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Abstract: Nowadays, vehicular ad hoc networks (VANET) turn out to be a
core portion of intelligent transportation systems (ITSs), that mainly focus
on achieving continual Internet connectivity amongst vehicles on the road.
The VANET was utilized to enhance driving safety and build an ITS in
modern cities. Driving safety is a main portion of VANET, the privacy and
security of these messages should be protected. In this aspect, this article
presents a blockchain with sunflower optimization enabled route planning
scheme (BCSFO-RPS) for secure VANET. The presented BCSFO-RPS model
focuses on the identification of routes in such a way that vehicular communi-
cation is secure. In addition, the BCSFO-RPS model employs SFO algorithm
with a fitness function for effectual identification of routes. Besides, the
proposed BCSFO-RPS model derives an intrusion detection system (IDS)
encompassing two processes namely feature selection and classification. To
detect intrusions, correlation based feature selection (CFS) and kernel extreme
machine learning (KELM) classifier is applied. The performance of the
BCSFO-RPS model is tested using a series of experiments and the results
reported the enhancements of the BCSFO-RPS model over other approaches
with maximum accuracy of 98.70%.
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1 Introduction

Vehicular Ad-hoc Networks (VANETs) technologies are getting substantial interest from the
researchers for the reason that it is the most promising technology for enhancing the Intelligent
Transportation System (ITSs) through Vehicle-to-Everything (V2X) transmissions [1]. The applica-
tion’s purpose primarily depends on a vehicle sensor’s capability to notice the situations around
it intelligently and distribute messages through inter-vehicular transmission to bring important
advancements in cities’ road traffic. Even though VANET applications drive superior experiences,
it delays actual placement and its wide utilization [2] because of various unresolved security menaces.
VANETs are revealed to raise risk of being a goal for several forms of attacks because security by
design was not a concern [3]. Later the routing protocols and system interfaces have vulnerabilities
which obstruct the application readiness. Various researcher scholars made enormous efforts in their
work which widely covered several forms of attacks. Several outlines were created and enhanced till
now for offering security solutions to assaults in VANETs [4,5].

Owing to the decentralized construction and the dynamic topology of VANETs, the security
of users, vehicles, and data is significant, and malignant nodes must be detected [6]. In a VANET,
vehicles interchange confidential information, and traffic is altered respectively. The lack of official
data results in malignant attacks which may cause severe issues for the drivers [7]. The messages will
be approved by employing tracking the vehicles via a network and discovering the particulars which
are needed [8–10], but this compromises the user’s security. Thus, steadiness must be founded on
privacy and authentication of users. Privacy of vehicles and Trust management are difficult issues for
VANETs. Intrusion detection (ID) is actually, one of the subjects of widespread research for permitting
accessibility of information and other data to only those who are authorized [11,12]. In comparison to
co-reactance, acceptance, and prevention, of intrusions, ID is the only methodology able to truly defy
probable cyber-attacks. Blockchain (BC) is considered an incorruptible digital record of transaction
data [13]. BC performs a dispersed database which saves identical blocks of information over the
network (means the system did not have just a single point of failure and, since it is dispersed, it does
not control by one single node or entity, or user).

In [14], the authors propose the BC based decentralized trust score structure to participate node
for detecting and blacklisting insider attackers from the VANET proactively. It can present a 2-level
detection method, whereas, at the primary level, adjacent nodes compute the trust individually. During
the secondary level, a consortium BC based model with authorized Road Side Units (RSUs) as
validators, aggregate trust score to vehicular node. Afterward, according to the trust score described
by the adjacent nodes, the blacklist node tables were dynamically changed. Alkadi et al. [15] examines
the outline of cloud structure and categorized potential recent security event dependent upon its
occurrence at distinct cloud utilization methods. The Network Intrusion Detection Systems (NIDS)
from the cloud, containing kinds of classifiers and general recognition methods are also explained.

Islam et al. [16] present a lightweight vehicular BC structure to distributed method share for
enhancing trust, verifiability, and non-repudiation from the distributed vehicular collaboration. It
can present a new protocol and effectual 2-step transaction verification process to method sharing
application. Choudhary et al. [17] present the machine learning (ML) technique which optimizes BC
parameters from the QoS-aware approach. This parameter contains chosen chain length, encrypt block
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length, and so on. The ML technique was simulated by Q-Learning and purposes at decreasing the
performance result of BC functions on the entire QoS of VANETs.

