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Abstract: In terms of security and privacy, mobile ad-hoc network (MANET)
continues to be in demand for additional debate and development. As more
MANET applications become data-oriented, implementing a secure and reli-
able data transfer protocol becomes a major concern in the architecture. How-
ever, MANET’s lack of infrastructure, unpredictable topology, and restricted
resources, as well as the lack of a previously permitted trust relationship
among connected nodes, contribute to the attack detection burden. A novel
detection approach is presented in this paper to classify passive and active
black-hole attacks. The proposed approach is based on the dipper throated
optimization (DTO) algorithm, which presents a plausible path out of mul-
tiple paths for statistics transmission to boost MANETS’ quality of service.
A group of selected packet features will then be weighed by the DTO-based
multi-layer perceptron (DTO-MLP), and these features are collected from
nodes using the Low Energy Adaptive Clustering Hierarchical (LEACH)
clustering technique. MLP is a powerful classifier and the DTO weight
optimization method has a significant impact on improving the classification
process by strengthening the weights of key features while suppressing the
weights of minor features. This hybrid method is primarily designed to combat
active black-hole assaults. Using the LEACH clustering phase, however, can
also detect passive black-hole attacks. The effect of mobility variation on
detection error and routing overhead is explored and evaluated using the
suggested approach. For diverse mobility situations, the results demonstrate
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up to 97% detection accuracy and faster execution time. Furthermore, the
suggested approach uses an adjustable threshold value to make a correct
conclusion regarding whether a node is malicious or benign.

Keywords: Black-hole attack; mobile ad-hoc network; optimization; dipper
throated optimization

1 Introduction

Recently, MANET becomes increasingly important for exchanging and extracting essential
information for mobile network. It has a wide range of applications, from mobile sensing to military
communications in battlegrounds, to name a few. A MANET is often characterized as a topology
that changes over time. An ad-hoc network is made up of a group of distributed and decentralized
infrastructures-less autonomous nodes with limited resources and broadcast channel sharing. Each
node serves as both router and host, allowing non-neighboring nodes to be connected. These charac-
teristics compel nodes to work together in data routing and forwarding. In contrast to wired networks,
the behavior of nodes during data routing is unexpected and unknown, making MANET more
vulnerable to various assaults. As a result, MANET security remains a work in progress, with several
studies suggesting various countermeasures against a variety of attacks, including spying, distributed
DoS (DDoS), denial of service (DoS), black-hole attack, and writing table overflow [1]. Sinking,
spoofing, fabrication, and flushing are four different forms of assaults [2,3]. Sinking is the most
malevolent node behavior, which occurs when one or more nodes in a network refuse to participate in
routing operations and lose packets. A DoS attack is launched against sinking behavior [4]. Various
detection and preventive approaches were developed and addressed in relation to this assault. A good
sinking detection system, on the other hand, should be able to tell the difference between benign
and malicious sinking because the dropping of benign packets in MANET can occur for a variety
of reasons, including node mobility, heavy traffic, high network density and fading circumstances.
Because of the node’s heterogeneity and dynamic nature using traditional intrusion detection system
(IDS) for MANET security poses several issues. Network congestion and routing delays also have an
impact. The performance of IDS is challenged due to the randomization of transmission intervals and
dynamic routing. As a result, in this situation, an intelligent routing algorithm is strongly advised.
Sinker node activity may be identified by two characteristics: attack duration and packet dropping
ratio (PDR). Since then, the intermittent sinking node behavior has been quite perplexing, especially
when combined with benign packet dropping. After assessing these factors, a smart routing algorithm
should be capable of determining the optimal path from the source to the destination and identify the
sinker node.

In this paper, we present a novel optimization approach based on dipper throated optimization
(DTO) to improve black-hole attack detection while reducing computation and time complexity.
The originality of this work lies in the optimization of the parametric weight adjustment, which
considerably reduces the computing cost and detection time when using machine learning algorithms.
Furthermore, the proposed approach allows for a great deal of flexibility when it comes to altering
the threshold value to discriminate between the benign sinker and malicious nodes.

