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Abstract: The ever-growing available visual data (i.e., uploaded videos and
pictures by internet users) has attracted the research community’s attention
in the computer vision field. Therefore, finding efficient solutions to extract
knowledge from these sources is imperative. Recently, the BlazePose system
has been released for skeleton extraction from images oriented to mobile
devices. With this skeleton graph representation in place, a Spatial-Temporal
Graph Convolutional Network can be implemented to predict the action.
We hypothesize that just by changing the skeleton input data for a different
set of joints that offers more information about the action of interest, it is
possible to increase the performance of the Spatial-Temporal Graph Convo-
lutional Network for HAR tasks. Hence, in this study, we present the first
implementation of the BlazePose skeleton topology upon this architecture for
action recognition. Moreover, we propose the Enhanced-BlazePose topology
that can achieve better results than its predecessor. Additionally, we propose
different skeleton detection thresholds that can improve the accuracy per-
formance even further. We reached a top-1 accuracy performance of 40.1%
on the Kinetics dataset. For the NTU-RGB+D dataset, we achieved 87.59%
and 92.1% accuracy for Cross-Subject and Cross-View evaluation criteria,
respectively.

Keywords: Action recognition; BlazePose; graph neural network; OpenPose;
skeleton; spatial temporal graph convolution network

1 Introduction

According to the Cisco Annual Internet Report, the amount of Machine-to-Machine (M2M)
connections is expected to be the fastest-growing category in internet traffic by 2023 [1]. These
connection types are related to smart homes and video surveillance applications. As a result, the
amount of data related to human action recognition (HAR) will increase accordingly. Additionally,
the ever-growing available visual data (i.e., uploaded videos and pictures by internet users) has also
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attracted the research community’s attention in the computer vision field. Therefore, finding efficient
solutions to extract knowledge from these sources is imperative. Not only to help the population make
their lives easier but to preserve their security. The most relevant solutions for HAR include the use
of sensors attached to the human body while acting and video cameras located in the area of interest
where the action is being performed. Although there have been successful applications of sensor-based
HAR systems recently [2], we believe that a video-based solution can offer a more robust solution for
this task.

HAR from visual data can be defined as a two-fold problem: the first part aims to extract the most
relevant features from the video (also known as action representation), and the second part takes those
features as input to a classification algorithm to recognize the performed action (action classification)
[3]. For action representation, the solutions that have achieved the most success are based upon optical
flows [4], point clouds [5], convolutional neural networks (CNN) [6,7] and landmark detection of the
main joints of the human body (i.e., skeleton-data) [8]. On the other hand, for action classification,
previous attempts vary from random forests [9], to recurrent neural networks (RNN) [10,11] and more
recently, graph neural networks (GNN).

The skeleton-based approach for action representation has achieved a remarkable success given
its lightweight and robustness [12]. It is easier for a classifier to compute a small set of cartesian coor-
dinates than a much larger set of pixels of an image. Additionally, this representation is background-
free. Therefore, the vast amount of noise of the action background is omitted using this approach.
This kind of data can be represented as a graph G = (V, E), where V is the set of joints and E is the
set of edges that connects each of the skeleton joints (i.e., the bones). Hence, the RGB image sequence
that constitutes a video can be represented as a sequence of skeleton frames as it is shown in Fig. 1.
With this graph representation on place, a GNN classifier can be applied for action recognition.

Figure 1: Video representation as a skeleton-frame sequence. We extracted the skeleton from each
frame of the videos. In this figure, we present a sample taken from the ’dunking basketball’ class of
Kinetics dataset

A GNN aims to model the relationships between entities [13]. For the purpose of action recogni-
tion using the skeleton data, it is intuitively to use a GNN to model the relationship in different joints
while performing a movement. To reduce the computation needed, the graph convolutional neural
networks (GCN) have been introduced [14]. These architectures generalize what CNN accomplish



CMC, 2023, vol.74, no.1 21

in Euclidean spaces: to map a higher dimension input vector into a lower dimensional vector in an
embedding space with minor loss of information. This capability has shown a great success in recent
years [15]. For these reasons, we strongly believe that a skeleton-based approach using GCN is the
more efficient way to achieve an accurate action recognition system.

