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Abstract: The automatic localization of the left ventricle (LV) in short-axis
magnetic resonance (MR) images is a required step to process cardiac images
using convolutional neural networks for the extraction of a region of interest
(ROI). The precise extraction of the LV’s ROI from cardiac MRI images is
crucial for detecting heart disorders via cardiac segmentation or registration.
Nevertheless, this task appears to be intricate due to the diversities in the size
and shape of the LV and the scattering of surrounding tissues across different
slices. Thus, this study proposed a region-based convolutional network (Faster
R-CNN) for the LV localization from short-axis cardiac MRI images using a
region proposal network (RPN) integrated with deep feature classification and
regression. The model was trained using images with corresponding bounding
boxes (labels) around the LV, and various experiments were applied to select
the appropriate layers and set the suitable hyper-parameters. The experimental
findings show that the proposed model was adequate, with accuracy, precision,
recall, and F1 score values of 0.91, 0.94, 0.95, and 0.95, respectively. This
model also allows the cropping of the detected area of LV, which is vital in
reducing the computational cost and time during segmentation and classifica-
tion procedures. Therefore, it would be an ideal model and clinically applicable
for diagnosing cardiac diseases.
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1 Introduction

Detecting anatomical organs has been receiving increased attention in medical image analysis
because it only extracts ROI from the background. Recently, short-axis MRI images have played an
essential role in the evaluation of cardiac functions [1,2] to diagnose cardiovascular diseases such as
myocardial infarction (MI) [3]. Cardiac MRI images consist of the LV and right ventricle, surrounded
by other organs such as the lungs and diaphragm. Thus, LV localization is extremely useful in reducing
computational load, particularly for deep learning algorithms. The fundamental advantage of LV
localization is that it improves the effectiveness of subsequent techniques like regression [4] and
segmentation [5–7] by extracting only the LV area and ignoring the other organs, as illustrated in
Fig. 1.

Figure 1: The LV localization from cardiac short-axis MRI images at various shapes and sizes

There are a limited number of methods for the automatic detection of cardiac objects, for instance,
model-based [8–10], machine learning [11], and deep learning models [12–14]. Due to some reasons,
such as inhomogeneous intensity, diversities in the size and shape of LV at different slices, and an
insignificant intensity difference between LV and surrounding tissues, the accurate localization of LV
from MRI images is critical. The emergence of the region-based convolutional neural network (R-
CNN) in 2014 had a significant influence on object detection. R-CNN has inspired the development
of new methods like Fast R-CNN [15], Faster R-CNN [16], you only look once (YOLO) [17], single-
shot detector (SSD) [18], and region-based fully convolutional network (R-FCN) [19]. The CNN-
based detection techniques, including one-phase (YOLO and SSD), two-phase (R-CNN, Fast R-CNN,
and Faster R-CNN), and anchor-free based methods, have achieved satisfactory performance for
object detection, especially for natural images. Among these methods, Faster R-CNN was preferred
since it surpassed other methods in speed and accuracy [20]. Wang et al. [14] also determined that
LV detection currently relies on two-phase methods, and Faster R-CNN demonstrated the most
outstanding performances. However, its ability to directly detect the LV from cardiac MRI images
is still limited.

This paper proposes a Faster R-CNN model with a region proposal network to accurately detect
the LV from short-axis MRI images at all different slices. The network is based on three main phases:
CNN layers for feature extraction from input images; RPN with anchors that generate candidate
regions of the LV region; and regression and classification layers that locate the LV by bounding box
and determine the objectness score, respectively.

The rest of this paper is structured as follows. Section 2 describes some previous related works.
Section 3 introduces the materials and methods, and the experimental results and discussion are
explained in Section 4. Section 5 represents the conclusion.
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2 Related Works

The LV has a vital role in cardiac functionality and has been widely considered for studies of
LV analysis. In computer vision, LV detection has been applied using traditional object detection
methods such as the circular Hough transform [21], Fourier analysis, and a spectrum-based tool [9].
The main limitation of these methods is that they are based on handcrafted features with poor image
region representation, which impacts detection speed and accuracy. Various CNN-based detection
methods have been proposed to overcome these issues and were shown to perform well. As explained
by Wang et al. [14], these approaches can be classified as one-phase, two-phase, and anchor-free. YOLO
[17] and SSD [18] are one-phase detection techniques aiming to direct classification and regression to
the sliding windows. R-CNN [22], Fast R-CNN [15] and Faster R-CNN [16] are two-phase detection
methods that produce proposals separately and consequently perform regression and classification.
Anchor-free methods, such as Centernet [23] and Cornernet [24], use inferred key point locations to
detect the position of objects directly.