2 Literature Review

Some of the most often used remedies to ad hoc networks and black-hole attack in MANETSs
are addressed in this section. Recent developments in this field have resulted in a slew of research [1]
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that has yielded a slew of effective models and routing protocols. Securing the linkages in the network
design, particularly over unsecured means, is one of the most crucial difficulties. Due to the restricted
capacity of a node, earlier research has found that traditional security routines, including substantial
calculations and communications overhead, are ineffective in MANETs [5-10]. As a result, a control
mechanism should be put in place to ensure that authorized nodes only have network access. Secure
Ad-hoc on-demand distance vector (SAODV) is among the most frequent detection techniques [10].
These techniques must include a security component based on a complicated encryption/decryption
algorithm. Despite providing enough routing security to identify black-hole attacks, they consume
much resources in the process of feigning a strong collaborative interaction among network nodes.
Authors in [11] added a redundant routing protocol to validate whether a node is malicious or safe.
The source node must unicast and get a ping to three different routes to the destination in order to
use this strategy. The source node might validate each node and obtain a safe path to the destination
after examining the responses to ping queries. This approach does not involve any additional malicious
node processing, but it does necessitate a longer transmission latency.

A large portion of current MANET research is devoted to enhancing routing protocols based on
various processes and establishing routing decisions on a range of constraints [12—16]. Furthermore,
it has been demonstrated that making minor changes and adding new metrics to the operation and
structure of routing protocols can enhance the security and performance of real-time applications
[4]. One of these methods is the fuzzy inference system, which the authors built and compared the
performance of AODV reactive routing protocol with and without it in [13], using a set of variables
such as entropy function’s information gain. Authors in [5] recently explored support vector machine
(SVM) and classification trees techniques for identifying intrusions. The concepts of neuromorphic
rules are used in developing another IDS model, which uses symbols rather than numeric values to
determine each attack by indeterminacy, non-membership, and membership in a hybrid framework
of genetic algorithms (GA) and self-organized features maps (SOFM) [14]. When employing this
approach, the load of a network administrator, the required computations, and the communication
overhead of the system remain major obstacles. Authors in [12] suggested a WOA-based intrusion
detection system as well as a weak classification learner (decision stumps). In addition, [15] developed
a method for identifying the black-hole attack by presuming the first route reply is from the rogue node
and canceling the transaction. Despite the fact that this technology decreases data loss and improves
speed, distinguishing between benign and malicious packet sinking is hard to achieve.

Despite the fact that many academics have concentrated on identifying passive black-holes,
active black-hole assaults have received little attention. To identify black-hole attacks, authors in
[16] introduced the first modified AODYV routing protocol backed by SVM model. Their proposed
methodology included a contingency table for each active transmission to keep track of the size
of the packets transmitted. The transmitted packets from a source to destination nodes with and
without black-hole from a basic network of seven nodes were monitored using a density curve with
respect to time. Low peaks in the density curve were discovered to signal the discovery of one rogue
node. However, additional data must be collected in order to identify the node with a black-hole and
build comprehensive behavior proofs that include information from both data traffic and forwarding
channels, as well as more evidence, in order to obtain a more accurate prediction result [17-19]. To
improve the accuracy of SVM, the authors in [20] presented a particle swarm augmented SVM (PSO-
SVM). As a result, authors in [21] proposed combining the Ant colony maximum and minimum
optimization versions into SVM (i.e., ACO-SVM) based on the AODYV routing protocol to identify
only black-hole attacks of type passive in MANET. In an intrusion detection system, PSO-SVM
was also used by the authors in [22] to identify packet dropping by passive black-holes. Machine
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learning approaches are proposed by the authors in [23] for discriminating between normal and
attacked network activity. In the feature selection process, these approaches were used: Packet Delivery
Ratio, packet dropping, and end-to-end latency. As a result, machine learner settings have an impact
on classification performance. Furthermore, because representative data differs not only from one
problem to the next but also from one time to the next, the data collection procedure is critical. As
a result, more representative data from biased data may be used to build a more effective machine
learning model for a networking problem.