In [18], the authors established the design of novel BC based Internet of Things (IoT) network
structure which leverage Software Defined Network (SDN) and Network Function Virtualization
(NFV) to secure IoT transaction. It can be established an IDS from the procedure of Virtualized
Network Function (VNF) which enhances both the scalability as well as efficiency of IoT networks.
Dhurandher et al. [19] discovers the secure and decentralized method which utilizes the Proof-of-Work
(PoW) consensus process and presents a BC based secured routing protocol (named BDRP). During
this case, it can be proposal a combined routing protocol which utilizes PoW for routing and illustrates
how immutability is executed to the OppNet paradigm. BC promises transparent, distributed, and
tamper-resistant ledger and secure models which are offered secure routing solutions for OppNets.

This article presents a blockchain with sunflower optimization enabled route planning scheme
(BCSFO-RPS) for secure VANET. The presented BCSFO-RPS model employs SFO algorithm with
a fitness function for effectual identification of routes. Besides, the proposed BCSFO-RPS model
derives an intrusion detection system (IDS) encompassing two processes namely feature selection
and classification. To detect intrusions, correlation based feature selection (CFS) and kernel extreme
machine learning (KELM) classifier is applied. The performance of the BCSFO-RPS model is tested
using a series of experiments and the results reported the enhancements of the BCSFO-RPS model
over other approaches.

2 The Proposed Model

In this article, a new BCSFO-RPS model has been introduced for the identification of routes in
such a way that vehicular communication is security. In addition, the BCSFO-RPS model employs
SFO algorithm with a fitness function for the effectual identification of routes. Besides, the proposed
BCSFO-RPS model derives the IDS encompasses two processes namely feature selection and classifi-
cation. Fig. 1 illustrates the overall process of proposed method in VANET.

Figure 1: Overall process in proposed method
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2.1 Overview of SFO Algorithm

Yang [20] projected a novel approach according to flower pollination method of the flowering
plants assuming the biological procedure of reproductions. During this approach, the researcher
assumes the peculiar nature of sunflowers by defining an optimal direction of sun. The pollination
was considered to take arbitrary with minimal distance amongst the flower i and flower i + 1. At
present, all the flower patches continually discharge millions of pollen gametes. However, to easiness,
it assumed that all the sunflowers only generate 1 pollen gamete and separately reproduce. Otherwise,
a further distance of plants in sun, smaller the quantity of heat obtained by it, so the same approach is
subsequent under this research is proceeds massive step for obtaining adjacent global optimal (sun).
Afterward, the quantity of heat Q reached by all the plants is demonstrated as:

Qi = P
4πr2

i

, (1)

Whereas P implies the source of power and ri signifies the distance amongst existing plants and
optimum i. The sunflower direction to sun is provided as:

→
si = X ∗ − Xi

||X ∗ − Xi|| , i = 1, 2, . . . , np. (2)

The sunflower in the direction s is measured as:

di = λ × Pi (||Xi + Xi−1||) × ||Xi + Xi−1||, (3)

Whereas λ signifies the constant value which defines the “inertial” displacement of plants,
Pi (||Xi + Xi−1||) denotes the pollination probability, i.e., the sunflower i pollinates with their nearby
neighbor i − 1 generating a novel individual from the random place which varies dependent on all the
distances amongst the flowers [21]. In detail, an individual nearby the sun proceeds lesser step from
the local refinement searching but more distant individuals are commonly moving. It is also important
for limiting the maximal steps offered to all the individuals, for avoiding skip areas inclined that global
minimal candidates. At this point, it can be represented as:

dmax = ||Xmax − Xmin||
2 × Npop

, (4)

In which Xmax and Xmin denotes the lower as well as upper bound values, and Npop implies the count
of plants in the entire population. The novel plantation was provided as:
→
X t+1 = →

X i + di × →
si. (5)

2.2 Route Planning Process

In this study, the BCSFO-RPS model employs SFO algorithm with a fitness function for effectual
identification of routes. For defining a best set of directions, the SFO derived a function provided in
the following:

f (x) =
{

i, for which

∣∣∣∣
(

i
k

− Xif j

)∣∣∣∣ is minimum, ∀i1 ≤ i ≤ k (6)

The objective is to define a best set of directions in CHs to BS exploiting a fitness function (FF)
encompassing 2 variables such as distance and energy. At first, the RE of next-hop vehicle is described
and the vehicle with maximum energy is provided as relay vehicle. Hence, the vehicle with better RE
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is provided as next-hop vehicle. The primary sub-objective f 1 is shown below:

f 1 = ECH (7)

Likewise, Euclidean distance is executed for defining the distance in cluster head (CH) to base
station (BS). The reduction of energy dissipation is dependent mostly on the communication distance.
Consequently, the vehicle with minimum distance is considered a relay vehicle. Therefore, the following
sub-objective using distance is f 2 shown in the following:

f 2 = 1∑m

i=1dis (CHi, NH) + dis (NH, BS)
(8)

The abovementioned sub-objective is studied as to FF as providing where the α1 and α2 indicates
the weight allotted for each sub-objective.

