterion for 4th-degree polynomial, we have

n0 > 0, n1 > 0, n1n2 − n0n3 > 0,

(n1n2 − n0n3)n3 − n1
2n4 > 0 and n4 > 0 only if R0 > 1.

Hence, the leprosy existence equilibria (LEE-L2) are locally stable.

4 Global Stability

The global stability of the leprosy delayed epidemic model is examined using the following data.

Theorem: The system (1–4) is globally asymptotical stable at leprosy trivial equilibrium (LTE-L0),
L0 = (

X 0, W 0, Y 0, Z0
) = (0, 0, 0, 0) , if R0 = 1.

Proof : Define the Volterra Lyapunov function F : M → R as

G = X + Y + W + Z for all (X , Y , W , Z) εM ,

dG
dt

= dX
dt

+ dY
dt

+ dZ
dt

+ dW
dt

dG
dt

= P − (βm X Z + βp X W)e−μτ − μX + (βm X Z + βp X W)e−μτ – θ Y − μY + f θ Y

− Zμ + θ (1 − f ) Y − μW

= ρ − μ (X + Y + Z + W)

dF
dt

≤ ρ − μ
ρ

μ

Since,
dF
dt

= 0 if R0 = 1 therefore (LTE-L0) is globally asymptotically stable.

Theorem: The system (1–4) is globally asymptotically stable at leprosy free equilibrium (LFE-

L1) =
(

ρ

μ
, 0, 0, 0

)
, if R0 < 1.

Proof : Consider the Volterra Lyapunov function G : M → R defined by

G =
(

X − X 0 − X 0 log
X
X 0

)
+ Y + Z + W

dG
dt

= (1 − X 0

X
)
dx
dt

+ dy
dt

+ dz
dt

+ dw
dt
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dG
dt

= (X − X 0 )
[ ρ

X
− βm Z e−μτ − βp We−μτ − μ

]
+ βm X ze−μτ + βp X We−μτ − θ y

− μy + f θ Y − Zμ + θ(1 − f )Y − μW

= (
X − X 0

) [ ρ

X
− βm Z e−μτ − βp We−μτ − ρ

x0
+ βm Z0 e−μτ + βp W 0e−μτ

]
+ βmX Z e−μτ + βp WXe−μτ − (θ + μ) Y + θ Y − μ Z − μW .

dG
dt

= −
(

X − X 0
)2

ρ

xx0
− βm

(
Z − Z0

) (
X − X 0

)
e−μτ − βp

(
X − X 0

) (
W − W 0

)
e−μτ

− μW
[

1 − βp X e−μτ

μ

]
− Zμ

[
1 − βm Xe−μτ

μ

]
− μY

It can easily be observed that
dG
dt

< 0, if R0 < 1 and
dG
dt

= 0 if X = X 1, Y = 0, W = 0 and Z =
Z1. Hence (LFE-L1) is globally asymptotically stable.

Theorem: The system (1–4) is globally asymptotical stable at leprosy existence equilibrium (LEE-
L2) = (X ∗, Y ∗, Z∗, W ∗), if R0 > 1.

Proof : Consider the Volterra Lyapunov function H : M → R defined as

H =
(

X − X ∗ − X ∗ log
X ∗

X

)
+

(
Y − Y ∗ − Y ∗ log

Y ∗

Y

)
+

(
Z − Z∗ − Z∗ log

Z∗

Z

)
+

(
w − w∗ − w∗log

w∗

w

)

dH
dt

=
(

1 − X ∗

X

)
dX
dt

+
(

1 − Y ∗

Y

)
dY
dt

+
(

1 − Z∗

Z

)
dZ
dt

+
(

1 − W ∗

W

)
dW
dt

=(X − X ∗ )
[ ρ

X
− βm Z e−μτ − βp We−μτ − μ

]
+ ( Y − Y ∗ )

[
βm XZe−μτ

Y
+ βp XW e−μτ

Y
− (θ + u)

]

+ (Z − Z∗)

[
f θ Y

Z
− μ

]
+ (W − W ∗ )

[
θ(1 − f )Y

W
− u

]

=(X − X ∗)
[ ρ

X
− βm Z e−μτ − βp We−μτ − ρ

x∗ + βmZ∗e−μτ + βpW ∗ e−μτ

]

+ (Y − Y ∗)

[
βm XZe−μτ

Y
+ βp XW e−μτ

Y
− βm XZe−μτ

Y ∗ − βp XW e−μτ

Y ∗

]

+ (Z − Z∗)

[
f θ Y

Z
− f θY

Z∗

]
+ (W − W ∗)

[
θ(1 − f )Y

W
− θ(1 − f )Y

Y ∗

]



5726 CMC, 2022, vol.73, no.3

dH
dt

= −ρ ( X − X ∗ )
2

XX ∗ − βm e−μτ ( X − X ∗ ) ( Z − Z∗ ) − βp e−μτ ( X − X ∗ ) (W − W ∗)

− ( Y − Y ∗ )
2

YY ∗ βm XZ e−μτ − ( Y − Y ∗ )
2

YY ∗ βpXW e−μτ − ( Z − Z∗ )
2

ZZ∗ f θ Y − ( W − W ∗ )
2
θ (1 − f ) Y

WW ∗

As dH
dt

≤ 0 for R0 < 1, also dH
dt

= 0 only if X = X ∗, Y = Y ∗, Z = Z∗ and W = W ∗.