3 Proposed Approach

Active and passive black-hole attacks are the two most common forms of black-hole attacks. A
large number of network nodes can be deceived when a routing message with extremely high power
is broadcasted by a single malicious node. This process is known as a passive black-hole attack. It
reroutes traffic and drops all packets as it passes through itself. As a result, this type of black-hole
attack exclusively targets a network’s architecture rather than introducing more fake routing signals
into the network [24-30]. By receiving an instantaneous Route Reply Packet (RREP) packet, the
malicious node persuades the entire adjacent node to submit their packets early in active black-hole
attacks. The active black-hole node instantly sends a bogus RREP to the source node after receiving
a Route Request Packet (RREQ), claiming to have a one-hop path to the destination [31]. Active and
passive black-hole attacks are illustrated in Fig. 1. Data packets are usually delivered by source nodes
after receiving the first RREP packet, and the remaining RR EP packets will be dropped, as is typical of
the AODV routing protocol. As a result, these unfiltered nodes attempt to utilize this malicious node as
the next step in their routing route. They are, however, a long way from the target node, and obtaining
a transaction requires numerous hops. Additional packets can be absorbed by the active black-hole
node from other nodes and corrupting the routing information by implementing this scenario. As a
result, the active black-hole node disrupts regular communication and significantly increases network
demand. Consequently, it is far more challenging to detect or avoid than the passive black-hole [32],
and it has far more undesirable effects on the network.

The proposed approach, on the other hand, is based on combining the benefits of both reactive
and proactive routing strategies, as well as using an optimization algorithm to improve the accuracy of
detecting the black-hole attacks of both types. The detection method is based on a careful examination
of a set of key features that have been shown to be effective markers of active harmful conduct,
as opposed to other factors that might be noisy data that detract from the detection decision’s
accuracy. Furthermore, using the dipper throated optimization (DTO) algorithm is used to optimize
the parameter of a multi-layer perceptron network throughout the learning process for effective
monitoring and detection of active black-holes attacks. A set of cluster head nodes is picked on a
regular basis to collaborate in data aggregation and to develop exchangeable routing reply tables of
trustworthy nodes in order to gather these properties. Based on the LEACH dynamic cluster head
(CH) selection approach [33-35]. During the MANET lifetime, these clusters are regularly selected.
Cluster-based routing has been shown to be an effective routing system for reducing communications,
conserving node energy, and achieving load balance. Because of its changing structure, MANET
presents additional routing issues. The LEACH approach, on the other hand, is a self-organized and
self-adaptive cluster-based routing protocol that offers greater flexibility by inserting or removing
nodes from clusters in each cycle. Every cluster consists of sensor nodes with the highest residual
energy relative to other nodes, which are designated as CH, and the remaining nodes are designated as
cluster members (CM). For the purpose of fulfilling the request, all nodes collaborate [36]. According
to the previously established passive black-hole node behavior, the LEACH algorithm can identify
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passive black-hole attacks since the CH that has unusually high power and does not transmit data all
of the time is tagged as a black-hole one, and its chances of being picked are much lowered. Clustering
occurs at regular intervals during the lifespan of the MANET, and it occurs in two stages: cluster
setup and steady-state. The CH is selected during the setup phase, and data is detected during the
steady-state phase. To decrease energy consumption, the steady-state stage has a substantially longer
lifespan than the setup stage. Every round, CH is chosen using a mathematical formula that takes into
account the total number of nodes in the cluster, the round number, and the CH probability (p) of each
node. The workload of CH’s is spread across all nodes over the lifespan of MANET by rotating their
responsibilities, i.e., CH of the first round cannot be repeated in the future 1/p rounds [37]. This helps
to balance the nodes’ consumption of energy. After a specified period of time, the networks repeat the
two processes to begin a new round. The CH is in charge of collecting information from the CMs once
the clusters have formed. To avoid redundancy, the cluster head collects data and aggregates it. Each
CH sends an advertising message to the other nodes, and each node chooses its CH depending on the
signal strength of the message it received.

False RREP
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Figure 1: Black-hole attacks illustration; (a) Black-hole of type passive (b) Black-hole of type active

Finally, by sending a join message, CM are joined to the specified CH. The steady-state phase
begins once the setup phase is completed and the data from each CH’s CMs is gathered. By monitoring
the delay variance of incoming packets entering each cluster during the data aggregation process at
CHs, dropping behavior may be detected (called jitter value). This delay might be caused by benign
factors like poor queuing, network congestion, configuration issues, or mobility, or by malicious node
action. Each CH’s job is to compare the gathered data to the underlying reason for the delay.