Recently, several studies for LV identification based on deep learning algorithms from MRI images
have been proposed [25,26]. Wang et al. [13] developed landmark detection that localizes LV in cardiac
MRI using deep distance metric learning and CNN regression. The salient patches in this method
were created using a distance learning module that learns deep patch characteristics in cardiac MRI
images without requiring extensive labelling. The salient patches are fed into the CNN regression
model, which infers landmark localization based on the salient samples. Before LV segmentation,
Abdeltawab et al. [27] created a fully convolutional neural network (FCN) to detect the LV blood
pool center-point. Tao et al. [28] created a CNN to detect LV as the first step toward fully automated
quantifying LV function from short-axis MRI. Long short-term memory (LSTM) has been proposed
for LV detection from MRI sequences [29], but the sequence of cardiac MRI images is not consistent
same as a video sequence, and some frames have transformation; and the LSTM architecture did not
have a regression module, causing faulty detection frames. The goal of the sliding window was to
generate fixed size and position proposals, which were then classified using CNN [30]. The detection
box and ground truth overlap at a low rate due to the position of proposals with fixed size and position.
Niu et al. [31] proposed a hybrid model that combines region proposal, deep feature classification,
and regression to locate myocardial and LV tissue in cardiac MRI images. Their method generated
candidate regions on images using structural similarity-enhanced super voxel over-segmentation and
hierarchical clustering and then employed a deep-stacked sparse auto-encoder (SSAE) network to
represent the candidate regions based on deep feature learning. The SSAE can learn in-depth features
but cannot efficiently merge myocardial and blood pool areas with significant gray-scale variances,
decreasing detection box accuracy. Furthermore, the quantity of positive features is insufficient, and
too many negative features cause an imbalance of positive and negative features in network training,
resulting in unsatisfactory detection outcomes.

Deep learning approaches designed for assisted diagnosis require large-scale medical training
data. This criterion may be tough to achieve in the medical field, where limited datasets are available
and expert data labelling is cost-effective [32]. Transfer learning (TL) in convolutional neural networks
from the natural domain to the medical domain has emerged rapidly [33]. As a result, instead of
training from scratch, fine-tuning a pre-trained CNN has been proposed as an effective application of
transfer learning from a specific domain with big annotated datasets to a target medical domain with
small annotated datasets. Networks such as AlexNet [34], ResNet [35], VGGNet [36], GoogLeNet [37]
and DenseNet [38] are trained on the ImageNet dataset [39] and can be fine-tuned for medical problem
analysis. Kora et al. [40] have investigated transfer learning in medical image analysis.
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The design of frameworks for object detection in MRI images requires more consideration because
MRI can only be gathered by professional medical equipment with a limited amount of data, as
opposed to natural images, which may provide an adequate amount of data. Due to the scarcity of
medical MRI data, training deeper networks, which require large amounts of data in order to reach
high accuracy, becomes problematic. According to Wang et al. [14], in one-stage and anchor-free
detection techniques, the network seems to be a black box with difficulty in detecting objects directly
from input images. Thus, based on the preceding restrictions, LV detection is mostly depends on two-
stage approaches.

Faster R-CNN has demonstrated state-of-the-art performance among these two-stage detection
algorithms. However, it has limitations in detecting LV from cardiac MRI due to factors such as
varying LV’s shape and size in cardiac MRI slices and complex organ structures with little distinction
between LV and other organs in cardiac MRI images. Based on the literature reviewed above, this
paper proposes a CNN network for LV detection that uses the Faster R-CNN technique. The detected
LV area can be cropped and used in segmentation and classification techniques for cardiac analysis.

