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Abstract: Event detection (ED) is aimed at detecting event occurrences and
categorizing them. This task has been previously solved via recognition and
classification of event triggers (ETs), which are defined as the phrase or word
most clearly expressing event occurrence. Thus, current approaches require
both annotated triggers as well as event types in training data. Nevertheless,
triggers are non-essential in ED, and it is time-wasting for annotators to
identify the “most clearly” word from a sentence, particularly in longer sen-
tences. To decrease manual effort, we evaluate event detection without triggers.
We propose a novel framework that combines Type-aware Attention and
Graph Convolutional Networks (TA-GCN) for event detection. Specifically,
the task is identified as a multi-label classification problem. We first encode
the input sentence using a novel type-aware neural network with attention
mechanisms. Then, a Graph Convolutional Networks (GCN)-based multi-
label classification model is exploited for event detection. Experimental results
demonstrate the effectiveness.

Keywords: Event detection; information extraction; type-aware attention;
graph convolutional networks

1 Introduction

ED is aimed at detecting the occurrence of predefined events and categorizing them in plain text.
For instance, considering the sentence “In Baghdad, a cameraman died when an American tank fired
on the Palestine Hotel.”, an appropriate system for ED ought to recognize 2 events, Die and Attack
(supposing that both Attack and Die are in the predefined event set). ED is widely used in social media
analytics and Knowledge construction [1,2].

Previously, this task was solved via recognition and classification of ETs. A trigger is the phrase or
word that most clearly describes an event occurrence according to the Automatic Context Extraction
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(ACE) event evaluation program. As shown in the example in Fig. 1, “died” is a trigger word for Die
event, while “fired” is a trigger word for Attack event. Following ACE definition, ED aims to detect
the position of ETs in raw text and classify them into corresponding event types. Consequently, this
task has been modeled in most of the current methods as word classification [3–11], which predicts if
and what type of event is being triggered by every word in a sentence.. Thus, these methods require
both annotated triggers as well as types of events for training.

Figure 1: An event detection example annotated by ACE 2005. There are two events: Die and Attack

Nevertheless, ETs are dispensable to this task. Recall that ED is aimed at recognizing and
categorizing events, thus triggers are intermediate outcomes of this task. We argue that it is unnecessary
to identify the trigger words. In other words, we only need to know what events are included in a
sentence.

Furthermore, identifying a word in a sentence which is “most clearly” is not an easy task for
annotators, which restricts the applications of current ED methods. An event may be triggered by
multiple types of words such as the verb, noun and pronoun. Each type of words may involve multiple
forms as well; for example, the verb could be a past participle or in form of an adjective. According
to the previous literature [3], human annotators can only approximately obtain an F1 score of 73% on
the ACE 2005 evaluation task. The low accuracy of training data hinders the performance of current
approaches, which are under a supervised learning paradigm and rely on a large number of accurate
training examples to ensure good performance.

Guided by these motivations, recent researchers explored detecting events without triggers which
make the task more simplified. Consider example S in Fig. 1, its annotation is {Die, Attack}, the
only annotated information for every sentence is the event type occurring in it. Contrasting, prior
work required annotated triggers for every event, implying that the annotated information for S is
{Attack:fired, Die:died}. After getting rid of the shackles of trigger words, annotate event type are
more efficiently. Without ETs, it only needs to find out which events are included in the sentence, and
not specifically focus on which word most clearly expresses the occurrence of events. Intuitively, the
ED task can be modelled as a text classification problem. But, there are 2 problems:

Multi-label problem: every sentence may have a random total of events. In machine learning, this
is referred to as the multi-label problem, which is more complex than single-label classification in that
there is a strong label correlation. Take the sentence in Fig. 1 for example an attack event often results
in death, While the death may be caused by an attack. As events normally co-occur in the physical
world1, another major challenge for ED without triggers is to model the label dependencies.

Trigger absence problem: With the help of the annotated trigger words, the machine learning model
uses triggers as the supervision targets and can learn the pattern of extracting the trigger words. Then,
as a strong feature, the trigger words help models to further determine event types. Without annotated
trigger words, the core problem for multiple event classification is to learn the discriminative features.

