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Abstract: Photovoltaic (PV) boards are a perfect way to create eco-friendly
power from daylight. The defects in the PV panels are caused by various
conditions; such defective PV panels need continuous monitoring. The recent
development of PV panel monitoring systems provides a modest and viable
approach to monitoring and managing the condition of the PV plants. In
general, conventional procedures are used to identify the faulty modules
earlier and to avoid declines in power generation. The existing deep learning
architectures provide the required output to predict the faulty PV panels with
less accuracy and a more time-consuming process. To increase the accuracy
and to reduce the processing time, a new Convolutional Neural Network
(CNN) architecture is required. Hence, in the present work, a new Real-time
Multi Variant Deep learning Model (RMVDM) architecture is proposed, and
it extracts the image features and classifies the defects in PV panels quickly
with high accuracy. The defects that arise in the PV panels are identified by
the CNN based RM VDM using RGB images. The biggest difference between
CNN and its predecessors is that CNN automatically extracts the image fea-
tures without any help from a person. The technique is quantitatively assessed
and compared with existing faulty PV board identification approaches on the
large real-time dataset. The results show that 98% of the accuracy and recall
values in the fault detection and classification process.

Keywords: Photovoltaic panels; deep learning; defect; feature extraction;
RMVDM

1 Introduction

Consumption of electricity is increasing day by day due to population growth and industrial
growth. In this case, the world needs a cost-effective and sustainable energy source. Solar energy
and other renewable energy resources are to be used to solve the energy crisis [1]. As indicated by
the information announced by Solar Power Europe, solar plants are turning out to be increasingly
popular every year. Without a doubt, the world’s solar energy production, which is expected to go
from 99 GW in 2017 to 157 GW in 2022, will depend on PV plants [2]. In such a massive development
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of the PV market, there is an essential need to increase the quality of the monitoring frameworks to
recognize issues and to guarantee that the energy is created with the most extreme productivity. A good
monitoring method is to find out the defects as soon as possible, and at the same time, it should prevent
energy loss when compared to that of other conventional approaches. An investigation was conduct by
a defect detection system to examine the common factors of PV panel failures and also efficiency loss.
Moderate crystal defects in multi-crystalline solar cells and striation rings in monocrystalline solar
cells are examples of manufacturing defects [3]. These defects could be the reason for the inability
of PV panels to function as well as possible. Tab. 1. depicts the types of PV panel defects and their
severity. Fig. 1 shows the variation of cumulative solar installations over countries.

Table 1: Types of PV panel’s defects and their severity

Defects Nature & Severity of Damage References
Broken PV cells The solar cell was damaged while being handled, most [3]

likely during the soldering procedure.
Scratches on the glass In many situations, small scratches and large scratches [4,5]

happen at the manufacturing unit due to mishandling
of the PV module. It can degrade the yield of the PV
module.
String alignment A misaligned panel position leads to an unpleasant [3]
omission. Arching may occur if the gap between the
solar cells is too small.

External particles Another flaw that can be found is dirt, fabric, or [6]
insects on the outside of the PV cells.
Snail trails When the solar cells are broken, they have been [7-9]

generating a lot of electricity along with the breaks.
This creates hot spots that erode the surface of the cell.
If there is water vapour in the air, snail trails of a
different colour appear along the micro-cracks. This
makes the solar cell produce less energy.
Hot spots Any flaw in solar cells, such as fractures, improperly [10,11]
soldered junctions, and abnormalities, leads to greater
resistance and hot spots. Hot spots have severe
consequences, such as burned scars that destroy solar
cells and back sheets if they are not controlled,
eventually leading to fire.
Internal corrosion Whenever moisture gets into the panel, it causes rust. [12]
If the lamination process is not done correctly, this
might result in structural failure during operation.
Delamination The separation of laminated parts is referred to as [13]
delamination. It also includes poorly installed module
trim.
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Figure 1: PV capacity by countries in 2020 [2]