Fitness = α1 (f 1) + α2 (f 2) , where
2∑

i=1

αi = 1αiε(0, 1); (9)

2.3 Intrusion Detection and Classification

To detect intrusions, a two stage process is carried out namely CFS and KELM classification.
CFS measured the goodness of element subset by assuming the redundancy amongst the elements
and individual prediction abilities of elements. The CFS chooses subsets that are extremely connected
to target class however the lower inter-correlation. The worth of elements subset S with r elements is
demonstrated in Eq. (10) in which C estimates the similarity of 2 elements, such as correlation (not
essentially Pearson1sr and n1s p).

Worth (St) =
∑

fiεSt
C (fi, class)√∑

fiεSt

∑
fjεSt−{fi} C

(
fi, fj

) (10)

Once the features are chosen, the intrusions are classified by the use of KELM model. The extreme
learning machine (ELM) can be determined by a single hidden layer feedforward neural network
(SLFN). It is apparent that a hidden state is assumed as nonlinear because of the presence of nonlinear
activation function [22]. It is encompassed 3 layers such as output, input, and hidden layers. Let x be
a trained instance and f (x) be the outcome of neural network (NN). Next, single layer feed forward
network (SLFN) using k hidden node is represented as follows:

fELM (x) = BT · G(w, b, x), (11)

Whereas G (w, b, x) indicates the hidden state, w represents the input weight matrixes, b illustrates
a bias weight, and B = [β1β2 . . . βm] characterizes the weight amongst hidden and output layers. For
ELM using n trained samples, k hidden neurons, m output neurons, and d input neurons are produced
by

tj = BT · g
(〈wj, xi〉 + bj

)
, i = 1, 2, . . . n, (12)

In Eq. (12), ti represents the m-dimension target output vector for i, j-th trained samples xi, the
d-dimension wj indicates j-th weight vector from the inputted to j−th hidden neurons, and bj indicates
the bias of j−th hidden neurons. Here, 〈wj, xi〉 indicates the inner product of wj and xi. Thus, sigmoid
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operation g can be simplified by activation function, therefore the outcome of j−th hidden neurons as

g
(〈

wj, xi

〉 + bj

) = 1/

(
1 + exp

(
−wT

j xi + bj

2e2

))
, (13)

Now, exp (·) denotes the exponential arithmetical values, and ε2 illustrates the steepness param-
eter. It is expressed in the following

HB = T , (14)

Here, T ∈ Rn×m is meant to be target output, B ∈ Rk×m.H =
⎡
⎢⎣

h (x1)
...

h (xn)

⎤
⎥⎦ means the hidden-neuron

output matrix of ELM using (n, k), is applied by:

H = g (W .X + b) =
⎡
⎢⎣

g (〈w1, xn〉 + b1) · · · g (〈w1, xn〉 + b1)
... · · · ...
g (〈w1, xn〉 + b1) · · · g (〈w1, xn〉 + b1)

⎤
⎥⎦

n×k

(15)

Then, B is defined with a low norm least-squares solution:

B = H†T = HT

(
I
C

+ HHT

)−1

T , (16)

In which C represents a regularization variable and the ELM technique is formulated by,

fELM (x) = h (x) HT

(
I
C

+ HHT

)−1

T , (17)

ELM is improvised by KELM with kernel trick.

