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Abstract: The demand for cloud computing has increased manifold in the
recent past. More specifically, on-demand computing has seen a rapid rise
as organizations rely mostly on cloud service providers for their day-to-day
computing needs. The cloud service provider fulfills different user require-
ments using virtualization - where a single physical machine can host multiple
Virtual Machines. Each virtual machine potentially represents a different user
environment such as operating system, programming environment, and appli-
cations. However, these cloud services use a large amount of electrical energy
and produce greenhouse gases. To reduce the electricity cost and greenhouse
gases, energy efficient algorithms must be designed. One specific area where
energy efficient algorithms are required is virtual machine consolidation. With
virtual machine consolidation, the objective is to utilize the minimum possible
number of hosts to accommodate the required virtual machines, keeping in
mind the service level agreement requirements. This research work formulates
the virtual machine migration as an online problem and develops optimal
offline and online algorithms for the single host virtual machine migration
problem under a service level agreement constraint for an over-utilized host.
The online algorithm is analyzed using a competitive analysis approach. In
addition, an experimental analysis of the proposed algorithm on real-world
data is conducted to showcase the improved performance of the proposed
algorithm against the benchmark algorithms. Our proposed online algorithm
consumed 25% less energy and performed 43% fewer migrations than the
benchmark algorithms.
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1 Introduction

The demand for cloud computing is increasing tremendously with each successive day. Many
leading Information Technology (IT) companies like Amazon, Google, IBM, and Microsoft, have
deployed hundreds of data centers to cater to the growing demand of customers for computing
resources [1]. The customers benefit by using the IT resources (hardware and software) on a pay-
as-you-go model, thus saving high upfront costs [2].

Cloud computing infrastructure houses thousands of computing servers and requires an enor-
mous amount of energy to operate [3]. The energy is required not only for operating servers but is also
used for cooling purposes to provide an optimum environment for the computing servers to operate.
According to Belady [4], IT costs only contribute 25% of the total cost of a data center, the rest of
the 75% costs are incurred by infrastructure and energy. Computing servers in a data center operate at
approximately 10%–15% of their maximum capacity and remain idle most of the time [5]. This results in
a huge loss in terms of monetary value for the service providers. According to [6] data centers are using
2% of the total US electricity demands, and by using energy efficient techniques 80% of savings can
be made. A report published by the U.S. Department of Energy estimated that data centers operating
in U.S. consumed approximately 70 billion kilowatt-hours in 2014 [7,8]. The energy consumption of
U.S. data centers reached 200 billion kilowatt-hours by the end of 2020 [8].

Besides the economic downsides, the high energy consumption also has a negative impact on the
environment. Energy is required not only for operating the servers but also for cooling facilities to
provide an optimum environment for servers to operate effectively [6]. Thus, the combination of high
electricity demands and cooling requirements cause an increase in carbon emission as well as other
toxic gases. The indirect impact includes the usage of brown energy which is generated by burning
carbon-intensive fossil fuels [6].

In addition to energy constraints, cloud service providers are also restricted by a Service Level
Agreement (SLA) constraint. An SLA is an agreement between a cloud service provider and a
customer. The SLA specifies various business conditions between the two parties. Among others, SLA
defines the quality of service that the service provider is bound to provide to the customer. SLA also
includes Service Level Agreement Violation (SLAV) clause, which stipulates the penalty imposed on
the service provider if she fails to provide the agreed upon QoS to the customer.

Therefore, energy efficiency as well as provision of QoS as per agreed SLA, are fundamental
considerations in cloud computing environments. The energy utilization of data centers can be
lessened by using virtualization technology which is a key element of cloud computing. It provides an
abstraction by hiding the complexities of the underlying hardware or software [2,9,10]. The technology
increases resource utilization by allowing different virtual machine instances to run on a single
host and share the resources without any interference. Fig. 1 depicts a sample physical host with
two virtual machines. Virtualization also provides the benefit of virtual machine (VM) migration,
which helps in the dynamic consolidation of VMs thus decreasing energy consumption. Dynamic
consolidation helps in minimizing the number of active hosts by migrating VMs from underutilized
hosts and switching hosts to low power mode, thus reducing the total energy utilization. VMs are also
migrated when a host faces performance degradation due to SLAV that occurs when hosts become
overloaded and unable to meet the resource requirement of VMs. Therefore, cloud service providers
must deal with energy-performance trade-off. Green cloud computing addresses this trade-off by
providing efficient utilization of computing resources and minimizing energy consumption which
reduces negative environmental impact.
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Figure 1: A single host with two virtual machines

