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Abstract: Solar energy represents one of the most important renewable energy
sources contributing to the energy transition process. Considering that the
observation of daily global solar radiation (GSR) is not affordable in some
parts of the globe, there is an imperative need to develop alternative ways
to predict it. Therefore, the main objective of this study is to evaluate the
performance of different hybrid data-driven techniques in predicting daily
GSR in semi-arid regions, such as the majority of Spanish territory. Here,
four ensemble-based hybrid models were developed by hybridizing Addi-
tive Regression (AR) with Random Forest (RF), Locally Weighted Linear
Regression (LWLR), Random Subspace (RS), and M5P. The base algorithms
of the developed models are scarcely applied in previous studies to predict
solar radiation. The testing phase outcomes demonstrated that the AR-
RF models outperform all other hybrid models. The provided models were
validated by statistical metrics, such as the correlation coefficient (R) and root
mean square error (RMSE). The results proved that Scenario #6, utilizing
extraterrestrial solar radiation, relative humidity, wind speed, and mean,
maximum, and minimum ambient air temperatures as the model inputs, leads
to the most accurate predictions among all scenarios (R = 0.968–0.988 and
RMSE = 1.274–1.403 MJ/m2·d). Also, Scenario #3 stood in the next rank of
accuracy for predicting the solar radiation in both validating stations. The
AD-RF model was the best predictive, followed by AD-RS and AD-LWLR.
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Hence, this study recommends new effective methods to predict GSR in semi-
arid regions.

Keywords: Solar radiation prediction; random forest; locally-weighted linear
regression; additive regression

1 Introduction

Although currently, solar energy accounts for a tiny fraction of the world’s energy supply, it is the
most abundant and feasible renewable energy source. Indeed, solar energy, radiant light, and heat from
the sun have been harnessed by humans using a range of ever-evolving technologies since ancient times.
Thus, solar energy utilization is a promising prospect for solving the energy crisis, fighting climate
change, and improving overall life quality [1]. The most accurate way to measure the global solar
radiation at any site is by installing specific instruments, such as pyranometers and pyrheliometers,
and conducting continuous monitoring at different time resolutions [2,3].

Nevertheless, despite the vast range of solar energy applications, solar radiation sensors are not
installed at all meteorological stations. Also, they tend to experience frequent technical issues. Hence,
direct solar radiation measurements are unavailable in many countries, especially developing ones
[4,5]. Therefore, in such circumstances, the standard practice in assessing solar radiation is to use
physical, empirical, or data-driven techniques, which have been established recently based on other
meteorological parameters [6–8]. Most empirical models are based on meteorological variables and
daily global solar radiation (GSR) correlations. To estimate GSR and for decades, different empirical
models, such as the temperature- and sunshine-based ones, have been used [9,10]. In contrast to the
empirical equations, data-driven techniques do not make any prior assumptions about the correlations
between input and output parameters. Instead, those correlations are figured out from the fed data in
the learning process [11–16].

Therefore, many researchers have widely used data-driven techniques for predicting solar radiation
over the last decade. Vakili et al. [17] developed an Artificial Neural Network (ANN) model to predict
the daily GSR. They concluded that the proposed ANN model provides relatively higher accuracy
and reliability than other models tested by other researchers. Yeom et al. [18] applied four data-
driven models, namely, ANN, random forest (RF), support vector regression (SVR), and deep neural
network (DNN), to assess the spatial distribution of solar radiation on Earth considering different
meteorological data sources. They found that the data-driven models accurately simulate the observed
cloud patterns spatially.