In each round, the proposed scheme works through two concatenating phases: (i) Data aggrega-
tion, which simulates the reactive protocol’s process of collecting neighbors’ node features, and (ii)
Identification of malicious nodes, which analyzes the collected data using machine learning models.
Furthermore, the multi-layer perceptron (MLP) machine learning classifier is adopted to classify
the collected features. To achieve the best performance of MLP, the DTO optimization algorithm is
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employed to optimize its connection weights. DTO plays a crucial role in enhancing the performance of
MLP by suppressing or strengthening the weights of the neural network. MLP is a nonlinear machine
learning technique that is particularly useful in the detection phase since it is a stable, robust classifier
with high detection accuracy [38]. Throughout the lifespan of the MANET, the proposed approach
will be performed at regular intervals.

3.1 Data Aggregation
Based on the estimated jitter value, this phase starts on occasion at CH of each suspicious cluster.

Step 1: Within the cluster, the CH node n, transmits RREQ packets to its neighbors (where
k=12, ..., K;where K = suspicious clusters count). During the path discovery phase, the most
likely path is selected from a list of many options. A multitude of pathways is possible for sending
records from source to destination. It is critical to choose a unique path that transmits data effectively.
Route request agent improves the routing table with statistics about pheromone value, hop count, and
bandwidth when wandering to the destination. When the route request agent arrives at its destination,
it is changed to route reply agent and forwarded in the form of acknowledgment closer to the original
source. The route reply agent will follow the same path as the route request agent it is replying to.

Step 2: When RREQ packets are retrieved by a neighbor node, an RREP packet is generated as
a response if it knows the destination. However, if the destination is unknown, the RREQ packets are
multicasted to its neighbors to continue the route discovery process.

Step 3: Many information is contained in RREQ and RREP packets such as modified neighbors
with a changed hop count, hop count, and other information. Sinker node always promotes the
shortest path as the one with the smallest number of hops.

Step 4: A route reply table (RREPT) is built for each CH node 7, that contains critical features
related to its neighbor node n; (i = I, 2, ..., I; where I is the count of CM in each cluster). The
following are the properties:

1. The identification number of the destination node is D;,.

ii. The RRE sent time is denoted by the initiation time (/7).

iii. The time at which the RREP was received is referred to as waiting time (WT).
iv. The end-to-end delay is measured by the difference between WT and IT.

iv. The identification number of the next-hop node is denoted by (NVH).

v. To reach the destination, the hops count (HC) is used.

vi. Each neighbor node has a history of packet delivery rate referred to as (PDR).
vii. Within the cluster, each node has residual energy.

3.2 Identification of Malicious Nodes

The data analysis step begins when the RREPT has been finished. This phase examines the above-
mentioned RREP properties in order to make a determination on whether nodes are malicious or
benign.

Step 1: There are N observations taken during an interval (i = I, 2, ..., T) under normal
conditions and based on prior records, i.e., previous RREPT, for each feature F; (j=1, 2, ..., J; where
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J is the total number of features). For each feature, the mean value c¢; and the standard deviation 8
values as measured as follow.

&
CFj = ﬁ ZFji (1)
i=1

S (=)

2

Step 2: Calculate the Euclidean distance d; and the normalized feature value for each new item,
as follows:
— F; — minF,

= ——— 3)

maxF, — minF,

4 (Foe) = |2 (Fo-cr) @

i=1

The basis of parametric sampled data used in machine learners may be calculated using the
formulae above.

Step 3: Using the sampled pairs (F;, F;) as input, apply DTO-MLP. Since the DTO module for
weights adjustment is used, the agents are working in a semi-parametric manner. The feature weights
are set to the same value as the original feature weights.

1
W () = j (5)

The estimated MLP classifier error value ¢ is used to repeatedly update the new weights W, of
the sampled pairs (F;;, F;) and the previous weights set I, as follows:

B W, exp (— o, Fyh, (F/))

Wi = Z (6)
where:

a,:%log(lga) @)
and

h, = arg min,¢; = Zil W, (i) ®)

The entire number of weights is represented by the number N. The stps of the proposed approach
are shown in Algorithm 1.