Virtual machine migration is a classical online problem. In an online problem, the algorithm does
not have access to the future input and processes the input as it arrives. At each time point, the online
algorithm is presented with a request and shall take an irreversible decision without information about
the future requests [11]. Examples of online problems include currency conversion, cache problem, and
portfolio selection problem [11]. In contrast to online algorithms, offline algorithms have complete
knowledge about the input instance beforehand and make a decision based on the availability of the
complete input instances. Formally, we define an online algorithm as follows [11]. An algorithm A
computes online if at each time point t ∈ [1, 2, . . . T − 1], A takes a decision at the time t before the
input at time t + 1 is revealed. An algorithm OFF computes offline if the complete input instance
is available at t = 1. OFF is called optimum if it produces the best possible solution on any given
input instance. In our problem settings, the online algorithm does not have any knowledge about the
incoming virtual machines and their processing requirements. Similarly, the algorithm is oblivious if
SLAV will occur, and if it occurs what will be the start and end times of SLAV. The unavailability of
future information makes the design of online algorithms a challenging task.

Online algorithms are evaluated using a competitive analysis approach [11–13]. The competitive
analysis measures the performance of an online algorithm against an optimum offline algorithm. It is
assumed that the optimal offline algorithm has complete knowledge of the future inputs and always
makes an optimum decision. Formally competitive analysis is defined as follows [12,13]. Let ON be
an online algorithm, and OPT be an optimum offline algorithm for a cost minimization problem P.
Let I be the set of all possible input instances for P. ON(I) and OPT(I) represents the cost incurred
by ON and OPT on input instance I ∈ I . ON is called c-competitive, if ∀I ∈ I

ON (I) ≤ c.OPT (I) + α (1)

where α ≥ 0 is a constant. This means that for all possible inputs, the cost of online algorithm ON
will be no more than c times the cost of OPT.

One of the key advantages of using a competitive ratio as a performance measure is its ability
to avoid dependence on input distribution [14,15]. Other measures such as average case analysis, rely
heavily on the input distribution. Any deviation from the assumed distribution can render the results
invalid. Competitive analysis, in contrast, does not assume any input distribution, and the input can
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be drawn from any probability distribution. Therefore, the results are valid for all possible inputs. For
more details on the working of competitive analysis, the reader is referred to the seminal work of [16].

In this work, we contribute towards the energy efficient cloud computing by.

• Designing optimal offline and online algorithms for the single host virtual machine migration
problem to decide on an optimal time for virtual machine migration to reduce the overall energy
cost of a data center

• Performing theoretical analysis of the proposed online algorithm using the competitive analysis
technique

• Performing experimental evaluation of the proposed algorithm using a real-world dataset
against the benchmark algorithms

The rest of the work is organized in the following manner. Section 2 presents formal problem
settings. Section 3 succinctly reviews state-of-the-art literature. The optimum offline and online
algorithms are presented in Section 4. Competitive analysis of the algorithms is performed in the same
Section. Experimental settings including methodology, datasets and evaluation criteria are discussed
in Section 5, whereas results and discussions are presented in Section 6. Section 7 concludes the work.