In contrast, the physical model failed because of cloud mask errors. They concluded that more
profound layers of the network approaches (RF and DNN) could best simulate the challenging
spatial pattern of thin clouds when using multispectral satellite data. Kosovic et al. [19] also applied
Machine Learning (ML) to estimate solar radiation. They concluded that data-driven models provide
higher accuracy when using different time resolutions and meteorological inputs. Al-Rousan et al. [20]
applied several data-driven techniques to predict solar radiation over Jordan. They concluded that
RF algorithms perform better than other algorithms in predicting global solar radiation. Also, their
results revealed that the accuracy of the predictions depends on the used category, training algorithm,
and variable combinations. Taki et al. [21] utilized ANN, SVR, Adaptive Network-Based Fuzzy
Inference System (ANFIS), Radial Basis Function (RBF), and Multiple Linear Regression (MLR)
for Estimating GSR at different time scales. They concluded that the RBF-based model has the
lowest error when estimating the monthly and daily solar irradiations. Hassan et al. [22] performed a
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comparative study between four different data-driven models of daily global solar irradiation based
on SVR, feedforward backpropagation ANN, ANFIS, and decision trees. They showed that ANN
models, followed by ANFIS- and SVM-based models, outperform classic regression-based ones by
reducing the root mean square errors by up to 31.7%, depending on the type of the inputs. In another
study [23], the authors explored the potential of the relatively simpler decision tree ensembles in
predicting the hourly average and daily total global, diffuse, and direct normal solar radiation at
different locations in the Middle East. Those ensembles were benchmarked against commonly used
ANN, SVR, RF, bagging, and gradient boosting models. The study’s outcomes indicated a competitive
performance of RF models to the most accurate ones (ANN models) but higher stability of boosting
models. SVR-based models, however, showed the best combination of the two criteria. Thus, many
researchers concluded that, because measuring the global solar radiation at all locations of the Earth
is not possible and requires specific and expensive equipment and systems, data-driven techniques can
be considered a replacement for experimental measurements and empirical methods.

Most studies dealing with data-driven techniques to predict solar radiation are conducted in arid
regions. In contrast, only a few studies are conducted in semi-arid climate zones. Therefore, the main
objective of this study is to evaluate the performance of different hybrid data-driven techniques in
predicting daily GSR in semi-arid regions, such as the majority of Spanish territory. Namely, we tested
models based on RF, Locally Weighted Linear Regression (LWLR), Random Subspace (RS), and M5P
when each algorithm is hybridized with Additive Regression (AR) to estimate the solar radiation in six
stations over Spain, characterized by semi-arid climate conditions. The models tested in this study are
novel. Most of the base algorithms are scarcely applied in previous studies to estimate solar radiation.
Therefore, this study considerably recommends new effective methods to estimate solar radiation in
semi-arid regions.

The rest of the paper is organized as follows: Section 2 briefly describes the study cases and
data-driven models applied in this study. Section 3 presents the main findings from this study and
discusses the applied models’ relevance. Finally, the main concluding remarks drawn from this study
are presented in Section 4.

2 Materials and Methods
2.1 Data-driven Algorithms
2.1.1 Additive Regression

Additive regression (AR) is introduced as a gradient boosting ensemble learning method presented
in the WEKA open-source package, which can enhance the predictive performance of a single
regressive learner in an iterative process [24]. The AR mechanism includes the iterative enhancement of
the regression-based learner by fitting a model in each iteration obtained from the remaining residuals
from the previous iteration. Herein, the final prediction is provided by accomplishing the outcomes of
every single learner [25]. In this approach, the main hyperparameter is a shrinkage coefficient (learning
rate) with a default value equal to 1.0. Reducing the shrinkage coefficient avoids overfitting, and
smoothing improves the predictive accuracy. However, selecting a relatively low value of shrinkage
coefficient may increase the cost and time computing model [25].
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2.1.2 Locally-Weighted Linear Regression

Multilinear regression (MLR), as a supervised learning method, can purpose a linear response
between the input variables (xi) and the output one (Zi) in the form of [26]

Zi = ai0 +
M∑

m=1

aimxim + εi, m = 1:M (1)

where ai0, ai1, . . . , aim denote the regression coefficients, determined using the least square (LS) method,
εi represent the residuals, and M denotes the number of predictors. The fitness function (F) of MLR
minimizes the squared error between the observed output (Zom) and the estimated one (Zo), which is
expressed as follows

Minimize F = 1
2M

M∑
m=1

(Zom − Zm)
2 (2)

In the case of nonlinear relationships between input variables and target ones, MLR becomes less
efficient. The locally-weighted linear regression (LWLR) method introduced here is considered a non-
parametric lazy learning method. LWLR is an advanced extension of the MLR approach, proposed
for the first time by Atkinson et al. [27] to overcome the drawbacks of conventional MLR. A weight
function captures the existing non-linearity relationship between the training data set and the target
variable in this approach. For this purpose, a fitness function is described as follows [28,29]

Fitness = 1
2M

M∑
m=1

Wm (Zom − Zm)
2 (3)

where W is the weight function. This fitness function can be defined in a matrix form as
(Xϕ − Z)

T W (Xϕ − Z), where X and Z denote the input matrix and output vector, respectively.
In order to minimize the fitness function, it is required to differentiate the mentioned function over ϕ

and set the X TW (Xϕ − Z) matrix function to zero. Thus, ϕ can be obtained as [29]

ϕ = (X TWX)−1X TWZ (4)

Here, the radial basis (Gaussian) kernel function (WRBF) is used to replace the weighted matrix. This
function is expressed as

WRBF ,ij = exp
(
−γ

(
xi − xj

)2
)

(5)

in which, γ denotes a constant number, whereas
(
xi − xj

)
stands for the difference between pairs of

data points (i and j).