Algorithm 1: The steps of the proposed DTO-MLP based approach

1: Initialize MANET
2: While MANET lifetime
3: Initialize DTO-MLP

(Continued)
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Algorithm 1: Continued
4: Procedure DTO-MLP
5: Select an initial point
Iteration (t=1)
Pheromones stretch

6: Do until reaching stopping criterion
7 For each bird
8: Load locations and velocities
9: Apply the Local Search
10: Save the solution if it is the best one
11: Update MLP weights:
12: Loop
13: Return the best weights
% Apply LEACH algorithm
14: For c =1, K:
15: Compute jitter(c)
16: If Jitter(c) <= stability threshold Do
%Phasel: Data Aggregation
17: Repeat n;, <I do
18: Send RREQ
19: Receive RREP
20: Construct RREPT
21: Until all nodes reply
%Phase 2: Identification of Malicious Nodes
22: For n; <I do
23: Forj < J do
24. Compute <j, <j, F;
25: Apply DTO+MLP
26: Apply Phase 2 Step 3
27: If detection = true
28: Mark (n;) as suspicious node
29: End if
30: End for
31: End for

3.3 Dipper Throated Optimization Algorithm

The Dipper-Throated Optimization (DTO) approach is based on the idea of a flock of birds
swimming about hunting for food. The position (P) and velocities (V) of the birds may be represented
using the matrices below. The binary DTO is utilized to choose features, as previously stated.
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The continuous DTO, on the other hand, is utilized to improve the classification neural network’s
parameters [39].

P1,1 Pl.z P1,3 Pl,d
Pz.1 Pz,z P2,3 Pz,d

P = P3.1 P3,2 P3,3 P3,d (9)
Pm,l Pm,2 Pm.3 Pm,d
V1,1 Vl,z V1,3 Vl,d
Vz,l Vz,z V2,3 Vz,d

V= V3,1 V3,2 V%} V3,d (10)
Vm,l I/m,2 Vm.3 LI I/m,d

where the i bird in the j” dimension is denoted by P, fori € 1,2,3,...,mandj € 1,2,3,...,d. The

bird’s velocity in the j” dimension fori € 1,2,3,...,mandj € 1,2,3,...,d is referred to as V;,. There

is a uniform distribution of the beginning positions of P;;. For each bird, the values of the fitness

functions f = f, /5, /s, . . . ./, are determined using the array below.

_ﬁ (Pl,lapl,QaP1.3a' . 7P1,d) ]
f2 (P2,I;P2,2:P2,35 ... 5P2.d>

S= fi(Pors Py Prsy o Py ) (11)

_ﬁn (Pm,la Pm,ZJ Pm,39 ... )PI‘I‘I,d)_

The mother bird is the higher value, while each bird’s hunt for food is represented in its fitness
score. The values are sorted ascending, with P, being declared the best answer. Normal birds
are intended to be employed as follower birds, while Pg,, has been dubbed the best solution. The
optimizer’s initial DTO strategy for updating the swimming bird’s location is based on the equations
that update the population’s position and velocity:

PUL) = [P,,m., (i) — 1§1. \K,.P,., (i) — P ()| if R < 9.5 a2
PH+V3i+1) otherwise
V(i+1) = K V(i) 4+ K (P, (i) — P(@)) + K5ty (Pgpes — P(0)) (13)

where P(i) is the average bird position, P, (i) is the best bird position, and V(i 4+ 1) is the bird’s
velocity at iteration i + /. The steps of DTO algorithm are represented by the flowchart shown in
Fig. 2.

4 Experimental Results

NS-2 simulator ver. 2.35 is used to construct a MANET simulation environment on an Intel Core
I5 CPU operating at 2.2 GHz with 8 GB of RAM and Ubuntu 20.04 operating system to test the
proposed appraoch. The simulation was run on a 1500 m x 1500 m rectangular area with randomly
dispersed mobile nodes and a constant bit rate (CBR) traffic source of a communication model. Tab. |
lists all of the MANET settings. The suggested technique is put to the test in terms of detecting black-
hole attacker nodes and overall detection time using various simulated scenarios. The robustness of
the proposed detection technique is tested in these situations, which comprise several mobility modes.
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The simulations in this research are run on various mobility speed situations to analyze and
investigate the network’s performance with and without the attack. The node speeds are set at 5 and
20 m/s, respectively. These nodes also travel in all directions at random. The evaluation metrics used
in assessing the proposed approach are presented in Tab. 2.

Initialize population with random
position, velocity, weight values,
random variables, and R

No

» R<0.5
\ Yes

Update position of the swimming
bird using Eq. (4)

Update position and velocity of the
flying bird using Eq. (4) and Eq. (5)

v

—| Evaluate the fitness of each bird

v
Compare the fitness evaluation with the
population's overall previous best to
obtain the global best solution

¥

Update weight values, random
variables, and R

t

Stopping
Criterion
met?