2 Related Works

An image mosaicing technique is used to localize the PV panel’s defects based on color infor-
mation. A harris corner and a hough transform detector are used to stitch the group of images
together to form a larger mosaic image. That the faults are evaluated by the mosaicing technique,
but it didn’t reveal any numerical results. It is used with the thermal camera, which is mounted on an
Unmanned Aerial Vehicle (UAV) for inspection using the aerial thermal visual photography technique
[14]. The image processing algorithm classifies the PV panel defects and healthy modules [15]. The
image binarization based laplace operator technique is used to identify and classify the defects in PV
panels. The binarization technique provides an adequate solution to localize the PV panel defects by
performing monitoring, diagnosis, and data processing. To build an image processing algorithm, the
PV panels are examined by using the thermography technique [16]. This necessitates correlating the
images from the two cameras, like an RGB camera and a thermal camera, and establishing a color
threshold. The threshold is used to segment the PV modules, with the threshold being determined by
the median value of 124. Such an approach assumes that the temperature is lower near the panel’s
edges. This assumption is valid whenever the panels are adequately separated, but it fails if the panels
are frequently near and the connections become heated on a routine basis. This approach is tested in
a real-time solar power plant with different kinds of sensors [0,7]. Temperature defects such as hot
spots and other defects are identified by capturing the individual PV modules through infrared (IR)
images and RGB images. Then quantitative mathematical methods are applied to identify the defective
panels [9,10,17]. The PV modules are identified using a layout coordinate with conditions based on
the fusion of computer vision algorithms, such as U-Blox NEO-M8 N, and RTK Global Navigation
Satellite System (GNSS) [11].

One of the most promising approaches developed to overcome manual inspection is CNN [4].
CNN has been used to identify a large number of images associated with solar plants and then to
determine the presence and location of defects [5]. Of this kind, defects appear as bright spots in an
RGB image. The major benefits of CNN are that it is cost-effective and carries large datasets. Detection
of a hotspot in PV panels gives more efficiency for solar plant monitoring and quality assurance
[5,14,18]. Detection is the first fundamental step in the fault identification of the PV panel. The
majority of research work in PV fault detection systems is done by CNN Densenet architecture using
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RGB images. The CNN Densenet architecture is enough to provide reliable output in the mathematical
form and handle the PV panels in real-world situations. The main advantage of CNN techniques is that
they do not require any plant-specific configuration and have been used in a plug-and-play approach.
Since the geographic values are gathered by GPS sensors, those values are insufficiently accurate. The
future improvement of the present research work is to get more accurate geo-localization values to
increase the effectiveness of PV inspections [13]. Moreover, some different characteristics such as
complexity, accuracy, and scalability are attractive. Hence, an attempt has been made to explore a
new detection approach to detect faulty PV panels that is reliable enough to work successfully in a
real-world environment daily [19].

Another way to identify the faults in PV panels is based on artificial neural networks. The
performance of PV modules is evaluated by attributes such as temperature, current (I), voltage
(V), and evoltage (IeV). To classify the various faults, a Field Programmable Gate Array was used
[20]. Machine learning methods like random forest classifiers combined with infrared thermography,
electroluminescence systems, and scale-invariant feature transform descriptors produce better results
in the fault identification system [21-23]. Conventional CNN methods like VGG-16, ResNet-50 and
MobileNet models provide better accuracies in PV panel defect classification [23,24].

The PV panel faults are identified electrically too. The fuzzy logic control is used to monitor,
identify, and detect the various PV faults based on three values such as open-circuit voltage, current,
and voltage [25]. To identify the PV panel defects, the UAV has been used. Thermal cameras and IR
cameras are mounted in a UAV system to capture images of the PV module. Later, it is processed
by neural networks like CNN and DCNN [26-28]. The dirty thermal images were identified by
thermographic non-destructive tests and classified by CNN [29]. This aerial infrared thermography
is a fast, cheap, non-destructive, and no-downtime way to keep an eye on large PV power plants
and help find problems [30]. Wavelet transform, feature selection, and ANN techniques were used
to identify and classify the PV defects. On the other hand, image processing techniques like discrete
fourier transform are used to examine the PV binary images in a two-dimensional spectrum to identify
the defects in PV panels [22].