� = HHT , (18)

Whereas

�i,j = k(xj, xj), (19)

Now xi and xj displays i-th and j-th trained instance. Afterward, interchange HHT using �, the
inference of KELM is shown below

fKELM (x) = h (x) HT

(
I
C

+ �

)−1

T , (20)

In Eq. (20), fKELM (x) represents the outcome of KELM method and h (x) HT =
[

k (x′x1)

k (x, xn)

]
. Unlike

ELM, the substantial feature of KELM is a hidden node count attained and no arbitrary feature
mapping is applied. Furthermore, the processing time is alleviated in comparison to ELM. Fig. 2
depicts the framework of ELM.
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Figure 2: Structure of ELM

2.4 Blockchain Assisted Vehicular Communication

A blockchain is a group of blocks where all the blocks consist of: the timestamp, the current block,
information about the transactions (bitcoin, Ethereum), and hash values of the preceding blocks.
Also, a blockchain is determined by a shared automated ledger viz. employed for storing the details
of the transaction. Consider that vehicle interacts with others via vehicle-to everything (V2X) and
V2V transmission, also that vehicle is connected to the Internet effectually. It should be assumed
that each vehicle is indispensable namely global positioning system (GPS), on-board unit (OBU), and
sensors. Additionally, the amount of legitimate road side unit (RSU) is greater when compared to
susceptible RSU. Consider that important event message is dispersed within the region of interest. The
message number is very important for guarantying the events and the messages are acknowledged as
accurate. A novel category of blockchain is required, as standard blockchain could not be employed
for the objective. A conventional blockchain employed is cryptocurrency, where the user requires a
blockchain that handles secure event messages with no crypto coins. Consequently, it applies security
event messages [23–27].

At this point, the event is local, and event message is restricted to vehicles that establish within
a certain geographical region. During the conventional blockchain, the recently produced block is
commonly transmitted. However, the VANET message doesn’t cross the limit of a certain position,
meanwhile, the accident and traffic details of a position are unidentified to vehicles that establish
in other locations. Consequently, a novel blockchain architecture is needed. From the individual
blockchain, each miner mines fresh block based on the event message and forwarded each recently
produced block to the local blockchain networks. Next, vehicles could inquiry about their protection
levels, if necessary, by using the blockchain. When the generation is accomplished, the novel block is
transmission, and vehicle in the network upgrades and validates the blockchains.
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3 Experimental Validation

This section offers a comprehensive simulation analysis of the BCSFO-RPS model with recent
models.

Tab. 1 and Fig. 3 report a detailed examination of the BCSFO-RPS model with existing models in
terms of number of clusters (NOC). Fig. 3a shows the NOC inspection of the BCSFO-RPS model with
recent models under 30 nodes (vehicles) and diverse transmission ranges (TR). The results implied that
the BCSFO-RPS model has attained minimal NOC over other models. For instance, with TR of 10,
the BCSFO-RPS model has offered reduced NOC of 22 whereas the grey wolf with cluster scheme
(GWCS), multi-objective particle swarm optimization (MOPSO), comprehensive learning particle
swarm optimization (CLPSO), and rainfall optimization algorithm (ROA) models have provided
increased NOC of 35, 34, 31, and 28 respectively. At the same time, with TR of 60, the BCSFO-RPS
method has provided decreased NOC of 3 wherein the GWCS, MOPSO, CLPSO, and ROA techniques
have granted increased NOC of 15, 14, 13, and 8 correspondingly.

Table 1: Result analysis of BCSFO-RPS technique with distinct nodes under interms of NOC

Transmission
range

Grey wolf
cluster scheme

Multi objective
PSO

Comprehensive-
LPSO

Rainfall opt.
algorithm

BCSFO-
RPS

Nodes = 30
10 35 34 31 28 25
15 33 33 30 28 22
20 30 29 29 27 21
25 26 25 25 20 28
30 24 24 23 19 17
35 23 22 22 19 15
40 22 20 20 18 15
45 20 20 16 18 6
50 18 18 16 16 5
55 17 15 13 12 5
60 15 14 13 8 3
Nodes = 40
10 32 34 35 31 26
15 31 29 34 30 27
20 29 25 31 25 21
25 27 25 25 22 17
30 26 24 25 20 16
35 22 21 21 19 16
40 22 19 21 17 14
45 18 17 19 15 10
50 17 16 16 14 8
55 14 16 13 11 8
60 12 15 9 8 3
Nodes = 50
10 35 34 33 31 27

(Continued)
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Table 1: Continued
Transmission
range

Grey wolf
cluster scheme

Multi objective
PSO

Comprehensive-
LPSO

Rainfall opt.
algorithm

BCSFO-
RPS

15 34 30 29 28 26
20 31 28 27 26 22
25 29 27 26 24 19
30 29 25 24 24 19
35 26 24 23 22 17
40 22 20 19 21 12
45 21 19 18 15 11
50 19 17 15 14 9
55 18 16 12 11 6
60 16 15 9 5 4
Nodes = 60
10 35 35 32 34 31
15 32 34 29 31 26
20 31 28 28 25 21
25 27 23 26 24 17
30 23 22 26 22 16
35 23 20 25 22 16
40 20 19 23 16 12
45 20 17 17 15 11
50 16 14 13 13 10
55 16 13 12 10 9
60 14 12 11 5 3