Latest work has attempted to solve the multi-label problem by transforms multi-label classification
into multiple binary classification problems [12]. This method predicts whether each event is included
in a given sentence or not. A predefined type t event associated with a specified sentence s leads to

1More than 20% of the samples in the ACE 2005 dataset contain more than one event.
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an instance that is labeled 0 or 1, depending on whether s receives the type t event. Thus, sentences
conveying multiple events will show many positive pairs. Therefore, it theoretically guarantees that we
can extract multiple events from one sentence. Benefited from the great success of learned features, the
performance of the binary solution attains competitive performances, relative to state-of-the-arts that
use annotated triggers. Unfortunately, this immature way to address the multi-label problem treats
events in isolation. It cannot model the interaction among events by only exploiting this strategy.

We propose a novel framework, referred to as TA-GCN for event detection, which exploits type-
aware attention neural network to learn distinguishing features and introduces GCN to capture the
correlation among classifiers.

To address the trigger absence problem, we use a novel event type-aware neural networks with
an attention mechanism to automatically learn distinguishing features. Very event type is typically
triggered by specific words. But, in our task, annotated triggers are not available. For modeling this
information, we suggest a simple, effective event type-aware model in this paper. Precisely, given a
sentence, for the proposed model, input tokens are first transformed into embeddings after which it
applies a Long Short-Term Memory (LSTM) layer to determine a context-dependent representation
for every token. Then it calculates an attention vector, α, based on target event type, whereby the
trigger word has a high score. Finally, sentence representation Satt is evaluated based on α. Through
the type-aware attention strategy, the trigger information will be enhanced in the learned feature.

In this paper, we exploit Graph Convolutional Networks (GCN) to take event correlations into
account. Instead of treating classifiers with randomly initialized parameters [12], we propose to
consider the classifiers as the graph nodes and store the correlation among classifiers in the adjacency
matrix. The adjacency matrix is randomly initialized and updated through the training data. The final
classifiers are obtained via a GCN-based mapping function. As graph convolutional filters are shared
across all class (i.e., event labels), gradients from classifiers affect the GCN based mapping function.
Through this strategy, the label correlations will be modeled.

The event type-aware neural networks and GCN together constitute the entire ED model which
enables end-to-end training. These two networks interact with each other through the sharing of
classifier parameters and work in a mutually reinforcing way.

We have carried out extensive experiments using a benchmark dataset ACE 20052. Our approach
outperformed all the comparative baselines, and achieved higher performances relative to current
methods that use annotated triggers and external data.

2 Related Work

Detection of events is a vital topic in NLP. Various methods have been shown to achieve this task.
Almost all current methods on ACE event tasks follow a supervised paradigm. Recent research has
been dominated by representational methods. A prominent feature of the neural network paradigm is
the representation of mentions of candidate events by embeddings. Chen et al. [13] and Nguyen et al. [7]
were the first work on this paradigm. Their models are Convolutional Neural Networks (CNN)-
based. Nguyen et al. [14] suggested a method for joint event extraction that is Recurrent Neural
Networks (RNN)-based for modeling the dependency of triggers as well as arguments. Liu et al. [15]
proposed encoding argument information in event detection through supervised attention approaches.
Nguyen et al. [16] and Sha et al. [17] suggested exploiting syntactic information to detect events.

2https://catalog.ldc.upenn.edu/LDC2006T06
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The current methods require annotated triggers. Training data annotation is expensive, which
limits the applications of these methods. This task is performed without the use of ETs in order to
reduce manual effort.

Deep neural networks have been proven to be effective in several domains, such as natural
language processing, computer vision, and audio analysis [18]. However, the existing successes have
mainly established on data with an underlying grid-like structure or Euclidean space. Graphs offer a
natural way to generalize the grid structure data and contain rich underlying values. Consequently,
considerable researches are using deep learning approaches to analyze graph data [19–21]. Motivated
by the success of CNN in many artificial intelligence applications, various methods attempt to re-
define the operation of convolution for graphic data. These approaches are classified as GCN, which
has gained great attention after the seminal work of [22]. GCN is assigned into two streams, spatial- and
spectral-based methods. Spatial-based methods define convolutions based on the spatial associations
of graph nodes. Micheli [23] first addressed node mutual dependency by the ideas of message passing
from RecGNNs. Recently, many spatial-based researchers have proposed a variety of spatial-based
GCN (e.g., [24–26]). Bruna et al. [22] first introduced convolution from the spectral domain and
pointed out that the structure of the graph can be exploited using the graph Laplacian matrix. Next,
extensions on spectral-based GCN have been increasing. Defferrard et al. [27] extended GCN with
fast localized convolutions. Kipf et al. [28] used a localized first-order approximation of spectral graph
convolutions. Levie et al. [29] suggested Cayley polynomials for computing spectral filters on graphs
that concentrate in frequency bands of interest.