2 Formal Problem Settings

We consider a single host H with processing power M that can run at variable speed hj(j =
1, 2, . . . , L). Note that these levels are discrete. Virtual machines are represented by Vi (i = 1, 2, . . . , N) .
Each Vi has a maximum processing requirement of Mi, which can change with the time but cannot
exceed M, i.e., sup Mi ≤ M∀i ∈ [1, N]. Current processor requirement of Vi at time t is represented
by Cit. Cost of SLAV per unit time is Cv. Vs represents the start time of SLAV and Vf is the time when
SLAV ends, i.e., the processing requirement of the current host decreases again after SLAV. Migration
time for Vi at time t is a function of Cit and is modelled as f (Cit). Migration cost per unit time of Vi

starting at time t is modelled as g(Vit). m is the time point when migration is initiated by an algorithm.
Total cost includes migration cost and SLAV cost.

Without loss of generality, we assume that at each time point t ∈ [1, T ], either a new virtual
machine Vi with a processing requirement Cit arrives or an existing virtual machine modifies its
processing requirement. The host H is oversubscribed if the sum of all processing requirements at time
t is more than the processing power M of the host, i.e.,

∑K

i=1 Cit > M, where K ≤ Nis the total number
of virtual machines assigned to host H at t. When the host is oversubscribed, Service Level Agreement
Violation (SLAV) occurs, i.e., the host is unable to meet the processing demands of the existing virtual
machines. At this stage, the algorithm has two choices. One, to provide an inferior level of quality of
service and continue accruing SLAV cost. Two, to initiate a virtual machine migration by transferring
a virtual machine to a new host and incur a migration cost. The decision has to be taken without
the knowledge of future virtual machine arrivals and change in the processing requirements of the
existing virtual machines. The research problem is to design an optimal algorithm that can decide if
virtual machine migration shall be initiated when a host H is oversubscribed (resulting in extra energy
cost of the new physical host), or to delay the instantiation of the new host and accrue SLAV cost.

3 Literature Review

In the following, we present a summary of approaches for VM migration that are proposed in the
literature. Due to space constraints, only important works are reported.
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One of the seminal works introducing online algorithms for the single host virtual machine
migration is presented by Beloglazov et al. [2]. They introduced an online algorithm as described in
Algorithm 1 (henceforth referred to as ABB). The algorithm starts migration as soon as it encounters
the start of SLAV, i.e., start migration at m = Vs. Authors derived a competitive ratio of 2 + s where
s ∈ R+. As s can have any positive value, therefore the competitive ratio is not in closed form.

Verma et al. [17] represented the application placement problem as a bin-packing problem. The
servers were modelled as bins and VMs as balls. In their work, they focused on minimizing power
and migration costs whilst maintaining the performance requirements. Kusic et al. [18] used a Limited
Lookahead Control (LLC) for dynamic resource provisioning in a virtualized computing environment.
They investigated the problem of SLA violation and minimizing energy utilization in virtualized data
centres. In order to estimate the future requests a Kalman filter is used. One of the key drawbacks
of these initial works is the lack of consideration for the quality of service aspect. Buyya et al. [1]
presented heuristics for energy efficient resource allocation and management in cloud computing
environments considering QoS requirements. Feller et al. [19] modelled the problem of dynamic
workload placement as an instance of the multidimensional bin-packing problem. They introduced a
novel dynamic workload placement algorithm based on the Ant Colony Optimization meta-heuristic
to solve the above-mentioned problem. One of the key problems with heuristics is the lack of theoretical
foundations. No theoretical performance guarantees are provided for heuristics.

Beloglazov et al. [20] proposed resource allocation algorithms by dynamic consolidation of VMs
into a minimum number of servers. They aimed to minimize the SLA violations experienced due to
the workload consolidation strategies. Their proposed algorithms are based on a modified Best Fit
Decreasing approach. Kansal et al. [21] designed an algorithm for virtual machine migration using
the Firefly optimization technique. The authors proposed to transfer a maximally loaded virtual
machine to another physical machine. However, the authors did not consider the SLAV factor, thus it
is possible that service degradation is faced by the end user, and no penalty is imposed on the service
provider. Fu et al. [9] presented a novel approach for balancing the load of network resources in a data
centre. The proposed algorithm divided the data centre into various regions based on the bandwidth
consumption of the hosts. The processing load was then balanced across various regions by virtual
machine migration. The overall objective was to obtain balanced network resource utilization across
the data centre. However, the authors did not consider the impact on the quality of service. Further,
no theoretical analysis of the proposed algorithm is conducted.