Fig. 3b displays the NOC examination of the BCSFO-RPS methods with recent models under
40 nodes (vehicles) and diverse TR. The outcomes implied that the BCSFO-RPS methodology has
recached minimum NOC than other models. For example, with TR of 10, the BCSFO-RPS model
has rendered reduced NOC of 26 wherein the GWCS, MOPSO, CLPSO, and ROA techniques have
offered increased NOC of 32, 34, 35, and 31 respectively. Meanwhile, with TR of 60, the BCSFO-RPS
method has granted minimized NOC of 3 whereas the GWCS, MOPSO, CLPSO, and ROA models
have offered increased NOC of 12, 15, 9, and 8 correspondingly.

Fig. 3c displays the NOC review of the BCSFO-RPS method with recent models under 50 nodes
(vehicles) and diverse TR. The outcomes implied that the BCSFO-RPS model has gained minimum
NOC than other models. For example, with TR of 10, the BCSFO-RPS method has rendered reduced
NOC of 27 whereas the GWCS, MOPSO, CLPSO, and ROA techniques have offered increased
NOC of 35, 34, 33, and 31 correspondingly. Meanwhile, with TR of 60, the BCSFO-RPS model
has provided decreased NOC of 4 wherein the GWCS, MOPSO, CLPSO, and ROA algorithms have
offered increased NOC of 16, 15, 9, and 5 correspondingly. Fig. 3d depicts the NOC scrutiny of
the BCSFO-RPS method with recent models under 60 nodes (vehicles) and diverse TR. The results
implied that the BCSFO-RPS methodology has gained the least NOC over other models. For example,
with TR of 10, the BCSFO-RPS algorithm has rendered minimized NOC of 31 wherein the GWCS,
MOPSO, CLPSO, and ROA models have offered increased NOC of 35, 35, 32, and 24 correspondingly.
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Meanwhile, with TR of 60, the BCSFO-RPS methodology has granted reduced NOC of 3 whereas
the GWCS, MOPSO, CLPSO, and ROA algorithms have offered increased NOC of 14, 12, 11, and 5
correspondingly.

Figure 3: NOC analysis of BCSFO-RPS technique (a) 30 nodes, (b) 40 nodes, (c) 50 nodes, and (d) 60
nodes

A detailed end to end delay (ETED) examination of the BCSFO-RPS model with other models
takes place in Tab. 2 and Fig. 4. The experimental values inferred that the BCSFO-RPS model has
resulted in minimal values of ETED. For instance, with 20 nodes, the BCSFO-RPS model has
offered lower ETED of 0.122 s whereas the GWCS, MOPSO, CLPSO, and ROA models have reached
increased ETED of 0.291, 0.221, 0.166, and 0.142 s respectively. Along with that, with 100 nodes, the
BCSFO-RPS algorithm has provided lower ETED of 0.271 s whereas the GWCS, MOPSO, CLPSO,
and ROA methods have reached increased ETED of 0.475, 0.430, 0.383, and 0.317 s correspondingly.
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Table 2: ETED analysis of BCSFO-RPS technique with various counts of nodes

End to end delay (sec)

No. of nodes Grey wolf
cluster scheme

Multi objective
PSO

Comprehensive-
LPSO

Rainfall opt.
algorithm

BCSFO-
RPS

20 0.291 0.221 0.166 0.142 0.122
40 0.301 0.258 0.221 0.189 0.148
60 0.341 0.310 0.275 0.235 0.170
80 0.437 0.393 0.339 0.284 0.223
100 0.475 0.430 0.383 0.317 0.271

Figure 4: ETED analysis of BCSFO-RPS algorithm with various counts of nodes

A comprehensive ETED inspection of the BCSFO-RPS model with other models is carried
out in Tab. 3 and Fig. 5. The simulation results demonstrated that the BCSFO-RPS model has
accomplished maximum packet delivery ratio (PDR) values. For instance, with 20 nodes, the BCSFO-
RPS model has reached improved PDR of 0.965 whereas the GWCS, MOPSO, CLPSO, and ROA
models have obtained decreased PDR of 0.663, 0.694, 0.732, and 0.788 respectively. Besides, with
100 nodes, the BCSFO-RPS methodology has reached improved PDR of 0.706 whereas the GWCS,
MOPSO, CLPSO, and ROA techniques have gained decreased PDR of 0.558, 0.585, 0.625, and 0.651
correspondingly.
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Table 3: PDR analysis of BCSFO-RPS algorithm with various counts of nodes