Both traditional image processing approaches and deep learning techniques have their pros and
cons. Classic image processing algorithms are well-known, easy to understand, and optimized for
performance and power efficiency. Traditional image processing algorithms are hard to come up
with when there are a lot of classes to sort into or when the image isn’t very clear. Disadvantages
of ANN approaches include usually hardware dependence, difficulty of conveying the issue to the
network, duration of the network is uncertain. Signal processing chips are costly and it requires higher
bandwidth to transmit the data to the network and skilled engineers can only work on the Signal
processing devices. Deep learning, on the other hand, is more accurate and flexible, but it uses a lot
of computing resources. They are especially useful for the fast implementation of high-performance
systems. You don’t have to define the features and do feature engineering anymore. RMVDM was
trained on GPUs. Models were trained quickly. Its 8-layer design ensures it can extract characteristics
better than previous approaches. This implies little feature loss. It cancels negative gradient summation
output, not the dataset. Since not all perceptrons are active, model training speed improves.

3 Proposed Methodology

The CNN-based RMVDM defect detection and classification method is one of the best classifi-
cation techniques, which is used to identify the defects in the PV module and provide exact electricity
generation volumes under various conditions. Deep learning techniques consist of multiple layers to
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learn data. These deep learning techniques are used in speech recognition, text recognition, object
recognition, object detection, object classification, pattern recognition, and many other applications
to solve more complex problems. It is described as a class of machine learning algorithms that have
multiple layers to perform artificial intelligence tasks. These deep learning methods are capable of
learning from non-identical data without any predefined programmes [¢]. The objective of the present
work is for the deep learning technique to be used to identify the defects in PV panels. When compared
to existing conventional neural network methods, CNN uses some parameters to learn them. The
fundamental architecture of CNN is described in Tab. 2.

Table 2: Types of layers in CNN and their functions

Layers Functions of CNN layers References

Input Layer The initial input has been given to this layer. Here [18]
the image pixels have a shape: the number of the
input * input height * input width * input channels.
Convolution layer The input image data is pre-processed here. Once the  [10,11]
image is pre-processed, the image becomes
abstracted into a feature map, also called an
activation map.

Rectified Linear Unit ReLu applies a non-linear function to the output of [9]
(ReLU) the preceding layer. It removes the negative values
and inserts the zero value from the preceding output.
Pooling Layer The pooling layer can reduce the size of the output [17]
data by combining the results of the layers that came
before it.
Fully-connected layer Every neuron in every layer is connected by a fully [5]

connected layer. Connecting neurons is done by all
traditional neural networks.

Loss layer It assesses the predictions of the trained model from [4]
true data labels.

In the present study, the CNN-based RMVDM framework is a technique for detecting PV panel
defects that is built on a contemporary identification framework. RMVDM is a fast network that uses
Deep Convolutional Neural Networks (DCNN) to conduct object detection and object classification
at the same time. The RMVDM object recognition framework recognizes PV panel defects from
RGB photos. It has been demonstrated to be a flexible and successful approach, with good detection
accuracy and minimal computation cost; for example, it runs continuously on usually accessible
GPUs. Therefore, the present work strongly recommends quantitative analysis outcomes based on
an RGB image collected from real-world solar power plants. The suggested solution meets all three
of the needed characteristics: accurate, quick, and capable of being executed in real-time. Finally, it is
concluded that no plant-specific configuration is required for CNN.