3 Materials and Method

The procedures of the proposed method for LV localization are summarized by the flowcharts
presented in Fig. 2. The DICOM (digital imaging and communication in medicine) images are
prepared and labelled as input for the proposed network. The steps are as follows: (i) labelling of
the MRI images; (ii) selection of the network’s layers and hyper-parameters; (iii) training and testing
the trained model for LV localization; and (iv) cropping ROI of the LV area. Several experiments were
carried out to select the optimum algorithm, such as stochastic gradient descent with momentum
(SGDM), root mean square propagation (RMSProp), and adaptive moment estimation (Adam) [41].

Start 
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Figure 2: Flowchart of the process flow for the proposed network
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3.1 Cardiac Dataset

The dataset used in this study is Sunnybrook cardiac dataset (SCD) from the left ventricle
segmentation challenge held by the MICCAI workshop in 2009 [42], which is available with a public
domain license in the Cardiac Atlas Project dataset. The data set includes short-axis MRI images for
45 subjects mixed with patients and pathologies classified as healthy, hypertrophy, heart failure with
infarction, and heart failure without infarction. The images were acquired in short-axis view as steady-
state free precession (SSFP) to obtain 20 frames in 6–12 slices from the base to the apex. The acquired
images are 8 mm thick and 256 × 256 pixels in size. The images are in DICOM format, the original
medical imaging standard. Preprocessing steps such as converting to portable network graphics (PNG)
format and image labelling were applied to provide the ground truth. The images were divided into
two groups: 80% for training and 20% for testing. The visualization of the LV area (indicated by a red
arrow), consisting of original images, contours, and mesh surface plots, is presented in Fig. 3.

Figure 3: Sunnybrook data visualization, representing original images (first column), contours (second
column) and mesh surfaces (third column)

3.2 Analytical Framework for Detection Model

The proposed general architecture for the detection of LV in cardiac short-axis MRI images is
shown in Fig. 4. The model has three main components: feature extraction layers, a region proposal
network, and classification and regression layers. The feature extraction layers are composed of
convolution layers, pooling layers, and rectified linear unit activation function (ReLU) layers, where
filters are trained to extract relevant features in the images. The RPN is used in the convolution layers’
final feature map to determine the existence of the LV and anticipate its bounding box. The RPN-
proposed regions are then fed into fully connected neural networks to predict LV class (classification)
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and bounding boxes (regression) in the last section. Tab. 1 describes the network’s architecture layers,
including activation filters and learnable parameters.

Figure 4: Overall architecture of the proposed network for left ventricle detection

Table 1: Layers’ architecture of the proposed network for LV detection

Layer number Layer type Activations Learnable Stride Padding

1 Image input 256 × 256 × 1 – – –
2 Convolution 256 × 256 × 32 Weight

3 × 3 × 1 × 32
1 Same

Bias 1 × 1 × 32
3 Max pooling 128 × 128 × 32 – 2 Same
4 ReLU 128 × 128 × 32 – – –
5 Convolution 128 × 128 × 32 Weight

3 × 3 × 32 × 32
1 1

Bias 1 × 1 × 32
6 ReLU 128 × 128 × 32 – – –
7 Convolution 258 × 258 × 32 Weight

3 × 3 × 32 × 32
1 1

Bias 1 × 1 × 32
8 ReLU 128 × 128 × 32 –
9 Convolution 128 × 128 × 26 Weight

1 × 1 × 32 × 26
1 0

Bias 1 × 1 × 26
10 Convolution 128 × 128 × 52 – 1 0

(Continued)
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Table 1: Continued
Layer number Layer type Activations Learnable Stride Padding

11 Box regression
output

– – – –

12 Region proposal 1 × 5 – – –
13 ROI max pooling 15 × 15 × 32 – – –
14 RPN softmax 16384 × 13 × 2 – – –
15 RPN classification

