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Abstract: As an essential part of artificial intelligence, many works focus
on image processing which is the branch of computer vision. Nevertheless,
image localization faces complex challenges in image processing with image
data increases. At the same time, quantum computing has the unique advan-
tages of improving computing power and reducing energy consumption. So,
combining the advantage of quantum computing is necessary for studying
the quantum image localization algorithms. At present, many quantum image
localization algorithms have been proposed, and their efficiency is theoret-
ically higher than the corresponding classical algorithms. But, in quantum
computing experiments, quantum gates in quantum computing hardware
need to work at very low temperatures, which brings great challenges to
experiments. This paper proposes a single-photon-based quantum image
localization algorithm based on the fundamental theory of single-photon
image classification. This scheme realizes the operation of the mixed national
institute of standards and technology database (MNIST) quantum image
localization by a learned transformation for non-noise condition, noisy con-
dition, and environmental attack condition, respectively. Compared with the
regular use of entanglement between multi-qubits and low-temperature noise
reduction conditions for image localization, the advantage of this method
is that it does not deliberately require low temperature and entanglement
resources, and it improves the lower bound of the localization success rate.
This method paves a way to study quantum computer vision.

Keywords: MNIST data; single-photon; quantum computing; image
localization

1 Introduction

In recent decades, with the development of information technology and computer hardware, the
computing power of computers has been dramatically improved. The current application of artificial
intelligence in various fields makes our life more intelligent. Image processing is widely studied as an
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essential branch of computer vision, such as image classification, object recognition, and semantic
segmentation. However, the explosive growth of today’s data makes the performance of classical
computers unable to meet the status quo of image processing. Therefore, numerous researchers invest
in exploring efficient computer performance, such as very large scale integration technology and
microprocessor technology [1], massively parallel processing systems [2], determinantal point processes
[3]. Although these methods effectively improve the current situation, they are still dwarfed by the
further increase of the data.

As a new heuristic theory and technology, quantum computing has attracted significant attention
in some fields in recent years. It benefits from quantum computers’ powerful parallel computing
capabilities [4]. The original idea of quantum computing came in 1982, Feynman proposed to use
quantum mechanics-based computers to solve a particular problem more efficiently than traditional
computers [5]. Then in 1994, Shor proposed to use a polynomial-time algorithm to solve large number
factorization [6]. For quantum computing, the proposal of this algorithm is a milestone leap, and it
has brought significant progress to quantum computing. Since then, the fields of quantum computing,
information technology, and computer science have gradually moved towards mutual integration and
mutual progress. The study of Rènyi Discord [7], the quantum many-body problem [8], quantum state
tomography [9], and quantum correlations [10] based on machine learning have gained attention in
the last few years.

Sometimes in some image processing scenarios, we usually need to identify [11], classify [12] and
locate the image [13] which is the process of identifying and searching small images within a large
image. Nowadays, quantum computing is applied in image localization processing. At the same time,
many quantum image localization algorithms have been proposed, and their efficiency is theoretically
higher than some traditional classical algorithms. Such as, the Massachusetts Institute of Technology
laboratory proposed a quantum-based localization system, which theoretically proved that quantum
entanglement could improve localization accuracy [14]. Later, Nan Jiang proposed a quantum image
localization algorithm, which modifies the probability of pixels so that the target pixel is measured with
a higher probability [15]. Recently, Muyu Li proposed a real-time multi-target tracking technology
based on deep learning [16]. Although these technologies about quantum image localization obtain
some exciting results theoretically, it is still difficult to realize it on computer hardware. Because
the quantum gate in quantum computing hardware is easily affected by the environment [17], which
arouses decoherence and dissipation. As one of the carriers of quantum computing, the single-photon
could solve this problem. Simultaneously, we can improve the accuracy by adjusting the parameters
of some linear optics. So, Thomas Fischbacher and Luciano Sbaiz proposed a single-photon image
classification method [18]. This method can be implemented at room temperature and improved the
lower resolution limit. However, they only study images’ classification and do not involve image
localization. Therefore, this motivates our interest in image localization through quantum computing
and single-photon technology.

This paper shows a single-photon-based quantum image localization method. Firstly, we perform
a preprocessing on the image data, including but not limited to encoding labels, normalizing image
pixels, generating a quantum state, etc. Secondly, a learned transformation is introduced to redistribute
the amplitudes that make up the spatial part of the photon’s wave function [19]. Finally, we update the
parameters to optimize the quantum image localization model and further improve the accuracy of
our single-photon quantum localization results.