So, (LEE-L2) is globally asymptotically stable.

5 Computer Simulations

The numerical treatment of the leprosy delay delayed epidemic model from the parameter value
is presented. The parameter values and their data analysis is presented in Fig. 2.

ρ = 0.5, βp = 2.3, βm = 2.5, θ = 0.19, μ = 0.5, f = 0.7, h = 0.1, t = 0, τ = 0, X = 0.4, Y = 0.1,

Z = 0.2 and W = 0.3.
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Figure 2: Data analysis behavior of the disease

Example 1: (Without delay, simulation at leprosy-free equilibrium (PFE-P 1).

Fig. 3a through Fig. 3d illustrate the solution of the system (1–4) at the leprosy-free equilibrium
(PFE −P1), P1 = (

X 1, Y 1, Z1, W 1
) = (1, 0, 0, 0) with the model’s starting data X (0) = 0.5,Y (0) = 0.2,

Z (0) = 0.1, W (0) = 0.1. As a result, when the system (1–4) enters a disease-free state without delay,
the reproduction number is R0 = 0.7930 < 1. Additionally, as desired, Fig. 3e displays the system’s
combined behavior (1–4) without the delay effect.
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(a) (b)

(c) (d)

(e)

Figure 3: Plots of time for the system (1–4) at the model’s leprosy-free equilibrium
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Example 2: (Simulation at leprosy existing equilibrium (LEE −L2) without delay).

Figs. 4a to 4d illustrate the solution of the system (1–4), at leprosy existing equilibrium (LEE −L∗),
L∗ = (X ∗, Y ∗, Z∗, W ∗) = (0.7442, 0.1854, 0.04931, 0.02114), Therefore, the system (1–4) converges to
L∗, without delay, the reproduction number is R0 = 1.3438 > 1. Additionally, as desired, Fig. 4e depicts
the combined behavior of the system (1–4) without regard for the delay effect.

(a) (b)

(c) (d)

(e)

Figure 4: Plots of time for the system (1–4) at the model’s Leprosy existing equilibrium
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Example 3: (Simulations at the state of leprosy with a temporal delay effect).

In this section, we have taken the effect of the system (1–4) at leprosy existing equilibrium of the
model with effective use of artificial delay tactics. Figs. 5a to 5e, we can observe the susceptibility of
humans increases with the help of delay tactics. On the other hand, we can keep the infectivity of
leprosy patients decreasing and even converging to zero.

(a) (b)

(c) (d)

Figure 5: Time graphs of the system (1–4) in its leprosy-free state with successful employment of delay
tactics

Example 6: (Effectiveness of delaying techniques on the model’s reproduction rate).

Let τ = 0.9955. The reproduction value of the leprosy virus drops, which moves the system from
its current state to one where there is no leprosy. Nonetheless, Fig. 6 demonstrates that, when necessary,
the delay technique can overcome the infectivity of leprosy viruses.
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Figure 6: Comparison graph showing the model’s reproduction rate and artificial delay duration

Example 5: (Replication of the delay term’s effect on the infectious class).

The varying values of τ demonstrate that infective classes of people are reduced or even wiped
out of the population. Fig. 7 illustrates the appropriate delay strategies, such as immunizations, for
various age groups.

(a) (b)

Figure 7: The influence of the delay term on the model’s infectious class is visualized

Example 6: 2 phase plots with delay effects.

Using artificial delay techniques, we plotted the model’s two-dimensional behavior. However,
these simulations are based on the interaction between the model’s susceptible class and the rest of
the model’s compartments. Figs. 8a–8c shows that the human immune system is dominant over the
immune system of infected individuals, as intended.
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(a) (b)

(c)

Figure 8: The system’s two-dimensional phases (1–4) with a delay effect

6 Conclusion

However, in delayed differential equations (DDEs), the past determines the system’s evolution at
a specific time instant. The introduction of such time delays significantly increases the complexity
of a differential model. Therefore, stability and bifurcation analysis of these models are essential
for studying their qualitative behavior. These models haven’t been appropriately investigated for
parameter identifiability or sensitivity analysis. The application of DDEs with state-dependent delays
is a very recent topic in mathematics that might result in significant advances. This article examined
the dynamics of leprosy disease through the successful use of delay techniques. As a group, we split
the whole population into three groups:

• People who were susceptible to the virus.
• People are exposed to the virus.
• People who had been infected or had been vaccinated.

The reproduction number for the leprosy delayed epidemic model and sensitivity analysis on the
reproduction number-related parameters are examined. Additionally, using well-known mathematical
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results, the demonstration of the model’s local and global stabilities at its equilibrium states, namely
leprosy-free and leprosy-existing equilibrium. It is concluded that the desired research can control the
dynamic of leprosy by positively using different effective delay techniques like treating infected people,
keeping distance from the infected people, by immediate and annual examinations for a minimum of
five years after the last meeting with an infected person.
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