Nowadays, there are multiple tools to extract the skeleton representation from videos [16–18]. Due
to its compatibility with a wide range of commercial video cameras, the OpenPose system has become
a reference for this aim. Recently, the Google Research team has released the BlazePose architecture
for skeleton extraction from images oriented to mobile devices. However, currently there is a need to
explore the capabilities of this library for action recognition tasks.

The first action recognition system using GCN using skeleton data is the Spatial-Temporal Graph
Convolutional Network (ST-GCN). This model framework can learn both the spatial and the temporal
relations between the set of nodes (i.e., the skeleton joints) during the performance of the action. To
the knowledge of the authors, there has not been any previous attempts to use the BlazePose topology
as an input for the ST-GCN architecture for action recognition. Most of the previous research have
used the OpenPose topology in their studies [19–23] but very few works have been done using the
BlazePose alternative [24,25]. Thus, in this study we present the first implementation of the BlazePose
skeleton topology using this model for action recognition. To provide a valid comparison with the
baseline study in [8], we test our work upon the Kinetics [26] and the NTU-RGB+D [27] benchmarks.
To summarize, the contributions of this work are presented in the following list:

• We present the first results of the ST-GCN model using the BlazePose skeleton topology for
action recognition.

• We provide a comparison study between the OpenPose and the BlazePose systems for skeleton
extraction from videos.

• We show that just by changing the input skeleton topology for an alternative with a larger
set of joints, the ST-GCN model can reach better performance with no major increase in the
computational load.

• By selecting different skeleton detection thresholds, we demonstrate a positive improvement in
the output of the ST-GCN model trained upon an unrestricted environment dataset, such as
the Kinetics benchmark.

• Furthermore, we propose an improvement in the BlazePose topology (i.e., the enhanced-
blazepose topology) that can achieve better results than its predecessor.

• We released the BlazePose skeleton data from Kinetics and NTU-RGB+D datasets to con-
tribute the research community in this field (https://github.com/malswadi/blazepose-skeleton-
kinetics-ntu).

The remainder of the paper is structured as follows: in Section 2 we present previous attempts to
enhance the performance of the ST-GCN model. Additionally, we present previous utilization of the
BlazePose system upon the ST-GCN architecture with different use-cases. For this purpose, in Section
3 we provide a brief comparison between the previous utilized system (i.e., OpenPose) and BlazePose
for skeleton extraction from videos. In Section 4 we present the Enhanced-BlazePose topology. We
provide the details for its construction and the reasons that motivate us to propose this solution.
In Section 5 we provide an explanation of the details of the chosen framework (i.e., the ST-GCN)
for action recognition used in this study. These include the different layers utilized by the model and
overview of its construction. Consequently, the experimental settings to achieve the results presented
in this study are described in Section 6. In Section 7, the results obtained are presented and discussed in
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depth. Also, we included the possible paths for future works we have found according with our results
in this section. Finally, Section 8 presents the conclusion of our study.

2 Related Work

Recently, the ST-GCN model usage has increased considerably. From stroke type recognition in
tennis [28], nurse activity recognition in hospitals [29], stock price prediction [30], fall detection [31]
and action recognition systems [32]. Unfortunately, this architecture presents some disadvantages.
The main drawbacks include its incapacity to learn the relationship between joints that are far away
from each other and it does not consider either the hierarchical structure from GCNNs or the bone
information. Consequently, novel improvements to the ST-GCN have been introduced. For example,
authors in [33] proposed the two-stream adaptive graph convolutional network (2s-AGCN). In their
work, they utilize one of the streams to model the inter-joint relationships and the other to model the
inter-bone relationships in a data-driven manner.

Recently, authors in presented the SV-GCN network. This proposal consists in a two-stream
architecture to combine the RGB and the skeleton data from videos. In their work, authors in [34]
presented the Spatial Temporal Graph Deconvolutional Network (ST-GDN). This model aims to
alleviate the noise propagated across the node messages of the skeleton graph by using a deconvolution
layer as a filter. In our previous work in, we presented a novel set of partitioning strategies that
can capture more accurately the relationship between the joints of the skeleton that outperform the
accuracy achieved of the baseline model in [8]. Additionally, multiple work has been done to use
attention modules in the model to improve the performance [35,36].