Shukla et al. [10] identified two main problems that commonly occur during virtual machine
migrations. These problems are downtime and total migration time. Downtime is the time duration in
which a VM is not available to the user, whereas total migration time is the time duration from the start
of the downtime till the complete transfer of the virtual machine to a new physical host. The authors
proposed a multi-phase approach for live migration in which the process of live migration is divided
into various phases. In phase one, all the memory pages are migrated. In phase two, a decision about
the migration based on the history of each page is taken. The third phase implements a forecasting
mechanism to predict the behaviour of the page in the next time frame. Based on the predicted outcome
a decision about the live migration is taken. Choudhary et al. [22] provided a detailed survey of
the literature on virtual machine migration. The authors discussed various types of migrations and
categorized the techniques based on duplication mechanism, and context awareness. Noshy et al. [23]
considered the problem of live virtual machine migration and reviewed state of the art optimization
techniques in the context of live virtual machine migration. The authors also provided directions for
future research.
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Karthikeyan et al. [24] argued that in a cloud data centre environment, virtual machine migration
increases associated energy costs as well as the internal rate of failure. The authors proposed a
Naive Bayes classifier with hybrid optimization using Artificial Bee Colony–Bat Algorithm to reduce
the energy consumption in virtual machine migration. A critical drawback of the study is the
lack of consideration for the Quality of Service parameter in the proposed scheme. In their work,
Moghaddam et al. [25] focused on reducing the overall energy costs by minimising the probability of
virtual machine migrations. The authors used a combination of Cellular Learning Automata based
Evolutionary Computing (CLA-EC) and neuro-fuzzy techniques to reduce the possible numbers
of VM migrations. The authors used workload traces from PlanetLab to show that the proposed
technique reduces the number of VM migrations by 59%. In terms of energy minimization in cloud
servers in relation to virtual machine migration, Hieu et al. [26] adopted a unique approach. The
authors argued that heavy reliance on virtual machine migration increases the overhead and thus
energy wastage. Hieu et al. [26] employed multiple usage prediction which considers the historical
usage as well as the predicted future usage of multiple resources (such as CPU, bandwidth, RAM
usage etc.) for a more reliable characterization of underload and overload servers.

For a detailed survey highlighting the various aspects of live migration in the cloud computing
environment, the reader is referred to Le [27]. For energy efficiency in geographically distributed data
centres, the reader is referred to Ahmad et al. [3].

From the literature review, we identified that the current approaches mostly rely on optimization
techniques which results in heuristics approaches. These approaches, though providing good perfor-
mance on data sets, can suffer from data snooping bias. In data snooping bias, an algorithm designed
based on specific data set, may not actually perform well on other data sets. In addition, no theoretical
guarantees (bounds) with respect to the performance of the algorithm are presented. In our work,
we aim to bridge this gap by considering service level agreement and designing an optimal online
algorithm with guaranteed worst-case performance.

4 The Proposed Algorithm

In this section, we present an optimum offline algorithm AOPT and an optimum online algorithm
AON for the single host virtual machine migration problem. Further, we analyze AON using the
competitive analysis approach.

4.1 Optimum Offline Algorithm

An optimum offline algorithm has complete knowledge about the input sequence as well as about
the start and end timings of SLAV. Therefore, it has the ability to make the best possible decision.
Refer to Algorithm 2 for the optimum offline algorithm.

It is clear from Algorithm 2 that the optimum offline algorithm will only initiate the migration of
a virtual machine when the SLAV cost is exceeding the migration cost, otherwise, it is more beneficial
accruing the SLAV cost only. Recall that an offline algorithm has complete knowledge of the input
sequence, therefore, it is aware of the SLAV occurrence, and the start and end time of SLAV.

4.2 Optimum Online Algorithm

Though optimum offline algorithm achieves the best possible performance (minimum cost) for
any given input, in the real world it is not possible to have advanced knowledge of SLAV and VM
requirements. This necessitates the need for an online algorithm that can achieve the best possible
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result on unforeseen input sequences, i.e., the algorithm needs to decide if and when it needs to start a
migration?