This paper is organized: The framework of the localization system is described in Section 2.
Section 3 shows an example that describes the definition of the localization on the specific MNIST
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images in mathematics. In Section 4, we give three cases for experimental analysis of quantum image
localization and draw some conclusions. In Section 5, we conclude this paper.

2 The Framework of Localization System

Here, we establish an overall framework for a quantum image localization system (QILS) to
achieve single-photon image localization, as shown in Fig. 1. The single-photon light source illumi-
nates the image to be positioned, the U-transformation obtained by the conversion unit acts on the
data arranged in rows (or columns), and the single-photon detector [20] detects the transformed data
to obtain the prediction of the image position. After this learned transformation, the accuracy of the
predicted position in this paper is steadily improved.

Figure 1: The frame diagram of QILS. The QILS consists of a single photon source, a localization
image, a conversion unit and a single photon detector. The front of the frame is a single-photon source
that emits a single photon to illuminate the image. After that is the big image with the localization map,
the area of number “2” is the small image to be positioned. Then there is a conversion unit, which is
used to improve the localization accuracy of the entire model. The rear of the frame diagram is a
single-photon detector to obtain localization information

3 Single-Photon Quantum Image Localization Experiments on MNIST Images
3.1 Experimental Background

Inspired by Thomas Fischbacher and Luciano Sbaiz, we propose a new theory to realize image
localization (the more details see Supplementary Files). Based on the above theory and considering
the three cases and reasons: ideal situation, the noise-only situation, and the environmental attack
situation to conduct relevant experiments.

• Reason for the ideal situation: When doing experiments, ignoring all external factors that are
not relevant to the experiment helps to detect whether the algorithm is achievable.

• Reason for the noise-only situation: Due to the development of image positioning in various
fields, its accuracy becomes particularly essential, such as computed tomography (CT) images
in the medical field [21], alien images in aerospace [22] and road surveillance images [23]. The
localization accuracy of these images needs to be guaranteed, but there will be some noise in
the image transmission process, resulting in blurred images. In reality, noise is introduced into
the image during the transmission process for some reason, and low-quality images will affect
the localization [24].

• Reasons for environmental attack situations: In practical application scenarios, modern learn-
ing algorithms may be subject to various adversarial attacks, including poisoning during model
updates, model stealing, and test data evasion attacks [25]. Such attacks can be catastrophic as
the application of machine learning algorithms grows in society.
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3.2 Experiment Procedure

In this paper, we use the TensorFlow framework, which can be used for various machine learning
and deep learning, such as speech recognition or image recognition [26]. It also uses Python 3.8 for
Internet, web development, and artificial intelligence [27]. Fig. 2 shows the flow chart of the quantum
image localization system. The detailed steps are shown as follows:

Figure 2: Program design flowchart of localization model

(1) Prepare the image to be positioned based on the MNIST dataset [28]:

We call the original MNIST image a small image and the generated image localized to a large
image. A number is randomly selected from the sequence of numbers 0–17 as the row label of the
small image in the large image (Do the same for column label). In this way, each MNIST image will be
put into a blank image of 504 pixels×504 pixels. For ease of calculation, each image will be compressed
to a size of 28 pixels × 28 pixels. And the label position of the image corresponding to the position to
be predicted is (row, col).

(2) The loading data stage:
• First, this paper divides the images containing MNIST data into two parts: a training set

and test set. Each part contains 28 pixels×28 pixels grayscale images and corresponding
position labels. Among them, there are 60,000 training sets and 10,000 test sets.

• After that, the divided test set and data set are randomly shuffled in batches, and then
the image data of each batch is trained.

(3) The preprocessing stage:
• Since the picture is a grayscale image containing handwritten numbers, its pixels are

28 pixels×28 pixels in size. We need to make the pixels one-dimensional, that is, become
a vector784 × 1.

• The predicted position coordinates are (0, 0) to (18, 18). The M dimension needs to be
divisible by the total number of positions C, that is, 784 needs to be divisible by 18. Since
it is not divisible, the Hilbert space here needs to be filled to a larger Hilbert space. We
extend vector 784 × 1 to 792 × 1 with 0.