No

Figure 2: The algorithmic steps of the dipper throated optimization

Table 1: Simulation parameters of MANET

Parameter Value

Routing protocol AODV/LEACH
Simulation time 10s

Pause time 1.0s

Packet size 1000 Bytes/packet

(Continued)
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Table 1: Continued

Parameter Value

Scale of network 1500 m x 1500 m
MAC protocol IEEE 802.11
MAC Type 802.11

Data Rate 0.1 Mbps

Node velocity 5, 20 m/sec

Node movement Random

Node placement Random
Antenna Model Omni-Directional
Application traffic CBR

No. of attackers 1/cluster

No. of source 1/cluster
Observation parameters Throughput, end-to-end delay, Jitter
No. of mobile nodes 33 [3 clusters]

Table 2: Evaluation metrics

Metrics Equation
(TN 4+ TP)
Accuracy =
(TN + TP+ FN + FP)
TP
Recal =—
(TP + FN)
. TP
Precision = —
(TP+ FP)
e TN
Specificity =—
(TP+ FP)
(Recall % Precision)
F1-score =

¥ (Recall + Precision)

On the other hand, to select the machine learning algorithm that can properly identify the network
attacks, an experiment is conducted to compare the performance of three classifiers namely, Naive
bayes, decision tree, and MLP. The comparison results are presented in Tab. 3. These results show
high performance achieved by MLP classifier. Therefore, we adopted this classifier for the conducted
experiments.
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Table 3: Comparing the performance of three machine learning models

Naive Bayes Decision-tree MLP

Accuracy 0.886075949 0.929133858 0.948275862
Sensitivity (TRP) 0.925925926 0.925925926 0.957446809
Specificity (TNP) 0.8 0.931506849 0.909090909
Pvalue (PPV) 0.909090909 0.909090909 0.97826087
Nvalue (NPV) 0.833333333 0.944444444 0.833333333
Fscor 0.917431193 0.917431193 0.967741935
Time (S) 15.6 13.2 9.8

In addition, the performance of MLP is boosted by optimizing the parameter of it using DTO
algorithm. To show the superiority of this optimization, we analyzed and compared the results
achieved by the optimized MLP using DTO and the optimization using four other optimizers namely,
grey wolf optimizer (GWO), particle swarm optimizer (PSO), genetic algorithm (GA), and whale
optimization algorithm (WOA). The results of this comparison are presented in Tab. 4. As shown in the
table, the highest performance is achieved by the proposed DTO + MLP approach. The classification
accuracy achieved is (97.5%) using the proposed approach, which is higher than the accuracy achieved
by all other approaches.

Table 4: Comparison between the performance of five optimization algorithms

DTO + MLP GWO + MLP PSO+ MLP GA +MLP WOA + MLP

Accurcy 0.975 0.96875 0.966666667 0.965517 0.956522
Sensitivity (TRP) 0.977653631 0.971223022 0.968992248  0.967742 0.957447
Specificity (TNP) 0.952380952 0.952380952 0.952380952  0.952381 0.952381
Pvalue (PPV) 0.994318182 0.992647059 0.992063492  0.991736 0.989011
Nvalue (NPV) 0.833333333 0.833333333 0.833333333  0.833333 0.833333
F1-Score 0.985915493 0.981818182 0.980392157  0.979592 0.972973
Time 2.8 4.5 5.7 6.3 7.5

To highlight the effectiveness of the proposed approach, a statistical analysis is performed on
the results achieved by the proposed approach and the other four approaches, and the results are
recorded in Tab. 5. As presented in the table, all the criteria of the statistical analysis using the proposed
approach outperform those of the other approaches.

On the other hand, the statistical difference between the proposed DTO + MLP and the other
competing algorithms is explored. This analysis is carried out using a one-way analysis of variance
(ANOVA) test. The major hypotheses in this test are the null and alternative hypotheses. For the null
hypothesis HO (i.e., DTO + MLP = GWO + MLP = PSO + MLP = GA + MLP = WOA + MLP),
the algorithm’s mean values are made equal. Under the alternative hypothesis, H1, the algorithms’
means are not similar. The results of the ANOVA test are presented in Tab. 6.
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Table 5: Statistical analysis of the performance of five optimization algorithms