Most of the work aforementioned utilize either the skeleton data provided by NTU-RGB and the
OpenPose system, respectively. However, there is only few works done with BlazePose as input for ST-
GCN. The use cases found in literature vary from yoga pose recognition [37], posture detection, posture
correction [38], teach movements to robots [39], and emotion perception [40]. To the knowledge of the
authors, there is no previous usage of the skeleton topology provided by the BlazePose system on the
ST-GCN model for action recognition tasks.

3 OpenPose vs. BlazePose

The BlazePose system provides more joint information than its predecessors and allows for
tracking more accurately. Our intuition is that the increase in the number of joints in the skeleton
provided by the BlazePose system with respect to the other skeleton topologies (i.e., OpenPose) will
provide additional information that will help to improve the performance in the ST-GCN model for
this aim.

The first difference in both systems is the method used to achieve the pose estimation from images.
OpenPose uses a bottom-up approach, while BlazePose uses a top-down alternative. The first method
localizes the body parts in the image, then maps them into their corresponding person; the second
localizes a region of interest where the person is located and then estimates the body’s main joints.

To achieve the pose estimation, OpenPose implements Part Affinity Fields (PAFs) scores to
estimate the confidence of linkage between each detected body part with a given person in the image
[41]. With this solution, the system can see multiple persons in an image by computing each PAFs
simultaneously. Thus, the runtime cost is reduced considerably. On the other hand, BlazePose focuses
on on-device human pose estimation applications. For that reason, their strategy is oriented to provide
a lightweight solution. To achieve that aim, they first detect a region of the body that remains mostly



CMC, 2023, vol.74, no.1 23

rigid across all the video frames (the head of the person) using a fast on-device face detector. That
information allows it to estimate other body reference landmarks (i.e., the hips and shoulders) of the
pose faster.

OpenPose provides different pose formats: the BODY_25 and the COCO [42]. Among these, the
COCO format is used most extensively. As the name suggests, the BODY_25 topology provides 25 key
points while the COCO provides 18 (shown in Fig. 2a).

Figure 2: Skeleton topology comparison

The output skeleton provided by the BlazePose system is a superset of COCO [42], the BlazeFace
[43] and a BlazePalm consisting of 33 keypoint set. As it is shown in Fig. 2c, this topology can provide
a more accurate representation of the hand and the feet movements given the additional keypoints in
these parts.

4 Enhanced-BlazePose Proposal

In this study, we propose a novel skeleton topology that can improve the ST-GCN model
performance even further. The motivation for the Enhanced-BlazePose topology is to provide an even
more accurate representation of the actions by adding additional edges to the existing BlazePose
topology. Our aim is to capture the relationship between the shoulders and the head during the
performance of the actions.

The pseudocode for the topology definition is shown in Fig. 3. In the algorithm, the new edges are
included in line 5. In practice, we considered the previous graph definition of the BlazePose topology
and included the additional edges that connect the shoulder joints with those in the mouth and nose
(shown in Fig. 2d).

We also noticed that the OpenPose system and NTU-RGB+D dataset (shown in Fig. 2b) have
all of their joint in their skeletons connected with the rest of the graph. Contrary, the outcome of
BlazePose have the joints with indexes 9 and 10 disconnected from the rest (Fig. 2c). After several
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experimentation with our novel topology with all its joints connected with the rest of the graph, we
show that this proposal provides positive results.