2.1.3 M5P Model

The M5P model extends the M5 tree decision model [30], first developed by Wang et al. [31] to
solve regression problems. In the M5P model, traditional decision trees are combined using linear
regression functions at the leaf points of the trees. The most crucial advantage of decision tree models
is their ability to solve nonlinear problems with extensive data and features for regression tasks [32].
Herein, the data space is split into smaller sub-spaces to generate the decision tree for each particular
sub-space using the elements comprised of nodes, roots, leaves, and branches. In the M5P process,
the linear regression functions provided for various sub-spaces construct a set of linear models (as a
committee machine) to capture the existing non-linearity. Generally, the training process of the M5P
algorithm comprises three steps generating, pruning, and smoothing decision trees. The M5P model
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is executed using the maximization of a criterion so-called the standard reduction (SDR), as follows

SDR = SD (τ ) −
N∑

i=1

(τi

τ

)
SD (τi) (6)

in which, τ denotes the data samples, τi denotes the ith sub-space associated with a leaf, and SD denotes
the standard deviation. It is noteworthy that a pre-scribed value of SDR terminates the training phase.
Besides, the useless leaves are pruned during the training phase to avoid overfitting. In the last stage, the
unavoidable discontinuities between adjacent leaves are compensated for by a smoothing procedure
[30]. The flowchart of the M5P model is demonstrated in Fig. 1.

Figure 1: Flowchart of M5P model (left) and a sample of linear regression functions in
sub-spaces (right)

2.1.4 Random Forest

Random forest (RF) is a flexible bootstrap aggregated (bagged) ensemble machine learning
approach, widely implemented for many regression and classification tasks. RF incorporates a forest
of random binary trees based on the Classification and Regression Trees (CART) algorithm and a
bagging strategy to enhance standalone CART accuracy, as shown in Fig. 2. Many researchers have
recently welcomed the simple mechanism of this method in solving significant nonlinear problems
concerning its ability to mitigate bias and error to variance [23]. CART models, in many cases, lead
to overfitting and instability during the training. In the RF approach, and for overcoming these
drawbacks and reducing the error of each tree model, the bagging strategy is used based on two random
operators. In the first operator, a subset of training data � is randomly selected to construct each
independent decision tree D (., �i), which can be expressed as [32,33]

{D (X , �1)} , {D (X , �2)} , . . . ., {D (X , �m)} ; i = 1:m (7)

where, X and m are the training data and the number of decision trees, respectively. During the training
stage, the values D (X , �n) are iteratively updated at the leaf nodes through a weighted average process,
i.e.,
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Wi (X , �) = Xi∑
Xi

; i = 1, 2, . . . , m;
∑

Wi = 1 (8)

Each input variable introduced to a decision tree in the second operator leads to an independent
decision. Consequently, the final response of RF is generated using the majority voting in classification
tasks or by averaging individual predictions of decision trees in regression. For regression tasks, this
is expressed as [34]

OX =
m∑

i=1

1
n

Wi (X , �) Yi (9)

Finally, the rest of the data which did not participate in the training phase of the decision trees is
used to compute the out-of-bag (OOB) error and examine the accuracy of the RF model. Here, two
tuning hyperparameters, namely the number of trees in the forest and the number of predictors in each
tree, were considered, which should be carefully selected to avoid overfitting. The reader is referred to
[26,27] for more detail about the RF approach.

Figure 2: RF flowchart of regression problems

2.1.5 Random Subspace

Random subspace (RS) or “attribute bagging” method is an ensemble machine learning approach
similar to the bagging algorithm. The primary strategy of RS is to reduce the correlation between
estimators. Some features are randomly selected instead of the whole feature subset during the training
stage [35]. In the RS model, an attempt is made to combine the single generated models obtained from
the learners, in a single model with superior performance, compared to the performances of individual
learners [36]. As mentioned before, as in the bagging method, each learner randomly selects a subset of
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the training data set, considering replacement, which is the main difference from the bagging method
[37]. This method is a suitable option for solving high-dimensional problems. The number of attributes
(features) is significant compared to training data points [38]. To construct an ensemble model based
on the RS strategy, the following steps are followed [39]:

1: Let N be the training data points, and D be the number of features in the training data sets.
2: Let L be the number of standalone learners for constructing the ensemble model.
3: Chose a subset of input data points (ni) for each (standalone) learner (i), with ni < N.
4: Allocate a training subset for each learner by considering di features (di < D).
5: Combine the predictions of the L standalone learners using majority voting techniques for
developing an ensemble model.

