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Abstract: The goal of this research is to introduce the simulation studies
of the vector-host disease nonlinear system (VHDNS) along with the
numerical treatment of artificial neural networks (ANNs) techniques
supported by Levenberg-Marquardt backpropagation (LMQBP), known
as ANNs-LMQBP. This mechanism is physically appropriate, where the
number of infected people is increasing along with the limited health
services. Furthermore, the biological effects have fading memories and exhibit
transition behavior. Initially, the model is developed by considering the two
and three categories for the humans and the vector species. The VHDNS is
constructed with five classes, susceptible humans S, (7), infected humans 7, (¢),
recovered humans R, (¢), infected vectors I,(¢) , and susceptible vector S,(¢)
based system of the fractional-order nonlinear ordinary differential equations.
To solve the number of variations of the VHDNS, the numerical simulations
are performed using the stochastic ANNs-LMQBP. The achieved numerical
solutions for solving the VHDNS using the stochastic ANNs-LMQBP have
been described for training, verifying, and testing data to decrease the mean
square error (MSE). An extensive analysis is provided using the correlation
studies, MSE, error histograms (EHs), state transitions (STs), and regression
to observe the accuracy, efficiency, expertise, and aptitude of the computing
ANNs-LMQBP.
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1 Introduction

Human illnesses due to infectious pathogenic organisms are referred to the vector-borne diseases
(VBDs), such as parasitic infections, viruses, and bacteria. Pathogens are transferred between humans
or in some cases, from animals to humans via vectors. Mosquitoes, flies, insects, ticks, and snails
carrying pests are the most common vectors. The VBDs are typically found in tropical and subtropical
areas, particularly in such areas, where safe drinking water and sanitary are limited. The VBDs are
changeable and measured as a dangerous disease, accounting for around 700,000 deaths because of
vector-borne pathogenic illnesses, like leishmaniasis, dengue, schistosomiasis, Trypanosoma, cryp-
tosporidiosis, yellow kind of fever, and trichinosis [1]. Based on the reports of WHO, 231 million
declared variants of malaria were enlisted four centuries ago, culminating in 416000 causalities,
whereas 228 million people were directly affected by malaria in 2018, which tends to result in 405000
causalities [2]. From 2015 to 16, the Zika epidemic was the susceptible to more than 360000 individuals
in various states across the United States [3]. Ross [4] pioneered mathematical analysis of vector-
borne diseases by developing the two differential systems for transferring the susceptible densities
and afflicted vectors (mosquitoes) as well as hosts (people) to present the fundamental consideration
of malaria spread dynamics. The basic model of Ross has been extended by Macdonald [5], who
developed the concept of elementary reproduction number, which is described as a secondary case
formed by an affected individual. Many researchers have expanded the Ross—Macdonald model
to contain the additional features of [6—12]. The modeling system shows the alterations to label
the dynamic behavior of secondary vector-borne pathogens, including Chagas disease based on
the [13-16].

The computational mathematics approach based on infectious diseases has considered a valuable
tool to predict the disease transmission behavior along with the prevention plans for the effective
diseases. These models can help with public health preparation and response. To investigate the
dynamic behavior based on the numerous vector-host communicable viruses, several fractional order
systems using the standard nonlinear dynamical systems have been investigated to develop a time-
dependent transmitting model for analyzing the dynamic nature of VBD [17]. Khan et al. [1§]
investigated the dynamic Leptospirosis disease behavior like a saturated estimated occurrence. The
dictating tactics and their efficiency for the dengue co-infection system are provided [19] as well as
similar kind of mathematical model for diarrhea and malaria co-infection is studied in [20]. The
dynamic nature of dengue infection along with the regulator strategies in Pakistan, is presented in
[21,22

P

The fractional calculus study is assumed to be a general form of traditional calculus and applied
as a powertool tool to develop the epidemic systems. In the recent literature, the analytical solutions
formulated with fractional operators have a higher level of precision and perfectly match the real statics
[23-27]. Currently, the focus of the researchers based on the fractional calculus is Caputo derivatives
[2€8], Caputo-Fabrizio [29], and Atangana-Baleanu-Caputo (ABC) [30]. Based on the fractional order,
the ABC operator is to model the actual systems of communicable diseases along with its numerous
characteristics [31-37]. The spreading diseases of numerous vector-host designs form a mathematical
model, like dengue [38], schistosomiasis [39], zoonotic instinctive leptospirosis [40], Zika [41], and
West Nile virus [42]. Furthermore, the authors considered the linear care function on the disease of
vector-host communications, which is physiologically unsuitable in circumstances, where the infected
grow, and the society lacks adequate health resources. As a result, in this paper, the saturated action
features have been used in the vector-host system [43—45]. The purpose of this research is to present
the simulation studies of the fractional-order (FO) vector-host disease nonlinear system (VHDNS)
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along with the numerical treatment of the artificial neural networks (ANNSs) techniques supported by
Levenberg-Marquardt backpropagation (LMQBP), known as ANNs-LMQBP.