Figure 3: Pseudocode for enhanced-BlazePose

5 Spatial-Temporal Graph Convolutional Network

The first action recognition system using GCN using skeleton data is the Spatial-Temporal Graph
Convolutional Network (ST-GCN) this system, the authors proposed two different sets of joint
connections: the intra-skeleton and the inter-frame connection sets. The first consists of the spatial
connections between the joints of the skeleton. For instance, the joints of the knee of the person are
connected with those in of the ankle and foot. On the other hand, the inter-frame set of connections
include the connections of each joint independently across the sequence of frames of a video.
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The architecture of the ST-GCN model consists of an input layer, a sequence of 9 graph
convolutional modules (i.e., ST-GCN unit) and an output layer with Softmax regression. As shown
in Fig. 4, each ST-GCN unit first extracts the relevant features of the intra-skeleton set using a GCN
layer. The output of the GCN sub module has the same size as the input. Hence, the output of this sub
module is treated as a learned representation of the input skeleton. Consequently, these learnt features
are used as an input for a Temporal-GCN (TCN). The TCN sub-module receives the inter-frame
information of these sequence of values using a fixed temporal window size. With this approach, the
ST-GCN model can extract the spatial and the temporal features of a skeleton sequence to represent
and classify an action.

Figure 4: ST-GCN unit. The spatial features of the skeleton frames are computed in the GCN (Graph
Convolutional Neural Network) stage, while the temporal features of each joint are processed in the
TCN (Temporal-GCN)

The ST-GCN model also propose an additional set of layers (the learnable edge importance
weighting mask) that aim to learn the importance of each joint during the performance of the actions.
With these layers, the model can reach better performance. We considered these layers during our
experiments.

6 Experimental Settings

First, we resized each of the videos into dimension of 340 × 256 pixels upon the Kinetics [26]
dataset (This stage was not performed upon the NTU-RGB+D experiments). Second, we extracted the
skeleton joint data from the benchmark datasets using the Python API [44] released by the BlazePose
team. This tool receives a video as input and returns the horizontal (x), vertical (y) and depth (z)
coordinates, in addition with the confidence score (c) of each of the 33 skeleton joints. For the Kinetics
dataset, we used the x, y and c data of each joint. Conversely, we utilized the x, y and z information
on the NTU-RGB+D dataset.

We did not consider the frames of the videos where the BlazePose system did not detect any
skeleton. With this constraint, there were a considerable number of videos that had a small number of
frames with a detected skeleton (or no skeleton detection at all in the complete video). This situation
motivates us to propose different skeleton detection thresholds used as a criterion to select the videos
for training. Strictly speaking, we generated two subsets of the BlazePose keypoints dataset: a set
containing only those videos where the BlazePose system was able to detect a skeleton in 50% or more
of its frames and another containing only the videos where the BlazePose system was able to detect a
skeleton in 80% or more of its frames. We denominated these subsets as the bp-50 (i.e., BlazePose with
a skeleton detection threshold of 50%) and bp-80 (i.e., BlazePose with a skeleton detection threshold
of 80%) subsets. Consequently, three versions of the BlazePose keypoint data were used independently
in the present study: the output of the BlazePose system with no minimum percentage of skeleton
detection per video (BlazePose set), the bp-50 and the bp-80 sets.
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Third, we fixed the length of the sequence of skeletons to contain only 300 frames. Therefore, if a
sequence had less than 300 frames, we repeated the initial frames until reaching the desired length.
Conversely, if the sequence had more than 300 frames, we deleted the exceeded frames randomly.
Therefore, the spatio-temporal information of the skeleton of each video sample can be represented
as a tensor with shape (33, 3, 300).

Finally, we train the ST-GCN model for 80 epochs using the spatial configuration partitioning
for joint label mapping. We used the stochastic gradient descent (SGD) with learning rate decay as an
optimization algorithm. The initial learning rate value was set to 0.1 with a decay factor of 0.1 every
10th epoch, starting from the epoch number 20. We set a base weight decay value of 0.0001 to avoid
overfitting. The batch size was varied from 16 to 256 to achieve the results we present in this study.

All the experiments were performed using the PyTorch [45] framework version 1.2 for deep
learning modelling. To train the 256 batch experiments, we utilized 4 NVIDIA Tesla V100 32 GB GPUs
in parallel; otherwise, we used 1 NVIDIA Tesla V100 32GB GPU. also, many artificial intelligence
applications can be used in real-world problem [46–50].

7 Results and Discussion

In this section we present the performance achieved in terms of accuracy. To validate our
hypothesis, we compare our results with those obtained with ST-GCN using the OpenPose topology,
and also with different models that proposed modifications in the ST-GCN architecture: the
2s-AGCN, the AM-STGCN and the ST-GDN.