We leveraged GCN to establish event label correlations. Event labels are considered as graph nodes.
The most related work to our approach is Chen et al. [30], which used GCN to propagate information
among image labels based on the fixed correlation matrix. Differently, our work investigates to
automatically learn the adjacency matrix apart from the fixed correlation Matrix.

3 Our Model

We present our model’s framework. As mentioned in Section 1, we use a mixture of two neural
network models and convert the task into a multi-label classification problem. Fig. 2 shows the model’s
structure. It consists of three main modules: type-aware attention neural networks, GCN and output
classifier.

3.1 Type-aware Attention Neural Networks

The purpose of the type-aware attention neural networks is to learn feature vector representation
of input sentence. As illustrated in Fig. 2, the part surrounded by the green dash line is this module,
which is composed of the following neural components.

Event Type Embeddings As shown in Fig. 2, an event type is transformed into 2 embedding vectors:
t1 and t2. The first (light green) is specific for type-aware attention, which aims at capturing the local
information (hidden trigger word). The latter (light grey) is aimed at capturing global information (see
Section 3.4 for details). The counts of dimensions in each event type embedding should be equivalent
to the size of weighted average sentence representation, which is denoted by devt. The event type
embeddings are parameters to be learned by the network. Both of them are randomly initialized.

The event type embeddings are shared by all the three modules in our model. In the output module,
each event embedding is the parameter of the binary classifier as well. The GCN module captures the
class inter-dependencies through the graph convolution operation on the event type embeddings.
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Figure 2: The framework of our proposed TA-GCN (better viewed in color). This model includes
type-aware attention neural networks, GCN and output modules

LSTM Encoding Layer In this work, we used Bidirectional LSTM (BiLSTM) as a sentence encoder
which reads input sequences in both left-to-right as well as reverse orders. Before feeding into the
encoder, each word is first converted into a vector by looking up a pre-trained word embedding (e.g.,
word2vec). Then, bidirectional information for every word is combined by concatenating backward
and forward output. The i−th word of the input sentence is encoded as:

hi = (
−→
hi +←−

hi )/2 (1)

Thus, given a sentence s = {s1, s2, ..., sn} as a sequence of tokens, then, the LSTM encoding layer
is responsible for mapping every token to continuous embedding representations as H = {h1,h2,...,hn}.

3.2 Event Type-Aware Attention

There is normally a specific set of words that trigger each event type, commonly referred to as event
trigger words. For instance, the Die events are majorly triggered by “passed away”, “die”, “gone”, etc.
To accomplish this task, event trigger words are of vital importance. But since because annotations are
not present in our task, this evidence is hidden. For hidden trigger modeling, we introduced attention
mechanisms.
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As shown in Fig. 2, attention vector α is evaluated based on target event type embedding t1 and the
encoding outputs of tokens h yielded by LSTM. Precisely, attention score for k−th token in a sentence
is determined as:

αk = exp
(
h̄k · tT

1

)

∑
i exp

(
h̄i · tT

1

) (2)

The attention weight α indicates the relative contribution of each token to the sentence repre-
sentation. We comprehensively consider event type and the LSTM encoding output to calculate α.
Essentially, the event type-aware attention mechanism is looking for the features most relevant to the
given event type. As mentioned above, the trigger words are the most salient features of the task. In
this model, it is expected that the trigger words of the target event type obtain higher contibution
scores relative to other words. The following equation is used to compute Satt with respect to the above
sentence:

satt = αTH (3)

where α = [α1, . . . , αn] is the attention vector, H = [
h̄1, h̄2, . . . , h̄n

]
is the matrix, h̄k is LSTM’s output

for k−th token, and Satt represents the given sentence.

3.3 Graph Convolutional Networks

A graph mining technique known as GCN can be used to derive structural features from graphs.
GCN was used to capture associations of multiple binary classifiers. As illustrated in Fig. 2, the part
surrounded by the orange dash line is this module.