output
– – – –

16 Fully connected 1 × 1 × 64 Weight 64 × 7200 – –
Bias 64 × 1

17 ReLU 1 × 1 × 64 – – –
18 Fully connected 1 × 1 × 4 Weight 4 × 64 – –

Bias 4 × 1
19 Fully connected 1 × 1 × 2 Weight 2 × 64 – –

Bias 2 × 1

3.3 Layers of Region Proposal Network

The RPN consists of a convolution layer, an RPN softmax layer, an RPN classification layer, and
an RPN box regression layer, which generates a region proposal of the LV based on the abjectness score
of the input image. Compared to the selective search algorithm for generating region proposals in R-
CNN and Fast R-CNN modules, the region proposals generated by the RPN network can be trained
end-to-end to detect the LV with better and faster-detected regions. The RPN employs the neural
network attention concept to direct the Fast R-CNN module to the location of the LV in the image.
A sliding window traverses the features map to generate a candidate region proposal; each proposal
is parametrized according to a reference box known as an anchor box, typically centered at a sliding
window with dimensions of 256-d. The number of anchors (K) is based on two main image parameters:
scale (size) and aspect ratios (width (W )/height (H)), and the total number of anchors in the image
are W × H × K. As shown in Fig. 5, the network is reiterated by feeding two fully connected layers
for bounding box regression and classification, respectively, which determine whether the detected
region is LV or background. Therefore, the estimation of anchor boxes from training data impacts the
detector’s accuracy and efficiency.

3.4 Network Training and Processing Hardware

The network was trained using SGDM as an optimization algorithm with 4 mini-batch sizes, 10
epochs, and a 0.001 learning rate. The overlap ranges for the trained detector are set in three ranges,
as explained in Eq. (1). The loss function to train the RPN algorithm is defined in Eq. (2).

oU score =

⎧⎪⎨
⎪⎩

Positive , 0.7 ≤ IoU ≤ 1
Negative , 0 ≤ IoU ≤ 0.3
Not Negative/Positive, 0.3 < IoU < 0.7

(1)
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L ({pi} , {ti}) = 1
Ncls
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i

Lcls

(
pi, p∗

i

) + λ
1

Nreg

∑
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p∗
i

(
pi, p∗

i

)
(2)

where i represents the index of anchor, p represents the probability of being an object or not, t is
a vector represents predicted bounding box coordinates, ∗ represents ground truth box, Ncls and Nreg

are the normalization for classification and regression, respectively, and λ is to scale classifier and
regressor on the same level.

Figure 5: Working principle of RPN

3.5 Evaluation Metrics

The accuracy, precision, recall, and boundary F1 score were used to evaluate the proposed
network’s performance of the LV detection, as shown in the following equations:

Accuracy = TP + TN
TP + TN + FP + FN

(3)

Precision = TP
TP + FP

(4)

Recall = TP
TP + FN

(5)

Boundary F1 = 2 ∗ P ∗ R
P + R

(6)

where TP (true positive) represents LV region that is correctly predicted as LV; TN (true negative)
represents background area that is correctly detected as background; FP (false positive) represents
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background region that is incorrectly detected as LV; and FN (false negative) represents LV region
that is incorrectly detected as background.

4 Results and Discussion

The proposed network was trained on labelled short-axis MRI images to detect the LV area. Three
optimization algorithms were used to compare the performance of the trained networks, as shown
in Tab. 2. The RPN accuracy for SGDM is lower compared to the other two solvers. However, it
gained the highest accuracy during the testing phase. The RPN accuracies in the testing phase were
98.05%, 99.02% and 99.41% for SGDM, Adam, and RMSProp, respectively. In terms of mini-batch
loss, SGDM achieved a value of 0.57, which is the lowest among all. The values of mini-batch RMSE
for both SGDM and RMSProp were 0.05 and 0.07 for Adam; and RPN mini-batch RMSE values
were 0.76, 0.67, and 0.65 for SGDM, Adam, and RMSProp, respectively. Thus, SGDM approach
was selected as the optimization algorithm with a 0.001 learning rate and four training batches. The
candidate box IOU of the RPN was settled as positive when 0.7 ≤ IoU ≤ 1, negative when 0 ≤
IoU ≤ 0.3, and not negative nor positive when 0.3 < IoU < 0.7.