2.2 Developed Models

The developed models are based on six different combinations (scenarios) of input variables,
as shown in Tab. 1. Besides, the extraterrestrial solar radiation (EXT) and the theoretical sunshine
duration (TSD) in Tab. 1 are calculated mathematically using the date and time stamps of the data, as
demonstrated in [23]. For each set of inputs, four hybrid models have been developed by integrating
additive regression with RF, RS, LWLR, and M5P. Tab. 2 shows the optimized hyperparameters of
these models. The datasets for each location were divided into two subsets for training and testing. The
training stage corresponds to the recorded data from 2007 to 2012, while the testing stage employed
the data from 2013 to 2015.

Table 1: The inputs were considered for the six developed models at each location

Parameter Symbol Unit Scenarios

S1 S2 S3 S4 S5 S6

Extraterrestrial solar radiation EXT MJ/m2 ·d √ √ √
Theoretical sunshine duration TSD h √ √ √
Mean ambient temperature TME °C √ √ √ √ √ √
Maximum daily temperature TMX °C √ √ √ √
Minimum daily temperature TMI °C √ √
Relative humidity HUM % √ √ √ √
Wind speed WSP m/s √ √

Table 2: The hyperparameters of the machine learning algorithms used for daily solar radiation
modeling

Algorithm Key hyperparameters

RS • Batch size = 100 • Classifier = REP Tree • Random seed = 1.0 • Subspace
size = 0.5 • Numbers of executions slots = 1 • Number of iterations = 10.

RF Batch size = 100 • Bag size percent = 100 • Maximum depth = 0 • Numbers of
execution slots = 1 • Number of iterations = 100 • Random seed = 1.

(Continued)
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Table 2: Continued
Algorithm Key hyperparameters

M5P Batch size = 100 • Minimum number of instances = 4.
AR Batch size = 100 • Classifier = Bagging • Shrinkage = 1.0 • Number of

iterations = 10.

The accuracy and suitability of the models were assessed using the root mean square error
(RMSE), the relative RMSE (RRMSE), and Pearson correlation coefficient (R) of the linear regression
forced to the origin of the n pairs of observed and predicted GSR values, mean absolute error (MAE)
[40–45].

2.3 Collected Data and Studied Area

This study is carried out for the region of Andalusia, located in the south of the Iberian Peninsula.
Andalusia covers a land area of about 87268 km2 with a complex climate [46]. The total annual rainfall
ranges from <300 mm (southeast coast) to >1000 mm (Betic mountains, Sierra Morena). The region
has mild temperatures, with average annual temperatures above 17°C and 13°C in Sierra Morena and
Betic mountains, respectively, and 300 days of sunshine over most of the territory. The stations with
semi-arid climates were selected for this work, as shown in Tab. 3. A semi-arid climate, also known as
a semi-desert or steppe climate, occurs when precipitation is less than possible evapotranspiration but
not as low as in an arid desert climate. Semi-arid climates come in various forms, giving rise to various
biomes depending on air temperature. The Köppen Climate Classification’s subtype for this climate is
BS [47].

Table 3: Data records information of the stations under consideration

# Station Code Station Latitude/°N Longitude/°W Elevation/m

1 TIJ Tíjola 37.378 −2.46 778
2 ICH IFAPA Centro de Hinojosa 38.496 −5.115 543
3 ALM Almuñecar 36.752 −3.679 33
4 PAD Padul 37.018 −3.60 752
5 JER Jerez del Marquesado 37.190 −3.15 1200
6 JOD Jódar 37.878 −3.334 488

The measured meteo-solar radiation datasets for the six locations in Tab. 3 were obtained from
the Spain Agroclimatic Information Network (SIAR; Sistema de Información Agroclimática para
el Regadío, available at: https://eportal.mapa.gob.es) for nine years (2007–2015). The quality of the
meteorological values of each station is tested through different checks, including range, step, internal
consistency, persistence, and spatial consistency [48]. The correlograms in Fig. 3 demonstrate the
strength of linear correlations between these variables and the predicted one (GSR).