It is possible that the online algorithm starts migration too early and later she observes that it
would have been better not to migrate at all (referred to as too early error). Likewise, it is also possible
that the online algorithm starts the migration too late, and in the hindsight, it would have been better
to initiate a migration as soon as the SLAV occurred (referred to as too late error). Therefore, the
online algorithm has to find a time point to balance the too early error and the too late error. Let us
assume that Wt is the time that an online algorithm will wait after the start of SLAV before initiating a
migration. Therefore, the best decision in this situation is to start migration only when the SLAV cost
equals migration cost, i.e.,

SLAVCost = MigrationCost

Wt.Cv = f (Cit) .g (Vit)

Wt = f (Cit).g(Vit)

Cv

(2)

When SLAV starts at Vs, online algorithm will calculate a waiting time Wt and will initiate a
migration at time m = Vs + Wt only if the SLAV still continues at Vs + Wt. The waiting time Wt is the
threshold at which the migration and SLAV costs equates. The algorithm is presented in Algorithm 3.

Theorem 1: Algorithm 3 (AON) achieves a competitive ratio of 2 + Cv

g(Vit)
.

Proof: Consider a worst-case sequence as shown in Fig. 2. Assume that the SLAV begins at time
Vs and lasts till Vs + f (Cit). We bound the cost of AOPT and our proposed online algorithm AON as
follows;

Figure 2: The worst-case input sequence

AOPT has complete knowledge of the input sequence and knows that the SLAV that begins at Vs

will last till Vs + Wt + f (Cit). The best possible decision to reduce the over all cost is to initiate a
migration Vs + f (Cit) and avoid the SLAV cost. The only cost incurred by AOPT is the migration cost
which is obtain by multiplying migration cost per unit time with total migration time as shown in the
following equation.

Total Cost of AOPT = Migration Cost of AOPT = f (Cit) .g (Vit)

Our proposed optimum online algorithm (AON) will wait till time Vs + Wt before initiating a
migration. It starts migration at Vs + Wt and will complete the migration at Vs + Wt + f (Cit). This is
also the time when the SLAV ends. The cost of AON includes both SLAV and migration cost calculated
as follows.

Total Cost of AON = Cv (Wt + f (Cit)) + f (Cit) .g (Vit)
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Therefore, the competitive ratio cON achieved by AON is;

cON = Total Cost of AON

Total Cost of AOPT

cON = Cv (Wt + f (Cit)) + f (Cit) .g (Vit)

f (Cit) .g (Vit)

cON = 2 + Cv

g(Vit)
(3)

Corollary 1: As the cost of SLAV per unit time (Cv) is less than the migration cost per unit time
g(Vit), cON < 3.

Corollary 1 confirms the better performance achieved by our proposed algorithm AON in relation
with ABB.

5 Experimental Setting
5.1 Methodology

We evaluate our proposed algorithm (AON) by comparing its performance against the benchmark
algorithms ABB and AR (see Section 5.3). For this purpose, we used CloudSim - a well-established open-
source simulator implemented in Java [28], which has been extensively used previously to evaluate the
performance of new VM migration algorithms [25]. CloudSim offers implementations of a wide range
of popular VM migration algorithms which can be modified to devise new variations. Moreover, a
popular real-world dataset, Planetlab workloads [2], is already integrated with CloudSim, which makes
it easier to set up a reproducible experimental environment.

To define a migration algorithm fully in CloudSim, two policies need to be specified; a VM
allocation policy to optimize the allocation of VMs according to current utilization levels of various
hosts, and a VM selection policy to select VMs to be migrated from over-utilized hosts to under-utilized
hosts. We use median absolute deviation (MAD) as ABB VM allocation policy [2], which is already
implemented in CloudSim. As its name suggests, this policy computes the median absolute deviation
of CPU utilization history for each host to determine whether it is over-utilized or not. Moreover, the
computation of an optimal mapping between over-utilized and under-utilized hosts for migrating VMs
from the former to the latter also comes under this policy. We use minimum migration time (MMT)
as VM selection policy in ABB, which is also already implemented in CloudSim. This policy returns the
smallest VM, in terms of its memory requirement, for migration from an over-utilized host.