The key benefit of employing RMVDM is that a single pass-through network provides all the
information needed to discover the suspicious objects in an image without further costly processes.
Conventional systems, on the other hand, require two different steps: first, they identify numerous
proposal regions where an item is most likely to be discovered; and second, they categorize each
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region to validate or dismiss the proposal. Because running a classifier on multiple areas increases
the computational cost but, the RMVDM design is simpler, yet faster and has more accuracy. The
RMVDM framework was initially created to address the challenge of generic object identification,
to automatically recognize and classify diverse kinds of objects. It simplifies the challenge and allows
the design to be trained with much less data. RMVDM works as follows: Feature Extraction and
Classification.

3.1 Dataset

The collections of several PV plant image datasets are captured by a high-resolution RGB camera.
The dataset comprises 6 different categories and a total of 1200 images. The PV images are taken
from different lighting conditions, various altitudes, and 4 different kinds of paths (East, West, North,
and South). Besides, the PV boards have a place with various PV plants and with different sizes,
shapes, alignment, and colors; it is found that the dataset has enough variants to reflect many of the
difficult scenarios encountered in popular applications involving the autonomous DCNN evaluation
of PV installations. A deep learning technique trained and evaluated on this dataset is predicted to
be resistant to changes in direction, panel makers, plant dispositions, and weather conditions and
illuminations. The real-time PV images are depicted in Fig. 2. Images 1 to 40 from each category
are utilized for testing, and others are utilized for training, with around 50 PV boards. The dataset
classification based on training data and testing data is mentioned in Tab. 3.

‘ . . .
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Figure 2: Defective PV panels—(a) normal, (b) dust, (c) bird drop, (d) broken, (e) fade, (f) crack

Table 3: Dataset classification based on defects

Normal panel Broken Cracked Fade

Training 500 500 500 500
Testing 1200 1200 1200 1200
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3.2 Feature Extraction

The RMVDM feature extraction network has already been trained. A convolution operator, which
is useful for solving complex operations, is used to get the name of these kinds of networks. The main
benefit of RM VDM is that it automatically extracts features, which is the case. First, the specified input
data is sent to a network for extracting features. Then, the extracted features are sent to a network for
classifiers. The simplest and quickest method to extract the image features in CNN-based RMVDM
is feature extraction, which has been trained on the CNN-based RMVDM architecture to extract the
various features of PV images. Features of the PV images are such as color, texture, shape, position,
edges, and regions. Generally, the RMVDM model has fixed input and output sizes. In this present
work, the dataset image size is 3096x4128. So, all the PV images are resized to 227%227. Load Data:
Upload the resized PV images into the image datastore (imds). Now the imds file is created and it
contains the location of the images. PV images are labelled with respective names based on the image
folder. The dataset will be split into a training dataset and a test dataset. 70% of PV images were used
to train the network. 30% of PV images were used to test the network. The mean value of the training
dataset and test dataset was 0.7 and 0.3, respectively. Now, the RMVDM model has been loaded
with feature extraction. The RMVDM architecture has a total of 25 layers. The first 23 layers will be
used for feature extraction; the 24™ and 25th layers will be used for classification. It is now using the
CNN-based model for feature extraction. It requires only a single pass-through network for passing
the data. Now, the FeatureTrain and FeaturesTest files will be generated. Now, all image features have
been extracted, and the features will be represented as numerical values. The neural network majorly
consists of two layers for feature extraction, such as the convolution layer and the pooling layer.

1) Convolutional layer-The convolutional layer is made up of a group of digital filters that work
together to perform the convolution operation on the data that comes in.

2) Pooling layer-The pooling layer is used to cut down on the number of dimensions and decide
what the threshold is.

The architecture of feature extraction is depicted in Fig. 3. The pseudo-code of Feature Extraction
is shown in Algorithm 1.
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Figure 3: Architecture of proposed feature extraction

Algorithm 1: Feature extraction algorithm

Input: Preprocessed Ariel Image PAI, Panel Texture Set PTS.
Output: Texture T, Mean Gray Variance MGv, Mean Contrast MC.
Start

Read PAI, and PTS
Edge Detected image Edi = Apply Sobel Edge Detector on PAI.