The paper is organized as follows: Section 2 represents the fractional vector host disease system.
Section 3 shows the stochastic novel features. Section 4 indicates the proposed procedures based on
the ANNs-LVMBP method. Section 5 provides the results, and discussion and the last Section shows
the concluding remarks.

2 Fraction Order Vector-Host Disease Differential System

In this section, the dynamic nature of the vector-host disease is presented by indicating the total
population of humans N, (#) and further subdivision is into three distinct classes, namely susceptible
humans S,(r), afflicted humans 7,(¢), and healed humans R,(¢) at any time #, so N,(¢) = I, + S, + R,.
The enrollment of individuals at a rate of ¢, increases the number of individuals of susceptible humans.

Sivid,
1+ x4,
susceptible human to afflicted vector and y, is the concentration constant. The natural death rate is

Syl
1+ xl,

The natural deaths n,, the disease associated death rate ¢,, and

It is reduced by effective contact with , Where x, represents the disease interaction rate among

n, and the effective contact rate is , Which generates in the community of infected humans.

7,
&. It seems to be that when [
1 +vowl,

or w is very small, the diagnosis function coincides with a near-zero value, and when [ is very vast,
the diagnosis function reaches a finite value limit. Using such a function (treatment) will normally
represent the epidemic system, so that it can be included in the evaluation of the present work. The term

K . . . . . .
— is determined by the maximum supply of healthcare possessions per unit of time, whereas —
v vowl,

represents the converse consequences of the infected persons who are delayed for therapies and have
a significant effect on virus spread; for more information, see [18]. The people in the recoverable class

are produced by the treatment function 1:‘;’2’,/ , while 1, decreases due to natural death. This variation

can be represented by the differential equation and the VHDNS model is mathematically signified
as [46]:

[ dSh(t) S/zylllz
- - T . 5 lSl) S = k )
dr h 1+ 0, Sy 0 1
dI, (1) Siyid, kwl,
— -l — ey, — ————, I, =k, 1
dr 1+ 0], Midp — Epdj 1+ vol, 0 2 (1)
dR, (1) kwl,
g — 1R1. R = k .
dt | + vool, N Ay, 0 3

The vector society is denoted by N,, and it is separated into two subclasses: S, susceptible vector
and 7, afflicted vector. As a result, N, = I,+ S,. The susceptible vector sequence is created by the birth
. . . v . : . L+ pl,
generates the afflicted populations, while the natural fatality rate n, decreases it. This discussion leads
to the following differential equation:

rate v, which is reduced by the contact rate and normal death rate v. The contact rate I
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ds, (1) AS I,
= 6 - vSva Sy = k. ’
dr SRy 0= o
dLw _ aSIL L
dt - 1 + plv nv Ve 0 — V5

where k,, k,, ks, ky, and ks be the initial conditions of Eqgs. (1) and (2). After combining these two
equations, the SIRSI system is obtained as:

T == B s, -
o 1S+VXII el -
| d’Zi(z) 1 -Kra;ifm ~ ks, Ry = ki, 3)
drjlvz([) — - lei} - 0. -
dr;;ft) _ ﬁfié}v - .

This system, v shows the FO derivative of the SIRSI model. In Eq. (3), FO-SIRSI system
parameters are denoted by small Greek and English characters. Each model parameter has a particular
value, calculated using the actual information given in [46]. Fig. 1 illustrates the visual effects of every
phase of the epidemic.

3 Novel Stochastic Solvers Features

The numerical measures through the ANNs-LMQBP are proposed for solving the FO-SIRSI
system. The stochastic solvers have been exploited using local and global search efficiencies based
on the complicated, singular, and stiff models [47-49]. Few more schemes of the stochastic schemes
are third-order nonlinear singular models [50], and fractional-order singular models [51-54]. In this
study, the solutions of the fraction order VHDNS based on the SIRSI have been proposed using the
ANNs-LMQBP. Recently, stochastic solvers have been presented to solve the fractional dynamical
models. Few of them are dynamical nonlinear susceptible infected and quarantine differential model
[55], immune-chemotherapeutic treatment for breast cancer [56], nonlinear prey-predator system [57],
SIDARTHE COVID-19 pandemic differential model [58], Bagley—Torvik mathematical model [59]
and seventh order singular system [00]. It is found that the time FO derivatives have been applied
to different conditions in various applications. The FO derivative represents the framework based on
remembrance [61]. Few novel features of the ANNs-LMQBP are presented as:

e A preliminary design of its FO-VHDNS is presented based on the nonlinear mathematical form
of the SIRSI effects.