CMC, 2022, vol.73, no.3 6143

• The coefficient of the photon quantum state is proportional to the square root of the
picture’s brightness, and each element on the pixel with 28 pixels × 28 pixels picture
represents the brightness here. Therefore, in the preprocessing stage, it is necessary to
take the square root of the brightness of each pixel and then normalize it to obtain the
coefficient of the photon quantum state.

• One-Hot encoding is performed on the row and column labels of the image.
• In this stage, case 1 is fine as above, but cases 2 and 3 need to introduce noise. Simulation

of noisy images: Add random numbers as noise to images containing predicted image
locations [29]. The random here follows a standard normal distribution with a mean of
0 and a standard deviation of 1. The image after adding noise can be expressed in Fig. 3.

(4) The predicting row or column stage:
• For case 1 (see Fig. 2): After the picture pixels are arranged in rows and filled into a one-

dimensional vector of 792 pixels. Divide the vector 792 into 18 segments, each segment
is a set of column vectors A. Then do the following operations on the vector A:

AAH =
⎛
⎜⎝

a11 · · · a1n

...
. . .

...
an1 · · · ann

⎞
⎟⎠ (1)

Figure 3: Images after adding different degrees of noise. The percentage in the picture is the level of
random noise

The probability corresponding to this segment can be:

p =
n∑

i=1

aii (2)

By analogy, this operation is performed for each segment. And the probability of each segment is
placed in an output list so that a list of numbers of predicted rows can be obtained. In the same way,
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after arranging the picture pixels in columns and filling them into a one-dimensional vector of 792
pixels, a list of numbers for the predicted column can be obtained after the above operations.

• For case 2 (see Fig. 2): After adding random noise, we take the first 44 data from the row-
wise 792-pixel data as the first segment. Then take the first 44 data from the remaining 748
as the second segment. Analogously, 18 segments can be obtained. For the first segment of
column vector B, do the same as in the previous point:BBH . The probability corresponding to
this segment can be:

p =
n∑

i=1

bii (3)

Similarly, this operation is performed for each segment, and the probability of each segment is
placed in an output list so that a list of numbers of predicted rows can be obtained. In the same way,
after arranging the picture pixels in columns and filling them into a one-dimensional vector of 792
pixels, a list of numbers for the predicted column can be obtained after the above operations.

• For case 3 (see Fig. 2): To achieve the effect, the selected data is scrambled under the envi-
ronmental attack. We randomly selected 44 data from the 792 pixels data arranged in rows
as the first segment. Then randomly select 44 data from the remaining 748 pixels data as the
second segment. Repeating this operation, we will get 18 segments with random data. For
column vector C of the first segment, do the same as in the previous point:CCH . The probability
corresponding to this segment can be:

p =
n∑

i=1

cii (4)

The probabilities obtained for each segment are put into an output list, which is a numerical list
of predicted rows. Similarly, the picture pixels are arranged in columns and then filled into a one-
dimensional vector of 792 pixels. After the above operations, the number list of the predicted columns
can be obtained.

(5) The training data stage:

The TensorFlow framework can access the entire calculation process, and it has a large number
of built-in optimization algorithms. In this paper, an optimizer used a gradient descent algorithm
is selected to update the value of the loss function and parameterWP. It should be noted that the
parameter WP here is required by the learned transformation UP [30] in cases 2 and 3. The squared
difference loss function:

loss (P, T) =
n∑
i

(Pi − Ti)
2 (5)

Here P represents the predicted location label, and T represents the true location label. It can be
seen that four main quantities directly affect the squared difference loss function, namely, One-Hot
encodings corresponding to row labels and column labels and output sequences of predicted rows and
columns. The indirect influence is the WP parameter required to learn the transformationUP.

Every 100 pictures are a batch. When the position of 100 pictures is predicted, the predicted
localization result of each picture and the accuracy of the prediction of 100 pictures will be simulated.



CMC, 2022, vol.73, no.3 6145

4 Experiment and Result Analysis
4.1 Experiment

Under ideal conditions, we use a gradient descent optimizer to optimize the single-photon quan-
tum image localization model. Fig. 4 shows the localization accuracy of this model without noise and
attack. Experiments in this ideal situation can further reveal the inherent logical connection between
objective phenomena and processes, and draw important conclusions. Through ideal experiments, the
accuracy of the positioning system can be observed every 10 steps. When the number of training steps
is 10, the localization accuracy of the model is 84%. When the number of training steps is 20, the
localization accuracy of the model is 99%, and when the number of training steps is 30 or more, the
localization accuracy of the model is 100%. Experiments have proved that this model is a perfect model
for predicting the position of the image.