(Continued)
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Algorithm 1: Continued

size (PAD)
Compute max gray Mg = Max (PAI (i) .Gray)
1i=1
size (PTS)
Texture Set Ts = Map (PTS (i), Edi) N (3 Textures € PTS)

i=1
Perform morphological operation
For each texture Ti
PAI = Replace texture features with Mg.
End
Generate Gray Histogram set GHS = Histogram (PAI)
Select least 3 gray values from histogram set.

size (GHS)
Sg = if Sg.size < 3then Sg U (Min (GHS (1)) > SG)
i=1
Segmentation Gray factor SGF = Max (Sg)
For each pixel pi
If Pi.value < SGF then
Add to group 1.
Else
Add to group 2.
End
End

Extract Textures Tx from image.
Z.Slze(GmuPl ) Groupl (i).value

Compute Mean gray of panel Mgp = ==

size(Groupl)

ZiS;ZIC(Group2) Group2(i).value

Compute Mean gray of texture T as MgT == SeGrowd)
Compute Mean Gray Variance MGV = Dist(Mgp, MgT)

3578 gum Distinet (Tx (i)

Compute mean contrast variance MCV = —————
size(Distinct(Tx(i))

Feature set Fs = {Tx, MGV, MCV}

Stop

3.3 Classification

In single-phase recognition architecture, the entire PV image is used as input for the first layer. The
network then creates a set of coordinates, each with a level of confidence. It has been tried in different
kinds of deep learning settings. The RM VDM architecture consists of 201 layers. The RMVDM Blocks
contain 116 layers, and the Conv Layer, Fully Connected Layer, and Transition Layers each contain 1
layer. The complete RMVDM layer details are shown in the Tab. 4.
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Table 4: List of layers in RMVDM architecture

Layer names RMVDM Output
Input 7 x 712 conv 224 x 224 x 3
Conv layer 7 x 712 conv 112 x 112 x 64
Pooling layer 3 x 3/2 max pool 56 x 56 x 64
RMVDM Block 1 I Ieonv 56 x 56 x 256
3 3 conv
Transition layer 1 1 x 1 conv, 2 x 2/2 average pool 28 x 28 x 128
RMVDM Block 2 b Teonve 1y 28 x 28 x 512
3 3conv
Transition layer 2 1 x 1 conv, 2 x 2/2 average pool 14 x 14 x 256
RMVDM Block 3 b Teonve oy 14 % 14 x 1024
3 3conv
Transition layer 3 1 x 1 conv, 2 x 2/2 average pool 7x7x512
RMVDM Block 4 b Teonv 7 x 7% 1024
3 3conv
Pooling layer 7 x 7/7 average pool 1 x1x1024
Fully connected layer 1000-D 1 x1x 1000

1445

The RM VDM architecture splits the input PV images into a matrix format. Each row of the matrix
forecasts B bounding boxes as well as the confidence in that detection. The loss function is intended
to train each cell to identify only items that are centered in that cell. This loss function, better known
as categorical loss, is the difference between the original values and predicted values.

L=> max(0, §;— S, +1) (1)
i
where,
L-Loss function
S;-True value
S,-Predicted value

To further develop the presentation when managing tiny objects, RMVDM utilizes a skip
connection to exploit the fine-grained highlights when genuine discoveries are anticipated in the last
layers.

Fx)=H®X) —x 2)
This gives,

H®x) :=Fx) +x (3)
where,

F(x)-Skip connection function
H(x )-Initial mapping
x-Identity
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Finally, Batch Normalization is used, and the backbone network design is updated by replacing
every pixel value in channel C with the following rule:

BN (Xyeh) = y0e0v " /0, 4 B, @
where,

y. - scale parameters

B. - shift parameters

It is quite significant that the RM VDM network is completely convolutional and is prepared with
various sizes of images; this permits the locator to be utilized for different purposes. The subsequent
precision is essentially improved, with seemingly minor impacts on the deduction time. The pseudo-
code of RMVDM architecture is shown in Algorithm 2.