This Figure, EXT stands for the daily extraterrestrial solar radiation, whereas TSD stands for the
theoretical sunshine duration.

https://eportal.mapa.gob.es
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Figure 3: Correlograms of meteorological variables considering the combined dataset of all stations

3 Results and Discussion

This section provides the detailed results of the afore-described models in both the training and
testing stages. The six models (S1 to S6) are first developed for the first four locations (TIJ, ICH, ALM,
and PAD). The most promising models and base algorithms are highlighted. Those selected models
are further verified at the other locations (JER and JOD).

3.1 Evaluation of Different Hybrid Models

As shown in Fig. 4a, four hybrid models have been developed by integrating the additive regression
algorithm with the four-machine learning, overviewed in Section 2.1. The Figure shows the sixth
scenario/model results in the training phase, with all seven variables considered as the inputs. The
Figure shows appreciable differences in the performances of all models, which justifies the objective
of this study, i.e., exploring new base algorithms for considerable improvement in prediction accuracy.
Fig. 4a also highlights considerable differences between models’ performances at different locations,
with TIJ and ICH showing better error estimates than ALM and PAD. This also contributes to the
significance of this study, where such discrepancies in models’ performances occur within the same
climatic zone, let alone across different zones. Compared to all other models, the AR-RF model shows
exceptional performance in terms of RRMSE error measure with RRMSE values as low as 10.950%
(at ICH) and also exceeds the performances of other models by up to 50.5% in terms of RRMSE.
These substantial improvements emphasize the importance of the model hybridization concept and
selecting the base algorithms of the hybrid model [49,50]. For instance, Fig. 4a shows that the AR-
M5P models always result in the least accurate predictions, even though M5P and RF (best-performing
base algorithm) share the base foundation of decision trees. It is also depicted that the AR-RS model
performs close to the AR-RF model. In contrast, and at this point, AR-LWLR and AR-M5P models
show significantly poor performances compared to the other models. Hence, they are excluded from
the following discussions.
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Figure 4: Prediction errors of all models/scenarios: (a) RRMSE values of all hybrid models, and (b)
distributions of the relative prediction errors of all models (with different subsets of inputs)

So far, the models have been discussed, considering their performance in the training phase.
However, their performance in the testing phase is more important to see if they can handle new
observations with different statistics. Tab. 4 summarizes the error estimates of the two best-performing
models (i.e., AR-RF and AR-RS) when tested using the three years (2013 to 2015) datasets at the
four locations. Once again, the AR-RF models show superior performances compared to the AR-RS
models, with improvements up to 52.9% and 54.2% in terms of MAE and RMSE, respectively. Most
importantly, the AR-RF model shows a highly stable performance when processing the datasets for
three years of the testing phase. Typically, data-driven models tend to have higher error estimates in the
test phase since they are not necessarily prepared for new data points that they have not been trained to
handle. However, since the model is well-developed and the two datasets of training and validation are
large enough, the model shows comparable error estimates at ICH (e.g., training and testing RMSEs of
1.902 and 2.188 MJ/m2.day). Even lower test error estimates at the three other locations. For instance,
at PAD, the RMSE of the testing phase (1.603 MJ/m2·day) is 20.1% lower than that of the training
phase (2.024 MJ/m2·day). The AR-RF model demonstrates excellent performance at this location
(PAD), with an RRMSE of only 8.5%. Overall, it is concluded that the AR-RF models are the most
suitable for such climatic conditions, followed by AR-RS, which is also a bagging technique.

Table 4: Statistical performance of the two better-performing hybrid models for four understudy
stations in the testing phase

Station
Code

Algorithm MAE
(MJ/m2·d)

RMSE
(MJ/m2·d)

RRMSE
(%)

Station
Code

Algorithm MAE
(MJ/m2·d)

RMSE
(MJ/m2·d)

RRMSE
(%)

TIJ AR-RF 1.388 1.954 10.759 ALM AR-RF 1.343 1.847 10.761
AR-RS 2.306 3.086 16.991 AR-RS 2.210 2.984 17.389

ICH AR-RF 1.520 2.188 12.046 PAD AR-RF 1.214 1.603 8.528
AR-RS 2.161 2.930 16.134 AR-RS 2.335 3.156 16.785
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3.2 Impact of Model Inputs

So far, the different hybrid models have been assessed based on the input variables of Scenario
#6, where wind speed and relative humidity records are also required. Also, from the previous
section, it has been demonstrated that AR-RF results in sustainably better predictions of GSR.
Hence, this section aims to evaluate the sensitivity of the AR-RF model’s predictions to different
input combinations. As shown in Fig. 4b, the six combinations of model inputs result in different but
comparable density distributions of residuals. As aforementioned, all models tend to overestimate the
actual GSR values. However, the more complex models (S4 to S6) tend to show less frequent significant
overestimations, as clear from the shifted peaks to the left in Fig. 4b.