As explained, AON does not initiate a VM migration immediately from over-utilized hosts. Instead,
it calculates a waiting time (Wt) before proceeding with the VM migration. To implement this delay
mechanism, we made extensive modifications to various files related to the implementation of MAD.
However, the implementation of MMT remained unchanged.

In our modified implementation of MAD, we compute Wt periodically for each over-utilized
host with a scheduling interval (St) which is specified in CloudSim before starting a simulation. The
value of Wt turns out to be finite and positive i.e., a meaningful delay has been computed only if its
corresponding value of SLAV cost (Cv) is greater than zero. In case the value of Cv is less than or equal
to zero, we do not delay VM migration from the host, and proceed according to the original allocation
policy. Upon the computation of a finite and positive value of Wt for a host, we skip to the next host
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without initiating VM migration. Since this process occurs only at periodic intervals of St, we cannot
delay VM migration from a host by an exact amount of Wt if it is not an exact multiple of Wt. In
practice, the actual delay (Wt) depends on St as shown in the following equation.

Wt =
⌈

Wt

St

⌉
St

It is evident that the minimum value of Wt = Wt i.e., VM migration from the current host is
delayed by a time period of at least St. The default value of St in CloudSim is 300 s (5 min). This is
same as the interval at which CPU utilization readings were taken for all the ten Planetlab workloads
used in our experiments.

We compared the performance of AON against ABB and AR for all the ten Planetlab workloads.
During our experiments, we did not modify default values of different parameters already initialized
in CloudSim. A summary of these parameters is provided in Tab. 1. The set of 800 hosts used in each
experiment consisted of 400 hosts of each type shown in Tab. 1. Similarly, the total number of VMs
during each experiment was equally distributed among the four available VM types shown in Tab. 1.

Table 1: Default values of different parameters defined in CloudSim

Parameters Values

Scheduling interval (St) 300 s
Total simulation duration for each workload 24 h
Total number of hosts 800
Specifications of host type 1 HP ProLiant ML110 G4: Xeon 3040 1860 MHz

CPU with 2 cores, 4 GB RAM
Specifications of host type 2 HP ProLiant ML110 G5: Xeon 3075 2660 MHz

CPU with 2 cores], 4 GB RAM
Types of VMs 4
Specifications of VM type 1 2500 MIPS, 870 MB RAM, 2500 MB VM size
Specifications of VM type 2 2000 MIPS, 1740 MB RAM, 2500 MB VM size
Specifications of VM type 3 1000 MIPS, 1740 MB RAM, 2500 MB VM size
Specifications of VM type 4 500 MIPS, 613 MB RAM, 2500 MB VM size

After each experiment, we recorded values for total energy consumption (Etotal), number of VM
migrations (Nvm), overall SLA violation (SLAoverall) and average SLA violation (SLAavg). We did not
observe any variation in the values of these attributes over multiple runs of our experiments.

5.2 Datasets

In order to ensure a fair comparison, we used the same data as used by [2]. The data is part of
CoMon project which is a monitoring infrastructure for PlanetLab [2]. It contains CPU utilization of
more than thousands of virtual machines measured from servers located at different places all around
the world. The data of ten random days are chosen from the workload traces that are collected in
March and April 2011. The data files contain CPU utilization values of virtual machines measured
every 5 min for 24 h. Note that each line in a file represents a single request, and data for each day are
combined in a single folder. In total, all the folders contain 11,746 files, which contain over 3.3 million
user requests. The properties of the data are summarized in Tab. 2.
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Table 2: Dataset statistics

Date Number of files Number of requests Mean (%) Std deviation (%)