e The solutions of the FO-VHDNS system using the nonlinear mathematical form of the SIRSI
model have never been presented through the stochastic solvers.

e The numerical stochastic measures based on the ANNs-LMQBP have been presented for the
FO-VHDNS using the nonlinear mathematical form of the SIRSI.

e The comparisons of the obtained results through ANNs-LMQBP have been presented with the
reference (Adams—Bashforth—Moulton) solutions to authenticate the excellence of stochastic
computing solvers.
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e The absolute error (AE) in good measures has been achieved for the FO-VHDNS using the
nonlinear mathematical form of the SIRSI.

e The reliability and consistency of the developed ANNs-LMQBP for solving the FO-VHDNS
system are validated by using the regression, STs, MSE, EHs, and similarity performances

Intelligent Network
Design of multi-layer process using
the numerical simulations based on
the stochastic ANNs-LMQBP for
vector-host disease with saturated
treatment model

Mathematical Model

2. Methodology:

Presented solutions
Operate the designed stochastic ANNs-
LMQBP through the reference statics to
accomplish the approximate outcomes for
presenting the solutions of the nonlinear
fractional order vector-host disease with
saturated treatment model

Reference Results
Proposed dataset through the support of
numerical computing solver for presenting the
solutions of the nonlinear fractional order
vector-host disease with saturated treatment
model

3. Results with analysis

‘or Histogram with 20 Bins

Approximate stochastic ANNs-LMQBP and analysis through the MSE, fitness measures, EHs, and
regression analysis for fractional order for vector-host disease with saturated treatment model

Figure 1: Workflow-based fractional-order derivative of the mathematical VHDNS model using the
ANNs-LVMBP method
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4 Proposed Procedures: ANNs-LVMBP Method

The ANNSs-LVMBP scheme is provided in two steps to solve the FO-VHDNS system using the
nonlinear mathematical form of the SIRSI model. First the basic procedures of the ANNs-LVMBP
operator performances are introduced along with the designed structure of the FO-VHDNS system

using the nonlinear mathematical form of the SIRSI model.

Fig. 1 shows the multi-layer performances of the optimization using the stochastic ANNs-
LVMBP. The ANNs-LVMBP procedures are assembled in MATLAB through the ‘nftool” process,

with data chosen as 74% for training, 12% for testing, and 14% for authorization.

5 Results and Discussions

The numerical results with three FO-SIRSI cases using the ANNs-LVMBP method are drawn in
this section. These cases have been presented by using the variations of the FO to solve the model using

the stochastic schemes.
Case 1: Consider the FO-SIRSI model by taking the t = 0.5, ¢, = 0.0002, y, = 0.000044, x,

0.003, n, = 0.00020, v = 04, ¢, = 0.002, « = 0.1, ¢, = 0.008, » = 0.007, p = 0.002, n, = 0.2,

S, =0.01,1,=0.01, R, =0.01, w = 0.1, S, = 0.0land I, = 0.01 is given as:

e

d d‘:)’fs(t) = 0.0002 — % ~0.000208, S, =0.01,
0s

d dfgs(’) _ 01'020(%‘;?}5” — 0.00221, — % I, = 0.01,
0s

d d’;f” =- 3'(())‘1&11, — 0.00020R, R, =0.01,

d();i;(z) — 0.008 — % — 028, S, = 0.01,

UL 0007SE oo I = 0.01.

drs 1+ 0.0021,
Case 2: Consider the FO-SIRSI model by taking the t = 0.6, £, = 0.0002, ¥, = 0.000044, yx,

(4)

0.003, n, = 0.00020, v = 0.4, ¢, = 0.002, « = 0.1, ¢, = 0.008, » = 0.007, p = 0.002, n, = 0.2,

Sy, =0.01,1,=0.01, R, =0.01, w = 0.1, S, = 0.0land 7, = 0.01 is presented as:
[ d°°S,, (1) 0.000044S,1,

. 0031,
d*SI,(1)  0.000044S,1, 0.011,
= —0.000201, — 0.002f, — ——" I, =0.01
dros 1+ 0.0037, " " 140.041, ° ’
d*SR, (1) 0.017,
1 - — 0.00020R R, = 0.01
ds 1+ 0.041, ¢ ! ’
d*sS., (1) 0.007S.1,
—0.008 — ———"' (.28, S, = 0.01,
dros 1 4+ 0.0021, 0
06 . 1
L@ _ 0007SL o I, = 001,

drs 1+ 0.0021,
Case 3: Consider the FO-SIRSI model by taking the t = 0.7, ¢, = 0.0002, y, = 0.000044, x,