Event Label Graph GCN refers to an extension of the convolutional neural network that can
be used to encode graphs. Basically, it performs convolution filtration on the graph and propagates
information between nodes so that node representations are updated. Ordinarily, it is an ordered pair
G = (V ,E), whereby V denotes a set of vertices while E denotes set of edges. Mathematically, a graph
can be represented with n nodes by adjacency matrix A ∈ R

n×n, whereby Aij = 1 if there is an edge
between nodes i and j , otherwise 0. If the nodes V are denoted as d dimensional vectors ∈ R

n×d , then,
the GCN layer on a graph can be written as a non-linear function f (V, A). Give the stacking of several
GCN layers and after exploitation of the convolutional operation suggested in [28], the GCN can be
denoted as:

Vl+1 = f (Vl, A) = δ(AVlWl
) (4)

whereby δ (·) is the activation function that is selected as LeakyReLU in this study, the superscript l
denotes the layer number. Wl ∈ R

d×d denotes learnable parameters of the convolutional filter.

Recognizing multiple events of a sentence is a fundamental yet practical in event detection without
triggers, since real-world sentences always contain rich and diverse event information. As mentioned
in Section 3, effectively capturing event label correlations and evaluating these correlations to enhance
performance of binary classifiers is very important to address the multi-label problem. We used GCN
for modeling event label correlations. Specifically, as introduced in Section 3.1, each event label is
transformed into a vector which is further considered as the graph node. The correlations among the
events are stored in the edges of the graph.

From Eq. (4), we can observe that the nodes of the graph in the l−th GCN layer are aggregated
by neighbors to form the nodes of the (l + 1) −th layer. For instance, if label 5 has two adjacent labels
3 and 4, Eq. (4) can written as:
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V l+1
5 = δ

(
a35vl

3W
l + a45V l

4W
l + a55V l

5W
l
)

(5)

where aij denotes the element at column j and row i of adjacent matrix A, V l
i is the label representation

corresponding to i−th node of l−th layer. Thus, GCN uses common convolution weights to combine
all adjacent label information, which is then processed via a single activation function to produce
updated node features. Through this approach, adjacent labels in the graph affect each other, and
correlations among labels are established after several layers of convolution operations.

Adjacency Matrix The adjacency matrix has a vital role in the model. It models the dependence
between labels. The construction of the adjacency matrix is the key issue of the model. We use two
different methods to initialize the adjacency matrix.

1. Correlation Matrix: the correlation matrix is constructed similarly to [30] by counting the co-
occurrence of labels in the training corpus. If two events occur in the same sentence, they will be
considered as the co-occurrence of their corresponding labels. To address the label imbalance
problem, we normalize the correlation Matrix as follows:

MNom = M/F (6)

where M is the co-occurrence matrix and F is the frequency vector of individual label. We
simply add a self-loop to each node by adding the identity matrix to the adjacency matrix. We
fix the matrix during the training process, thus it completely relies on the prior co-occurrence
information in the training data as the label dependence.

2. Random Initialization: We randomly initialize the weight of the adjacency matrix. The weight
is considered as the model parameter and updated during the training process. A sentence may
contain multiple events. When applying the propagation rule, the error will be propagated back
to the corresponding label, which will further affect the update of the adjacency matrix. Thus,
label dependence is learned from training instances.

These two adjacency matrices construction methods have their own characteristics. On the one
hand, the correlation matrix is sparse, in the sense that most of the possible edges between pairs of
vertices do not exist. It is relatively simple and has fewer parameters. On the other hand, the random
initialization matrix is not a sparse matrix. It may carry not only positive label correlation, but also
other factors. For example, the model may learn that the two labels are mutually exclusive.

3.4 Classifier Layer

As shown in Fig. 2, final output O is connected to 2 components: vatt and vglobal. vatt is evaluated by
dot product of Satt and t1, which is aimed at capturing local features (particularly, features regarding
hidden trigger words). The last LSTM layer output, h̄n, encodes global information of the whole
sentence, thus vglobal = h̄n · tT

2 captures the global features of a sentence. Lastly, O is the weighted
sum of vatt and vglobal:

o = σ
(
λ · vatt + (1 − λ) · vglobal

)
(7)

where σ is the Sigmoid function, λ ∈ [0, 1] is the hyper-parameter for trade-off between vatt and vglobal.