Packet delivery ratio

No. of nodes Grey wolf
cluster scheme

Multi objective
PSO

Comprehensive-
LPSO

Rainfall opt.
algorithm

BCSFO-
RPS

20 0.663 0.694 0.732 0.788 0.965
40 0.637 0.685 0.719 0.779 0.897
60 0.581 0.609 0.671 0.740 0.810
80 0.559 0.575 0.626 0.672 0.742
100 0.558 0.585 0.625 0.651 0.706

Figure 5: PDR analysis of BCSFO-RPS algorithm with various counts of nodes

Next, the intrusion detection results are examined on NSL-KDD 2015 dataset comprising 67343
samples under normal class and 58630 samples in anomaly class. Fig. 6 demonstrates a set of confusion
matrices offered by the BCSFO-RPS model. On entire dataset, the BCSFO-RPS model has provided
66650 samples into normal and 57661 samples into anomaly class. Along with that, on 30% of TS data,
the BCSFO-RPS method has offered 19778 samples into normal and 17521 samples into anomaly
class.

Tab. 4 and Fig. 7 exemplify comprehensive classification outcomes of the BCSFO-RPS model
on test data. On entire dataset, the BCSFO-RPS model has offered average accuy, precn, recal, Fscore,
and kappa of 98.68%, 98.69%, 98.66%, 98.67%, and 97.35% respectively. Also, on 70% of TR data,
the BCSFO-RPS methodology has provided average accuy, precn, recal, Fscore, and kappa of 98.67%,
98.68%, 98.65%, 98.67%, and 97.33% correspondingly. Besides, on 30% of TS data, the BCSFO-RPS
techniques have provided average accuy, precn, recal, Fscore, and kappa of 98.70%, 98.71%, 98.68%,
98.69%, and 97.38% correspondingly.
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Figure 6: Confusion matrices of BCSFO-RPS technique (a) entire dataset, (b) 70% of TR data, and
(c) 30% of TS data

At last, a comparative accuracy examination is made with recent models in Fig. 8. The figure
pointed out that the VGG-19 and ResNet models have shown least outcomes. At the same time, the
DBN, cuckoo optimization, and CNN-ResNet 101 models have obtained moderately closer accuracy
values. Though the behaviour-BIDS model has exhibited reasonable accuracy of 98.43%, the BCSFO-
RPS model has shown maximum accuracy of 98.70%.
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Table 4: Result analysis of BCSFO-RPS technique with various measures and datasets

Class names Accuracy Precision Recall F-score Kappa score

Entire dataset

Normal 98.68 98.57 98.97 98.77 -
Anomaly 98.68 98.81 98.35 98.58 -

Average 98.68 98.69 98.66 98.67 97.35

Training (70%)

Normal 98.67 98.58 98.95 98.77 -
Anomaly 98.67 98.78 98.35 98.56 -

Average 98.67 98.68 98.65 98.67 97.33

Testing (30%)

Normal 98.70 98.53 99.01 98.77 -
Anomaly 98.70 98.88 98.34 98.61 -

Average 98.70 98.71 98.68 98.69 97.38

Figure 7: Result analysis of BCSFO-RPS technique with various measures

Therefore, the BCSFO-RPS model has appeared as an effectual tool for accomplishing improving
network performance.
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Figure 8: Accuy analysis of BCSFO-RPS technique with existing approaches

4 Conclusion

In this article, a new BCSFO-RPS model has been introduced for the identification of routes in
such a way that vehicular communication is security. In addition, the BCSFO-RPS model employs
SFO algorithm with a fitness function for effectual identification of routes. Besides, the proposed
BCSFO-RPS model derives the IDS encompasses two processes namely feature selection and classifi-
cation. To detect intrusions, a two stage process is carried out namely CFS and KELM classification.
The performance of the BCSFO-RPS model is tested using a series of experiments and the results
reported the enhancements of the BCSFO-RPS model over other approaches with maximum accuracy
of 98.70%. Thus, the BCSFO-RPS model can be utilized for security accomplishment in VANET. In
the future, lightweight cryptographic algorithms can be employed to improve secrecy and privacy.
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