Algorithm 2: RMVDM algorithm for identifying defects in PV Image
Input Image: Defective PV panels ‘D’ with training data T1 and Testing Data T2
Step 1: Pre-process the input image in 2D Conv Layer.
Step 2: Output Data: Qutput from Conv layer send to RMVDM layer
for all defects C; of D do
Detect the most n similar defects {B;;};,
Self-evaluation similarity: B < B,
end for
for all pixels (a, b) in D do
end for
For all defects B, of D do
Calculate the energy: E(B;) < B;
Step 3: Compute Features (D, D,,D;) < D
Step 4: Compute R and S
Step 5: Back propagation
end for R
for all pixels (a, b) in D do
Output Image: Defective PV panels predicted-Defects {D, ot

In this present work, a quantitative evaluation of the suggested technique in this section is
presented. Also, it portrays the dataset utilized in our experimentation. Therefore, we present the work
metrics used to evaluate the approaches’ performance as well as the experimental procedure utilized
for the evaluation, with the accompanying equations:

procision — TP "

recision = TP + FP
TP

Recall = — 6

= TP I FN ©)
TP + TN

A - 7
WAy = P F TN+ FP + EN )

where,

TP-True Positive
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FP-False Positive
FN-False Negative
TN-True Negative

The common architecture of RMVDM is depicted in Fig. 4.
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Figure 4: Workflow of RMVDM architecture
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CNN based fault detection model’s results as well as performance of the proposed RMVDM
fault diagnosis method are presented in this section. Techniques such as the one proposed here require
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a reference solar cell and camera for the module’s temperature, defect’s position and defect’s size.
Analyzed results are stored in an electronic database before being transferred to an operating system
on a personal computer, where the diagnostic procedure is performed.

Compared to the other conventional techniques, RMVDM results in the two primary environ-
ments, such as parameter-free configuration and fine-tuned configuration. The test images are not
utilized to optimize the parameters in the event of parameter-free experimentation. This parameter-
free experiment is to replicate a situation in which the person does not need to do any sort of setting on
the given circumstance. In the parameter-tuned configuration, 30% of train images are utilized to fine-
tune the network; the remaining 70% of images are utilized as validation data. A minor configuration
in the RMVDM model boosted the overall network efficiency. Although parameter-tuning is available
on the present CNN model. It is indicated that fine-tuning enables the correction of the numerous false
negatives that occurred.

Fig. 5 shows the results of training accuracy and validation accuracy of the normal PV image
dataset and Fig. 6 shows the results of training loss and validation loss of the normal PV image dataset.

10 A1 .
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Figure 5: Train acc and val acc
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Figure 6: Train loss and val loss

Fig. 7 shows the results of training accuracy and validation accuracy of the broken PV image
dataset and Fig. § shows the results of training loss and validation loss of the broken PV image dataset.
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Fig. 9 shows the results of training accuracy and validation accuracy of the crack PV image
dataset, and Fig. 10 shows the results of training loss and validation loss of the crack PV image dataset.
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Figure 9: Train acc and val acc
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Fig. 11 shows the results of training accuracy and validation accuracy of the fade PV image
dataset, and Fig. 12 shows the results of training loss and validation loss of the fade PV image dataset.
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Figure 12: Train loss and val loss

Figs. 13—16 shows the time complexity of PV image dataset, feature extraction, classification and
RMVDM respectively.
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Figure 16: RMVDM time complexity

Using the different PV panel image datasets for training and validation also provides outstanding
outcomes. The RMVDM technique needs parameter modification at each phase to adapt to the
different PV panel images. One of the primary benefits of the RMVDM technique is that the
installation operation is not time-consuming and this solution is perfectly suitable for usage in
industrial products. Monitoring is the recurring process to identify the PV panel’s actual progress.
In some cases, the same PV panel may be shown in more than one frame, making it possible for the
detecting system to miss it.