©)

0.003, n, = 0.00020, v = 04, ¢, = 0.002, « = 0.1, ¢, = 0.008, » = 0.007, p = 0.002, n, = 0.2,

S, =0.01,1, =0.01, R, =0.01, w =0.1, S, = 0.0land I, = 0.01 is described as:
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' d“;i;(t) —0.0002 — % — 0.00020S, S, = 0.01,
do;ﬁf’) _ Oioiog‘(‘)‘(‘)‘?[hlh — 0.000207, — 0.0027, — % I, =001,
0
T =08 — e —0as S
d*’I,(n)  0.007S,1, 028, I, =0.01.

drr7 14 0.0021,
The numerical representations of the FO mathematical bone disease model are discussed using
the ANNs-LVMBP method with 15 neurons along with the data selection is chosen as 74%, 12% and
14%, for training, certification, and testing. The structure of the input, hidden, and output neurons
are depicted in Fig. 2.

Figure 2: Designed ANNs-LVMBP method for VHDNS

The plots are using the ANNs-LVMBP method for the VHDNS model based on the FO-SIRSI
are shown in Figs. 3-5. The graphical visualizations are illustrated in Figs. 3 and 4 to investigate the
STs best measures. The MSE and STs for training, ideal curves, and confirmation are produced in
Fig. 3 to solve the FO-SIRSI system. On behalf of these accomplishments based on the FO-SIRSI are
provided at epochs 6, 6, and 6, the derived values are 9.9334¢™%, 6.5823¢", and 8.6883¢", respectively.
The curve values are also provided in Fig. 3 for the VHDNS model based on the FO-SIRSI. These
cure performances have been provided as 2.6797¢™" for Case 1, 1.6746¢™ for Case 2, and 3.6855¢~"
for Case 3. These visualization tools show the convergence of recommended ANNs-LVMBP for the
VHDNS model based on the FO-SIRSI. Fig. 4 shows the results and EHs performances of the FO
system. The EHs for cases 1, 2, and 3 are predicted as —2.4¢™", —1.8¢7" and —2.8¢7". The convergence
of the model using the complexity, MSE, training, verification, generations, and testing is provided in
Tab. 1.
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Figure 3: MSE and STs performances for the fractional order system
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Table 1: ANNs-LVMBP method for the FO VHDNS SIRSI-mathematical model
Case MSE Performance Gradient Mu Epoch Time

[Training] [Verification] [Testing]

1 5654 %10 9933 x 10 3.582x 10~ 5.65x10°° 268 x10-% 1x 10 ¢ 1
2 6.725% 10" 6582 x 107 7.614x 10~ 6.73x 10-®° 1.67 x 10-% 1 x 10:22 6 1
3 7.000 x 10~ 8.688 x 10~ 7.382x 10~° 7.00 x 10-%° 3.69 x 10-08 1 x 10 6 ]

Fig. 5 presents the AE for the VHDNS model based on the nonlinear FO-SIRSI mathematical
system. The AE based on the S, (¢) dynamics are calculated as 10-*—10-%,10-*—10""and 10~ —10~%
for the corresponding cases of the FO-SIRSI model. The AE is based on the 7,(¢), R,, S,(f)and I,(?).

6 Conclusions

This study aims to perform the simulations of the vector-host disease nonlinear system using
the numerical artificial neural networks scheme along with the support of Levenberg-Marquardt
backpropagation. The vector-host disease nonlinear system depends upon five dynamics: susceptible
humans S,(#), infected humans 7,(¢), recovered humans R,(¢), infected vectors 7,(¢) and susceptible
vectors S,(#). The vector-host disease nonlinear system is generalized into the fractional-order
derivative to find more realistic solutions and the calculations have been performed using the SNNs-
LMQBP. The correctness of the FO-VHDNS is observed using the comparison performances of the
obtained and the reference solutions. This study has taken fifteen neurons and the data selection is
74%, 12% and 14%, for training, certification, and testing. The scheme’s exactness is achieved by
achieving suitable AE measures for each dynamic of the FO-VHDNS. The AE based on each dynamic
of the FO-SIRSI model is calculated as 10~ — 10~%. Moreover, correlation studies, MSE, EHs, STs
and regression have been achieved to observe the accuracy, efficiency, expertise, and aptitude of the
computing SNNs-LMQBP. In upcoming studies, the proposed numerical procedure has been used to
find the solutions for the fluid mechanic’s systems, nonlinear systems, omics studies, lonngren-wave,
and data security networks [62-60].
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