7.1 Kinetics

The Kinetics dataset consists of 306,245 videos corresponding to 400 classes. However, the
BlazePose system presented difficulties to detect the skeletons of certain classes. For instance, the
‘bartending’ and ‘cutting watermelon’ classes had 0% of skeleton detection performance. That is,
that the BlazePose system was not able to provide the skeleton information of any of the samples
corresponding to those actions. To illustrate this situation, consider the examples shown in Figs. 5 and
6. It can be noticed that the face of the actor performing those actions is not shown. According to
the pose estimation method of the BlazePose system explained in Section 3, the detection of the face
is strictly required by this tool to predict accurately the human poses. For this reason, the BlazePose
system was not able detect an accurate skeleton from any of the videos corresponding to these actions.
Therefore, these classes were not considered in our experiments.

Figure 5: A sample of the BlazePose system output from the Kinetics ‘cutting watermelon’ class. We
extracted 4 randomly selected frames from a video sample and presented them in order of appearance
from left to right. As it can be seen, no face was shown about the person performing the action.
Therefore, the BlazePose fails to recognize the skeleton joints
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Figure 6: A sample of the BlazePose system output from the Kinetics ‘bartending’ class. We extracted
4 randomly selected frames from a video sample and presented them in order of appearance from left
to right. Similarly to ‘cutting watermelon’ class, no face was shown about the person performing the
action. Therefore, the BlazePose also fails to recognize the skeleton joints in this class

On the other hand, the actions ‘tasting food’ and ‘stretching arm’ were the classes with the highest
skeleton detection. We show two examples of these classes in Figs. 7 and 8. This performance was
expected, given that the face is strictly needed to be shown in video while performing these actions.
The same situation appears with the other classes with the top performance in the skeleton extraction
process.

Figure 7: A sample of the BlazePose system output from the Kinetics ‘tasting food’ class. We extracted
4 randomly selected frames from a video sample and presented them in order of appearance from left
to right. This class top class with the highest skeleton detection rate using the BlazePose system. The
face of the actors are shown in most of the videos of this class

Figure 8: A sample of the BlazePose system output from the Kinetics ‘stretching arm’ class. We
extracted 4 randomly selected frames from a video sample and presented them in order of appearance
from left to right. Similarly to the ’tasting food’ class, this class was also one of the top 10 classes with
the highest skeleton detection rate using the BlazePose system

The comparison of the top-1 performance of the ST-GCN model obtained from using the
OpenPose, BlazePose and Enhanced-BlazePose (E-BlazePose) topologies is shown in Fig. 9. The
results in the plot clearly demonstrate that the BlazePose-based topologies outperform the OpenPose
alternative. The information provided by the additional joints of the BlazePose topology was able to
improve the accuracy performance by almost 3%. Moreover, the new edge information proposed in
the e-blazepose topology added almost a 2% accuracy improvement to the action recognition.

The performance obtained with the BlazePose and the Enhanced-BlazePose topologies were
improved by using the subsets with higher skeleton detection thresholds. The model trained with
the BlazePose topology improved its performance by almost 13% and 14% using the bp-50 and
bp-80 subsets, respectively. Furthermore, the model trained upon the Enhanced-BlazePose topology
improved its performance by 11% and 14% using the bp-50 and bp-80 subsets, respectively. By using
only those videos with skeleton detection in more than 80% of its frames, we improve for almost 17%
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the accuracy performance with respect to the results previously achieved with the OpenPose topology.
The videos of this dataset were gathered from the internet. Meaning that, there is no constraint that
ensures that the body of person performing the action appears correctly inside the frames of the
videos. Furthermore, the videos do not have a fixed resolution either. Although there were many
frames with no skeleton detection, the different skeleton detection thresholds ensure that the input
data provide valuable information and impact dramatically the performance of the output model.
These improvements in the results are clearly shown in Fig. 10 and Tab. 1.