The algorithm’s worst-case time complexity is represented by the function 77 : N — N. “T(n)” is
the maximum number of “steps” an algorithm may take on inputs of “size” n. As a result, how long
an algorithm takes to execute is directly proportional to the size of the input. We’ve determined the
input’s worst-case time complexity, which means we’ve tallied up the most steps it might take.

With varied numbers of images in each class, the performance of different techniques in defect
detection and classification is assessed in Tab. 5 and depicted in Fig. 17. In all situations, the suggested
RMVDM model showed greater classification accuracy in the ratios of 91%, 93%, and 98%. The
suggested method outperforms existing methods in terms of detection accuracy.

Table 5: Comparison of CNN-based methods

Defect detection performance in %

Methods Resnet Alexnet Densenet RMVDM
1000 Images 73 77 82 91
3000 Images 77 81 85 93
5000 Images 83 89 88 98

The outcomes of the RM VDM architecture with different settings are shown in Tab. 6. It has been
changed to certain parameter values to get the best results.
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Figure 17: Analysis of defect detection accuracy

Table 6: Validation performance (%) of RMVDM

Test Specificity Recall Accuracy Precision F1 Score

Test 1 96.00+ .75 97.20+ .75 97.24+ .75 97.10+ .75 97.09+ .75
Test 2 97.20+ .75 96.80+ .75 96.92+ .75 97.00+ .75 97.01+ .75
Test 3 97.80+ .75 98.20+ .75 98.24+ .75 98.00+ .75 98.00+ .75
Test 4 97.80+ .75 98.40+ .75 98.43+ .75 98.10+ .75 98.09+ .75

In this present work, the proposed methodology will give high accuracy for every type of defect.
Here we used the PV images of broken, crack, fade, and normal to measure the accuracy and loss
values. The above graphs consist of two-axis (X, y). The x-axis represents epoch run and the y-axis
represents accuracy values. The PV panel is appropriately located in the preceding and subsequent
frames; therefore there is no true loss when compared to that of others. The above graphs and
tables illustrate model accuracy, recall, F1 score, precision and specificity. The trained CNN has 98%
accuracy, so the estimator has a low chance of classifying a negative sample as positive. An F-1 score
of 98% suggests that recall and accuracy are almost similar to the network. By recall factor, CNN can
locate all positive samples 98% of the time. A CNN with a 0.001 learning rate, 32 samples as batch
size, and 100 epochs of training was the best classifier of anomalies in a PV module. Due to restricted
training data, ten-fold cross-validation was utilised to train and evaluate the suggested model. When
compared to neural networks, the RMVDM architecture has the deepest neural structure.

5 Future Enhancements

One of the significant improvements in the neural network architecture is the use of anchor
boxes. We can train a CNN to categorize an image as well as to produce the bounding box with four
coordinates. In RMVDM, each grid cell rightly guesses the anchor box’s coordinates for which it is
responsible for defects. In that way, localization becomes a simple regression issue. As an example, we
might use RM VDM model which has a number of convolutional, pooling, and other layers, and reuse
the fully connected layer to build a bounding box. This localization technique enables the model to
perform better.
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6 Conclusion

A large PV dataset consists of 10,000 different PV images in different categories, which are
captured from various places and under various lighting conditions. The existing CNN framework
was developed to solve the challenges of identifying PV panel faults using RGB images. Compared
with previous deep learning methods, the RM VDM method offers a distinct advantage. Furthermore,
it doesn’t require a lengthy process. This proposed CNN based RM VDM method is most appropriate
for usage in commercial applications. When tested on solar plant characteristics that the system has
never encountered before, the RMVDM detector gets a 98% accuracy rating and gets a recall value of
up to 97%. The outcome is somewhat better than that obtained with other techniques.
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