4 Results and Discussions
4.1 Dataset and Evaluation Indices

The experiments were conducted using the ACE 2005 dataset. Based on previous studies [3,10,12],
we randomly selected 30 articles from dissimilar genres as the development set, and performed a blind



648 CMC, 2023, vol.74, no.1

test on a distinct set of 40 ACE 2005 newswire documents. The remaining 529 articles were included
in the training set.

Our study was to detect events minus triggers. Thus, we removed trigger annotations from corpus.
Based on annotations to the ACE 2005 corpus, Stanford CoreNLP Toolkit was used for splitting
documents into sentences and assigning each sentence a set of labels. If a sentence lacks any event, it is
assigned a special label, NA; if it has several events of the same type (<3% in ACE corpus), only one
label is kept for each type.

Precision (P), F1-measure (F1) and recall (R) are used to evaluate the results.

4.2 Overall Performances

We illustrate the findings of the suggested approach (see Tab. 1). The results list in the first group
from the baseline systems we implement based on the encoding sentence strategy. Three models are
used for comparison: CNN, LST , LSTMavg .

Table 1: Experimental results on ACE 2005 corpus. + means triggers are required, ∗ means training
with external data

Methods P (%) R (%) F1 (%)

CNN 76.6 52.9 62.6
LSTMavg 68.1 49.2 57.1
LSTMlast 69.8 52.2 59.7
Nguyen’s CNN+ 71.8 66.4 69.0
PSL+ 75.3 64.4 69.4
DMCNN+ 75.6 63.6 69.1
DS-DMCNN+∗ 75.7 66.0 70.5
TA-GCN 77.2 68.1 72.4

Methods in the second group are state-of-the-art ED systems on ACE 2005 dataset.

– CNN uses a CNN model for encoding sentences.
– LSTMlast employs LSTM model, and uses the hidden state of the last token to represent a

particular sentence.
– LSTMavg also uses the LSTM model, but uses the mean of all hidden states as a representation

of a particular sentence.
– Nguyen’s CNN: the CNN model proposed by [7].
– DMCNN: the dynamic multi-pooling CNN model proposed by [13].
– PSL: the soft probabilistic soft logic model proposed by [8].
– DS-DMCNN: the DMCNN model augmented with automatically labeled data, proposed by

[10].

TA-GCN is our proposed approach which combing type-aware attention and graph convolutional
networks.

From the Tab. 1, we make the following observations:

– Both precision and recall of TA-GCN are higher than all baseline systems, showing the
effectiveness of the proposed attention mechanism and GCN.
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– All state-of-the-art ED systems require annotated triggers. Without trigger annotations, our
approach achieves higher performances as well, even better than DS-DMCNN which requires
both annotated triggers and external data.

– The results obtained by LSTMavg and LSTMlast are both worse than CNN. Compared with
LSTM, CNN captures more local features. This result indicates that the local features of the
task are very important. It guides us to further study the effect of the type-aware attention
mechanism for this task.

4.3 Effects of Type-Aware Attention

Based on the results of the overall performances, CNN has achieved better results in the first
group. We have confirmed the effectiveness of local information to some extent. We propose a type-
aware attention mechanism mainly to capture local information (trigger words). To this end, we
designed two sets of experiments to prove the effectiveness of this strategy.

First, we perform an ablation study to understand the impact of the type-aware attention
mechanism. We compare the effects of CNN and LSTMatt in Tab. 2. The results show that although
the type-aware attention based method is inferior to CNN in precision, the recall and F1 value have
a significant improvement. Since we have proved that CNN is better than LSTMavg and LSTMlast in
Section 4.2, this experiment shows that the proposed type-aware attention method has a certain effect.