DTO + MLP GWO + MLP PSO+ MLP GA+ MLP WOA + MLP

Number of values 14 14 14 14 14
Minimum 0.975 0.9488 0.9467 0.9455 0.9365
Median 0.975 0.9688 0.9667 0.9655 0.9565
Maximum 0.985 0.9688 0.9667 0.9655 0.9565
Mean 0.976 0.9666 0.9645 0.9634 0.9544
Std. Error of Mean 0.000749 0.001547 0.001547 0.001547 0.001547
Std. Deviation 0.002801 0.005789 0.005789 0.005789 0.005789
25% Percentile 0.975 0.9688 0.9667 0.9655 0.9565
75% Percentile 0.975 0.9688 0.9667 0.9655 0.9565

Table 6: One way analysis of variance (ANOVA) test

SS DF MS F (DFn, DFd) P value
Treatment  0.00335 4 0.000837 F (4,65 =29.50 P <0.0001
Residual 0.001845 65 2.84E-05
Total 0.005194 69

The statistical difference between every two algorithms is used to determine the p-values between
the proposed DTO + MLP method and the other competing algorithms, demonstrating that the
recommended technique is considerably different. This study used Wilcoxon’s rank-sum test. The two
basic hypotheses in this test are the null and alternative hypotheses. For the null hypothesis represented
by HO, DTO + MLP = GWO + MLP, DTO + MLP = PSO + MLP, DTO + MLP = GA + MLP,
and DTO + MLP = WOA + MLP. Under the alternative hypothesis, HI, the algorithms’ means
aren’t similar. The Wilcoxon rank-sum test’s findings are shown in Tab. 7. As indicated in the table,
the p-values of the proposed algorithm and the other algorithms are less than 0.05, demonstrating the
superiority and statistical significance of the proposed DTO + MLP approach.

Table 7: Wilcoxon signed rank test
DTO + MLP GWO + MLP PSO + MLP GA +MLP WOA + MLP

Theoretical median 0 0 0 0 0
Number of values 14 14 14 14 14
Actual median 0.975 0.9688 0.9667 0.9655 0.9565
Significant (alpha = Yes Yes Yes Yes Yes
0.05)?

(Continued)
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Table 7: Continued

DTO + MLP GWO + MLP PSO + MLP GA +MLP  WOA + MLP

Sum of signed ranks 105 105 105 105 105
(W)

Estimate or exact? Exact Exact Exact Exact Exact
P value (two tailed) 0.0001 0.0001 0.0001 0.0001 0.0001
Sum of negative 0 0 0 0 0
ranks

P value summary kokk sokok Kokok kK Hokok
Sum of positive 105 105 105 105 105
ranks

How big is the

discrepancy?

Discrepancy 0.975 0.9688 0.9667 0.9655 0.9565

Fig. 3 shows a visual depiction of the findings obtained using the proposed method. The residual
and QQ plots are the first two plots. The residual error in these graphs is in the region between —0.02
and 0.01, indicating that the proposed strategy is successful. Furthermore, the QQ plot demonstrates
that the anticipated results match the actual values, emphasizing the superiority of the presented
method. In addition, the last two plots, the heatmap and the area under curve (ROC) plot. These
plots show the superiority and effectiveness of the proposed approach when compared with other
approaches.

Residual plot QQ plot
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(a) Residual plot (b) QQ plot

Figure 3: (Continued)
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Figure 3: Visual representation of the achieved results

5 Conclusions and Future Directions

MANET routing based on clusters has been shown to be more efficient in terms of lifespan
extension, load balancing, and attack resistance of the network. Despite the fact that dealing with
MANET adds to the overhead of detecting attacks, the proposed approach has shown to be effective
in terms of detection accuracy and time. The MLP classifier’s complexity is further reduced by selecting
the best set of transitions weights using the DTO algorithm, resulting in an accurate and quick
detection system. However, because the suggested approach is based primarily on the accuracy of
the data gathered from RREP packets, attacks based on packet modification are not examined in this
paper. Furthermore, the LEACH algorithm can detect a passive black-hole attacks since a CH that
does not transmit data all of the time is tagged as a black-hole one, with a low likelihood of being
picked. However, detecting collaborative sinkholes that work together to create bogus requests might
be difficult (i.e., RREQ and RREP). Multiple cooperating sinkhole nodes will be investigated in the
future to expand this work, and additional attacks will be examined and tried utilizing the suggested
approach.
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