Table 2: Performance evaluation of three optimization algorithms in network training

Optimization
method

Mini-batch loss Mini-batch RMSE RPN mini-batch
RMSE

RPN mini-batch
accuracy %

SGDM 0.57 0.05 0.76 98.05
Adam 0.89 0.07 0.67 99.02
RMSProp 0.82 0.05 0.65 99.41

Based on the selected hyper-parameters in the training option, the training performance of the
proposed network was efficient. Fig. 6 shows the training performance of the network; the training
accuracy started with high values because the model was re-trained utilizing transfer learning to detect
LV area. The training loss curve for regression and classification parts is also shown there. It can be
observed that the loss values reduce steadily as the number of iterations increases, indicating that
the network eventually adapts to the region proposal transformation with a superior performance
of candidate anchors in classification and regression. For anchor boxes estimation, visualization of
the labelled box is an initial step for understanding the range of LV sizes in the datasets based on
box area and aspect ratio, such as width and height, as shown in Fig. 7 (left). Because the LV area is
variable in size, manually selecting anchor boxes is time-consuming. Therefore, clustering algorithms
that can group similar boxes based on meaningful metrics are required. The outcomes of anchor box
estimation based on intersection over union (IoU) are depicted in Fig. 7 (right). The mean IoU is
0.95, which is greater than 0.5, ensuring that the overlap between anchor and boxes in training data is
good. Although an increasing number of anchors can enhance the mean IoU, applying more anchors
for object detection causes overfitting and increases the computational cost. As a result, four anchors
were selected and used in the network training with satisfactory speed and accuracy.
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Figure 6: The training performance the proposed network

Figure 7: The plot for group of objects that have same size and shape in MRI image (left), and anchor
boxes estimation (right)

In order to investigate the efficacy of the proposed model on various subjects, ten distinct subjects
from the testing dataset were applied during the testing phase. The test results were evaluated using
the overlap ratio index, which achieved efficient detection of the LV from cardiac MRI images using
the labelled images as a reference, as in Eq. (7).
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Overlap Ratio = ground truth box ∩ predicted box
ground truth box ∪ predicted box

(7)

In terms of LV detection, the proposed network outperforms the R-CNN network. Tab. 3 shows
the performance evaluation for the proposed model utilizing a cardiac cycle of 20 slices at end-diastolic
and end-end systolic phases. Fig. 8 depicts the proposed network’s visual detection results, with yellow
rectangles representing ground truth (labels) and red rectangles representing outcomes of the proposed
detection model. The greater the overlapping, the better the network performs. The results reveal that
the suggested technique can recognize the LV area and myocardium with high accuracy thanks to the
Faster R-CNN that combines candidate region proposals, classification, and regression algorithms.

Table 3: Overlap ratio of faster R-CNN and R-CNN at end-diastolic and end-systolic phases

End-diastolic phase End-systolic phase

Image sequence Overlap ratio Image sequence Overlap ratio

Faster R-CNN R-CNN Faster R-CNN R-CNN

1 0.7637 0.6365 11 0.8421 0.8177
2 0.7634 0.6857 12 0.9249 0.6709
3 0.7415 0.6520 13 0.8932 0.7495
4 0.8289 0.7070 14 0.7755 NA
5 0.8538 0.6602 15 0.7811 0.8764
6 0.8157 0.6323 16 0.8243 0.7764
7 0.8441 0.6895 17 0.8234 0.8502
8 0.8841 0.7852 18 0.8915 0.8333
9 0.8039 0.8628 19 0.8618 0.7894
10 0.7702 0.8022 20 0.8899 0.7353

The results of the proposed network achieved efficient LV detection with accurate detection at
various shapes and sizes of the LV during end-diastolic and end-systolic phases. The detection method
has an adaptability to different individuals. Hence, it can achieve a more efficient performance utilizing
RPN than R-CNN. Based on the detection of LV using the proposed network, the LV region can be
cropped for segmentation and classification with less computational cost and time.