Table 2: Results of systems using type-aware attention mechanism

Methods P (%) R (%) F1 (%)

CNN 76.6 52.9 62.6
LSTMatt 68.3 64.5 66.3

Second, we evaluate the quality of the learned features in a visual way. We explore the effectiveness
of type-aware attention mechanism from the perspective of feature separability. Traditional machine
learning models convert each sentence into a fixed feature vector. In contrast, each sentence is
transformed into multiple feature vectors based on the given event type label through the type-aware
attention mechanism. To measure the feature separability, the sentences with only one event are
simply dropped for clarity. For each sentence, we use the golden event label to get the vectors by the
attentive weighted summation. We use t-distributed Stochastic Neighbor Embedding (t-SNE) with two
components and principal component analysis (PCA) initialization to visualize the sentence vectors
that contain multiple events in Fig. 3. We can observe that events that often co-occur in a sentence
are also closer in the figure, such as Marry vs. Divorce, End-Position vs. Start-Position. Although
there are few events mixed together, the learned features have good separation between classes and
good clustering within classes for majority events. Considering that for the same sentence, we get
different vectors for different golden event labels. This experiment further confirms that the type-aware
attention mechanism is very effective.
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Figure 3: t-SNE on the sentence vectors of the test dataset (better viewed in color)

4.4 Effects of GCN

GCN is exploited to model the correlation among the binary classifiers. In this section, we perform
ablation studies and mainly evaluate the effectiveness of GCN. We compare the experimental results of
the model without/with GCN and using different adjacency matrices in Tab. 3. We can observe that no
matter which adjacency matrix is used, the effect of TA-GCN exceeds that of LSTMatt . This result can
indicate that GCN is very effective for this task. It achieves the purpose of capturing the correlation
among classifiers. Another interesting observation is that, TA-GCN\Random gets better results than
TA-GCN\Correlation. We suppose that the improvement is benefited from that TA-GCN\Correlation
can not only learn the relation between event labels from the training data, but also can model the
noise in the data.

Table 3: Results of systems without/with GCN and different adjacency matrix, where ∗\Correlation
and ∗\Random indicate to respectively use the correlation matrix and random initialization as the
adjacency matrix

Methods P (%) R (%) F1 (%)

LSTMatt 68.3 64.5 66.3

(Continued)
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Table 3: Continued
Methods P (%) R (%) F1 (%)

TA-GCN\Correlation 76.4 65.1 70.3
TA-GCN\Random 77.2 68.1 72.4

4.5 Case Study

Our model illustrates several examples of the attention vectors α as shown in Fig. 4. In case
one, “died” is the most important keyword for the Die event. As a result of a large attention score,
our model was able to capture this characteristic. According to our model, in case two, the “fired”
denotes the Attack event, which was given an attention score of high. Die and Attack events are
both triggered by the words “died” and “fired” respectively. Thus, even though annotated triggers
are not available, our model exploited trigger information for this task. In addition, our method could
also model dependencies among events, which is useful for this task [1,5]. For instance, Attack events
repeatedly co-occur with Die events. In Cases 1 and 2 (Fig. 4), our method models such information
by paying attention to the words “died” and “fired”. A negative sample is case 3, which lacks key clues.
Approximately equal attention scores were assigned to each token by our model.

Figure 4: A visual representation of the attention weight vector α learned by our model

In the data preprocessing stage, we only keep one label when a sentence has multiple events of
the same type. Such instances are illustrated in Case 4 (Fig. 4). We can observe that our method
can attentively find two trigger words (both are “talks”) for two “Meet” events in one sentence. In
Case 5, “took” and “office” together trigger the Start-Position event. This example shows that our
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method has the ability to handle multi-word triggers. In Case 6, the ground truth trigger word for
Demonstrate event is “rally” in ACE 2005. However, our model finds that “protest” is the trigger
word as well. From the ACE 2005 annotation guidelines, a Demonstrate event occurs when a large
number of people aggregate in a public area to demand or protest an official action. These two words
should henceforth be combined to trigger this event. As discussed in Section 1, the accuracy of human
annotated trigger words are relatively low and pose obstacles for event extraction. This case further
reflects the superiority of event detection without triggers.

5 Conclusions and Future Work

We propose a new method for ED without triggers by combining type-aware attention and
graph convolutional networks. Our contribution is mainly in two aspects. We propose type-aware
attention networks to encode the input sentence. Through the type-aware attention strategy, the trigger
information has been implicitly captured to address the trigger absence problem. Besides, we consider
event detection without triggers as a multi-label problem. The GCN is exploited to model the event
correlations, rather than treating the events in isolation. The type-aware attention networks and GCN
work in a mutual reinforcing way. We increase the ED without triggers at an F1 score of 72.4%, which
achieves higher performances relative to state-of-the-arts that use both annotated triggers and external
data. The experimental results show that we not only accurately get the trigger word through type-
aware attention, but also make up for the defects of manually annotation.
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