Figure 9: Kinetics Training Process. As it can be noticed from one our experiment results shown in
the figure, the e-blazepose topology proposed in this study outperforms the results obtained using the
alternative topologies

Figure 10: Kinetics performance using different skeleton detection thresholds. This criterion is able to
rise the accuracy performance considerably



CMC, 2023, vol.74, no.1 29

Table 1: Accuracy performance for ST-GCN-based models on the Kinetics dataset. In the table, 50%
st and 80% st correspond to the results obtained using the bp-50 and bp-80 subsets, respectively

Method Top-1 Top-5

ST-GCN [8] 30.7% 52.8%
AM-STGCN [20] 32.9% 55.4%
2s-AGCN [33] 36.1% 58.7%
ST-GDN [34] 37.3% 60.65%
BlazePose, 50% st 36.78% 61.69%
BlazePose, 80% st 37.38% 65.2%
E-BlazePose, 50% st 37.69% 63.65%
E-BlazePose, 80% st 40.1% 64.73%

7.2 NTU-RGB+D

For these experiments, we utilized the Cross-Subject (X-Sub) and Cross-View (X-View) criterias
proposed by the dataset authors to evaluate our results. The training process of the model using the
X-Sub criteria is shown in Fig. 11a. As it can be noticed, the skeleton information provided by the
BlazePose system was able to improve the performance than the NTU-RGB+D skeleton data by
more than 3%. Furthermore, by using the Enhanced-BlazePose topology, we were able to improve
the BlazePose topology performance by almost 1%. On the other hand, the BlazePose topology was
able to improve the NTU-RGB+D data using the X-View criteria by 3.2% (results shown in Fig. 11b).
However, the Enhanced-BlazePose topology reached a maximum accuracy only 0.18% higher than
BlazePose for this evaluation criteria.

Figure 11: NTU-RGB+D Training Performance. (a) X-View evaluation criteria. X-Sub evaluation
criteria. In this figure, we compare the performance improvements of different skeleton topologies on
the ST-GCN model. The Enhanced-BlazePose (e-blazepose) can reach higher performance that the
other alternatives. (b) Similarly, to the X-Sub criteria, we compare the performance improvements of
different skeleton topologies on the ST-GCN model. The BlazePose-based skeleton topologies can
reach higher performance
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The training performance with different skeleton detection thresholds on the NTU-RGB+D
dataset is shown in Fig. 12. By examining the performance both evaluation criterias (X-Sub and X-
View), it can be noticed that there is no significant improvement in using the subsets with higher
skeleton detection thresholds for this dataset. The reason of this is due to the fact that the NTU-
RGB+D dataset consists of videos recorded in a restricted environment. Consequently, the BlazePose
system was able to detect a skeleton in the vast majority of frames in the videos. Therefore, all three
versions of the BlazePose keypoint datasets (i.e., the BlazePose, bp-50 and bp-80) contain almost the
same information. Hence, the results variance is mainly caused because of the random initialization
and learning process of the final models; not because of major differences in the input data.

Figure 12: NTU-RGB+D Training Performance using different skeleton detection thresholds. This
criteria does not provide a significant improvement on restricted environments

We present a comparison with previous ST-GCN enhancement models in Tab. 2. The results show
that the ST-GDN model provide a more significant improvement that different skeleton detection
threshold for restricted environments. However, the results achieved with our alternative input
topologies outperform the ST-GCN model performance in where no alterations in the architecture
has been made (Figs. 9 and 11). Therefore, this motivate us to hypothesize that the performance of the
ST-GDN model can be further improved if the BazePose-based topologies are used as an input.