Based on the evaluation of metrics including accuracy, precision, recall, and F1 score, this
method significantly improved over the conventional R-CNN. The main reason is that the applied
RPN generates anchors that can discriminate the LV area in MRI images and significantly produces
candidate boxes around the LV during the training and testing phases. These surrounding candidate
boxes are suppressed to some extent to avoid false detection of LV due to the availability of similar
regions to the LV in MRI images. In the Sunnybrook dataset, the detection model generates a
robust detection method for cardiac short-axis MRI images. Fig. 9 depicts the proposed network’s
performance for ten subjects. Accuracy, recall, precision, and F1-score range from 0.80 to 0.95, 0.89
to 1, 0.84 to 1, and 0.88 to 0.97, respectively. Tab. 4 compares the network’s overall performance to
traditional R-CNN performance using the same dataset. Since it generates anchors to the entire feature
map of the images, the proposed Faster R-CNN has effective performance while simultaneously
avoiding false detection. The adaptive anchors can be adapted to LV areas of varying scales, increasing
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the relevancy of candidate anchors surrounding the LV and improving the network’s capacity to
distinguish tough negative samples.

Figure 8: Detection results of the proposed network in different slices, the yellow rectangles represent
ground truth (labels) and red ones represent results of the proposed detection model
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Figure 9: Boxplot for the network’s evaluation metrics of 10 different subjects
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Table 4: Overall evaluation metrics of faster R-CNN compared with R-CNN

Model Accuracy Recall Precision F1 score

Faster R-CNN 0.91 0.9524 0.9412 0.9467
R-CNN 0.81 0.8904 0.8553 0.8725

The application of LV detection using Faster R-CNN can be used before classification and
segmentation of the LV by only localizing and cropping the LV region. This detection decreases the
size of input images with less complexity, resulting in less required computational cost and faster time.
Fig. 10 shows the original image, contour and mesh surface plots for an output image by Faster RCNN,
representing the LV area in a red rectangle. It is clearly shown that the extracted images have simpler
structures than original images.

Figure 10: Visualization of detected LV area by the proposed model, red rectangle represents LV region
and orange one represents right ventricle region

Compared to R-CNN, the proposed model provides significant detection in most MRI images
in the Sunnybrook data set, with a practical ability to avoid false detection and missed detection of
the LV region. However, due to some factors, such as inhomogeneity in LV and unavoidable problems
(intensities of cardiac MRI images, low-resolution images, noisy images, and redundant images), it is
inevitable that false rate detection will still occur, as shown in Fig. 11.

Figure 11: False detection results of the proposed network
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4.1 Comparison with Recent Methods

The performance investigation of the proposed network was based on a comparison with various
recent methods. Tab. 5 summarizes the models’ performance evaluations. Wang et al. [14] proposed a
CNN model for LV detection by combining discriminative dictionary learning and sequence tracking.
They compared their proposed model with Faster R-CNN [16], SSD [18], and Yolov3 [43] to investigate
the model’s performance. Niu et al. [31] developed a hybrid model to detect myocardium from cardiac
MRI images by merging region proposal with deep feature classification and regression. Then, an
SSAE was adopted to represent the regions by learning a discriminative feature. Based on these
comparisons, the proposed model for LV detection outperformed other models with values of 0.91,
0.95, 0.94, and 0.95 for accuracy, recall, precision, and F1 score, respectively.

Table 5: Performance comparison between the proposed model and other state-of-the-art models in
automatic LV detection

Model Accuracy Recall Precision F1 score

Wang et al. [14] – 0.92 0.91 0.95
Faster RCNN [16] – 0.84 0.91 0.89
SSD [18] – 0.60 0.82 0.74
Yolov3 [43] – 0.77 0.86 0.87
Niu et al. [31] 0.90 0.94 0.92 0.92
Proposed method 0.91 0.95 0.94 0.95

5 Conclusion

The left ventricle detection from cardiac MRI images is an essential prior step for image
segmentation and registration in cardiac disease diagnosis. This study proposed an efficient CNN
network for LV detection utilizing Faster-RCNN with a region proposal network. The network was
trained using short-axis MRI images with the corresponding bounding boxes around the LV area.
Adaptive anchors in a region proposal network locate the LV during the testing phase; the anchors
can identify the candidate region based on scale and aspect ratio. This new approach outperformed the
former in all evaluation metrics compared to traditional R-CNN. The model can effectively learn from
annotated volumetric images (ground-truth) without requiring much training data. The experimental
findings demonstrated the proposed network’s efficacy in various evaluation criteria such as accuracy,
recall, precision, and boundary F1 score. Extending the network for three-dimensional detection of
LV from cardiac MRI images is suggested for future investigation.
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