To better summarize the performance of the models with different inputs, Fig. 5 shows the Taylor
diagrams of the six models at TIJ, ICH, ALM, and PAD. The model’s performance improves as the
number of inputs increases, especially when the new inputs represent a brand-new domain/type of
measurements. This is expected since data-driven models tend to be greedy regarding dataset size and
the number of inputs. S1 and S2 show lower performances for most stations, whereas S6 performs
considerably better. However, the differences between models S3 to S6 are not that significant.
Hence, all are recommended depending on the anticipated level of accuracy in GSR predictions,
with S6 being the most accurate (but requires additional measurements of wind speed and relative
humidity) and S3 being the most cost-effective (only air temperature measurements are required). The
comparable performances of S3 and S6 are even clearer in Fig. 6. In this Figure, while all models fail
to capture extreme GSR values, they succeed in capturing the actual GSR records’ main distribution
characteristics (e.g., mean and quartile values).

Figure 5: (Continued)
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Figure 5: Taylor diagrams of all scenarios for the four training locations in the test phase

Figure 6: Violin plots of models S3 and S6 for the four selected locations in the test phase

3.3 Verification at New Locations

As a final verification of the selected models (AR-RF models based on S3 and S6 input
combinations), the error estimates of the test phase are summarized in Tab. 5. Compared to the
results in Tab. 4, it can be seen that even better error estimates are obtained at the two new locations
(JER and JOD), with RMSEs as low as 1.274 MJ/m2·day (the lowest RMSE in Tab. 4 was 1.603
MJ/m2·day for PAD). The RRMSE values are also substantially lower than those in Tab. 4. This
proves that the suggested models are generalizable to distant locations with similar climatic features.
Once again, S6 shows the best performances, with RMSEs of 1.274 and 1.403 MJ/m2·day at JER and
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JOD, respectively. However, these values are in the same order of magnitude as those offered by S3,
which is drastically simpler. Hence, the AR-RF model based on air temperature measurements (S3) is
recommended as the best trade-off between complexity and accuracy.

Table 5: Statistical performance of the two selected models for the two verification locations in the test
phase

Scenarios JER JÓD

S3 S6 S3 S6

RMSE (MJ/m2·d) 1.527 1.274 1.661 1.403
RRMSE (%) 8.327 6.946 9.126 7.755
R (-) 0.984 0.988 0.978 0.984

4 Conclusions

In this research, four novel hybrid ensemble models based on RS, RF, M5P, and LWLR, each
integrated with AR (i.e., AR-RS, AR-RF, AR-M5P, and AR-LWLR), were developed to estimate the
solar radiation for six semi-arid regions of Spain. Extraterrestrial solar radiation, theoretical sunshine
duration, mean ambient temperature, maximum daily temperature, minimum daily temperature,
relative humidity, and wind speed were employed as the input variables. First, four hybrid ensemble
models were examined based on all input parameters in four stations (TIJ, ICH, ALM, and PAD)
during the training phase. The results show that the AR-M5P models have the lowest accuracy,
with correlation coefficients of only 0.874, 0.909, 0.870, and 0.869 at TIJ, ICH, ALM, and PAD. In
contrast, the testing phase outcomes demonstrated that the AR-RF models have the best performances
among all the hybrid models, with correlation coefficients of 0.97, 0.962, 0.966, and 0.982 at the
same locations, respectively. In the next stage, six scenarios (input combinations: S1:S6) based on
a correlation analysis were adopted to examine AR-RF, as the superior ensemble model, at two
remaining stations (i.e., JER and JOD) to verify the model’s performance and assess the impact of
candidate inputs on the prediction accuracy. The testing phase results proved that Scenario #6 leads
to the highest accuracy, compared to other scenarios, with RMSEs of 1.274 and 1.403 MJ/m2·day and
correlation coefficients of 0.988 and 0.968 at JER and JOD, respectively. Also, Scenario #3 stood in the
next rank of accuracy for estimating the solar radiation in both validating stations. The AD-RF was
the best predictive model, followed by AD-RS. However, the AD-RF model has better performance
than all other models for most stations. Therefore, predicting global solar radiation for regions with
similar climate characteristics using AD-RS is recommended.
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