Figure 4: Location accuracy under ideal conditions. The abscissa of each image represents the number
of training steps, and the ordinate represents the positioning accuracy under ideal conditions of the
images in the dataset. The learning rate in the experiment is lr = 0.001

For noisy situations, add random numbers to the image to simulate positional noise. A single-
photon quantum image localization model can predict the exact location of an image. The localization
accuracy of the model in the presence of noise is shown in Fig. 5. When the number of training steps
is 25, the localization accuracy of the model is 5%. When the number of training steps is 150, the
localization accuracy of the model is 85%, and when the number of training steps is 400 or more,
the localization accuracy of the model is about 99%. The observed localization accuracy is within the
acceptable range.

If the environment attacks the quantum image localization model, the integrity of the learning
process during the training stage will be compromised. In the case of adding noise, we use the operation
of randomly selecting 44 data as a segment to simulate the situation where the model is attacked. The
localization accuracy of the model with noise and environmental attacks is shown in Fig. 6. When the
number of training steps is 250, the localization accuracy of the model is 50%. When the number of
training steps is 750, the localization accuracy of the model is 87%, and when the number of training
steps is 1700 or more, the localization accuracy of the model is about 99%. From this result, it can
be observed that the single-photon quantum image localization model can still train well in complex
situations.
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Figure 5: Location accuracy under noisy training conditions. The abscissa of each image represents the
number of training steps, and the ordinate represents the positioning accuracy under noisy conditions
of the images in the dataset. The learning rate in the experiment is lr = 0.001. With the increase of the
number of training steps, the accuracy of image localization increases gradually and fluctuates until it
becomes stable

Figure 6: Location accuracy under noisy and random data training conditions. The abscissa of each
image represents the number of training steps, and the ordinate represents the positioning accuracy
under complex conditions of the images in the dataset. The learning rate in the experiment is lr = 0.001.
With the increase of the number of training steps, the accuracy of image localization fluctuates
gradually with the number of training steps

4.2 Result Analysis

Our model can obtain better image localization results by discussing the above three cases. These
results stem from: 1. The performance indicators concerned in this paper are the possibility of correct
localization and the output of the localization. 2. In model training, the squared difference loss
function for gradient descent is used to achieve the optimal model. 3. When the program is compiled,
the specific loss value of the squared loss function can be obtained every ten times of prediction
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position calculation. As the loss value of the squared difference loss function gets smaller and smaller,
the predicted location result gets closer and closer to the correct location label.

Here, to show the relevant comparison of these three cases, we put the results in Tab. 1. The three
cases are: the ideal situation is that there is no noise and the influence of environmental attacks, the
picture itself is affected by noise, and the model is affected by environmental attacks. The number
of training steps in the table represents the number of iterations to predict the position. It can be
observed that under ideal conditions when the number of iterations reaches about 200, the accuracy
rate reaches 100%; under the influence of noise alone, when the number of iterations reaches about
1000, the accuracy rate reaches 100%; when the picture is complicated, the number of iterations needs
to reach more than 1700, and its accuracy rate can reach 100%. In any case, high localization accuracy
will be achieved, but there are changes in the length of time and the number of iterations.

Table 1: Comparison of the accuracy of the three situations

Training steps Situations

Ideal training Only noise Environmental attack

10 87% 8% 2%
20 95% 10% 3%
90 99% 66% 19%
200 100% 89% 41%
300 100% 96% 65%
500 100% 99% 75%
1000 100% 100% 85%
1500 100% 100% 90%
1700 100% 100% 95%

5 Conclusion

This paper proposes a quantum image localization method based on a single photon and studies
the localization problem of single-photon and quantum computing for pictures containing MNIST
images. Two main results are obtained: One is successful in establishing a new quantum image
localization model based on the single-photon image classification method for the first time. The other
is to introduce a transition matrix U in the quantum state of a single photon. Through theoretical
analysis and numerical experiments, it is found that the conversion unit can improve the localization
accuracy of the image. Most of the previous research on quantum image localization focused on a
single environmental condition, lacking a comprehensive analysis of the system’s predictive ability
under multiple physical conditions. This paper discusses the localization capability of QILS in three
different situations, which has practical significance and excellent reference value for the application
of quantum image localization. In general, this model helps us understand more complex quantum
image localization systems and study high-dimensional image localization location characteristics.
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