03-Mar-11 1052 302976 12.31 17.09
06-Mar-11 898 258624 11.44 16.83
09-Mar-11 1061 305568 10.7 15.57
22-Mar-11 1516 436608 9.26 12.78
25-Mar-11 1078 310464 10.56 14.14
03-Apr-11 1463 421344 12.39 16.55
09-Apr-11 1358 391104 11.12 15.09
11-Apr-11 1233 355104 11.56 15.07
12-Apr-11 1054 303552 11.54 15.15
20-Apr-11 1033 297504 10.43 15.21

5.3 Benchmark Algorithms

We compare the performance of our proposed algorithm (AON) with two benchmark algorithms
ABB and AR. Note that AR is a randomized algorithm and is defined in Algorithm 4. Algorithm 4 is a
randomized algorithm which with 0.5 probability executes Algorithm 1, otherwise calls Algorithm 3.

We do not compare our proposed algorithm with algorithms based on heuristic techniques as
such techniques are computationally more expensive than our proposed online algorithm. Note that
our proposed online algorithm AON has a worst-case time complexity of O(1).

6 Results and Discussions

We use three metrics to compare the performance of AON, ABB and AR, namely total energy
consumption, number of VM migrations, percentage of overall SLA violations.

In terms of total energy consumption, AON is observed to be the best algorithm. AON consumed
25% less energy than ABB and 10.6% less energy than AR. Fig. 3 summarizes the daily energy consumed
by each of the algorithms on the dataset. It can be observed that on all of the ten days of the dataset,
the energy consumed by the proposed algorithm AON is less than AR and ABB. We also investigated the
consistency in term of energy consumed by the algorithms by measuring the standard deviation over
the ten days period. We observed that our proposed algorithm AON achieved the minimum standard
deviation of the three algorithms, whereas ABB recorded the highest standard deviation, signifying that
AON is consistently outperforming ABB in term of energy consumption.

Another measure that we used to evaluate the performance of algorithms is the number of
virtual machine migrations carried out by each of the three algorithms. Recording the number of VM
migrations is important as it can help explain the total energy consumption. Intuitively, the larger the
number of migrations, the higher the total energy consumed. In our experiments, we observed that ABB

performed a total of 263,051 migrations over the ten days period, whereas the corresponding number
of migrations for AR and AON are 187,390 and 147,672 respectively. Our proposed algorithm performed
43.8% less migrations than ABB, and 21% less migrations than AR. Fig. 4 summarizes the number of
migrations performed by the algorithms.
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Figure 3: Daily energy consumption by AON, ABB and AR

Figure 4: Number of VM migrations by AON, ABB and AR

We also measured the SLAV for the three algorithms. ABB observed the least number of SLA
violations. On average, ABB observed SLA violations in only 0.08% of the all the requests. AR observed
SLA violations in 0.7% of all the requests, whereas the corresponding value for AON is 1.35%. The
percentage of SLA violations for ABB is extremely low as it initiates migration as soon as the SLAV
occurs, whereas for AON, the percentage of SLAV violations are higher as the algorithm initiates
migration only after waiting for a certain period of time Wt. This feature of the AON might increase
SLAV cost but reduces the overall cost of the data center which is the ultimate objective.

7 Conclusion

Energy efficiency is a key contemporary requirement for data centers both from the monetary
and environmental perspectives. In an attempt to minimize energy usage, data centers use a variety of
techniques including virtual machine migration. In this work, we proposed a novel algorithm for single
host virtual machine migration problem. We analyzed our proposed algorithm both theoretically using
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the worst-case competitive ratio as a performance measure, and experimentally using a real-world
dataset from planet-lab. Our proposed algorithm outperforms the standard benchmark algorithms
from the literature and achieves a performance improvement of 26% in terms of total energy
consumption, whereas in terms of number of migrations the improvement is over 43%. Likewise, the
proposed algorithm is more consistent than the standard benchmark algorithms too.

The work can be extended to design randomized algorithms for single host virtual machine
migration problem. Further, the proposed approach can be extended to design energy efficient
algorithms for multi-host virtual machine migration and consolidation. It will be of interest to design
a machine learning framework to predict the future requests/demands of virtual machines.
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