Table 2: NTU-RGB+D accuracy results. In the table, 50% st and 80% st correspond to the results
obtained using the bp-50 and bp-80 subsets, respectively

Method X-View X-Sub

ST-GCN [8] 81.5% 88.3%
AM-STGCN [20] 83.34% 91.4%
2s-AGCN [33] 88.8% 95.1%
ST-GDN [34] 89.7% 95.9%
BlazePose, 50% st 87.3% 90.34%
BlazePose, 80% st 87.62% 91.75%
E-BlazePose, 50% st 87.42% 91.69%
E-BlazePose, 80% st 87.59% 92.1%
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Finally, we have found that the bottom-up approach with PAFs used by OpenPose makes it ideal
in use-cases where multiple persons are interacting with each other in a particular action. However,
this system is not as portable as the BlazePose system and it requires a considerable computation
capacity to operate. Conversely, the BlazePose system is unable to track the person performing the
action when there are multiple persons in the area. For instance, if a second person is located nearer to
the camera than the actor, the system gives the second person a higher priority. Therefore, it changes
the tracking of the skeleton joints from one actor to the other. However, the easy-to-use API provided
by the BlazePose team allows it to be a practical solution for lightweight applications (such as those
mobile-oriented) when a single actor is involved. Regarding the computation load required during
training and inference using the ST-GCN model, there is not a significant increment in the cost between
choosing the BlazePose topology over the OpenPose alternative. This is because the changes in the
number of joints are only reflected in the input layer and the importance weighting layers, while the
rest of the hidden layers remain the same. For instance, the trainable parameters needed to train a ST-
GCN using the BlazePose skeleton ascend to 3.2 M; while the trainable parameters needed to train
this model using the OpenPose topology are 3.17 M. As a result, the changes in the input skeleton only
represent an increment of 0.71% in the trainable parameters.

7.3 Statistical Analysis

From the statistical perspective, the achieved results were analyzed to confirm the findings of the
proposed approach. Tab. 3 presents a statistical analysis for the achieved results of bp-0 and ebp-0.
On the other hand, one sample t-test is performed and the results are recorded in Tab. 4. The results
presented in these tables emphasize the stability and effectiveness of the proposed approach.

Table 3: Statistical analysis of the achieved results

bp-0 ebp-0

Number of values 36 36
Minimum 0 0
25% Percentile 0.3997 0.2458
Median 0.6159 0.5353
75% Percentile 0.8695 0.7415
Maximum 1 1
Range 1 1
95% CI of median
Actual confidence level 97.12% 97.12%
Lower confidence limit 0.4562 0.2524
Upper confidence limit 0.7827 0.6532
Mean 0.6158 0.4922
Std. Deviation 0.2632 0.286
Std. Error of Mean 0.04387 0.04766
Lower 95% CI of mean 0.5267 0.3954
Upper 95% CI of mean 0.7049 0.589
Coefficient of variation 42.74% 58.10%
Quadratic mean 0.6683 0.5672

(Continued)
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Table 3: Continued
bp-0 ebp-0

Lower 95% CI of quad. mean 0.5839 0.4737
Upper 95% CI of quad. mean 0.7431 0.6474
Skewness −0.3097 −0.0408
Kurtosis −0.7527 −1.186
Sum 22.17 17.72

Table 4: One sample t-test for assessing the achieved results

bp-0 ebp-0

Theoretical mean 0 0
Actual mean 0.6158 0.4922
Number of values 36 36
One sample t test
t, df t = 14.04, df = 35 t = 10.33, df = 35
P value (two tailed) <0.0001 <0.0001
P value summary ∗∗∗∗ ∗∗∗∗
Significant (alpha=0.05)? Yes Yes
How big is the discrepancy?
Discrepancy 0.6158 0.4922
SD of discrepancy 0.2632 0.286
SEM of discrepancy 0.04387 0.04766
95% confidence interval 0.5267 to 0.7049 0.3954 to 0.5890
R squared (partial eta squared) 0.8492 0.7529

On the other hand, Fig. 13 depicts a visual analysis of the achieved results. In this figure, the
ROC is shown in Fig. 13a to prove the accuracy of the propose approach. In addition, the difference
vs. average mapping is shown in Fig. 13b. This figure confirms the robustness of the proposed
approach. Finally, the average error vs. the objective function is shown in Fig. 13c. Overall, this analysis
emphasizes the efficiency of the proposed approach.

7.4 Future Research and Open Challenges

Given the advantages of the human pose estimation approaches used by the OpenPose and
BlazePose systems, we propose a development on a hybrid technique based upon them as a future
work. This could use an object detector to predict a fixed part of the human body as a reference
for fast inference of the person localization (BlazePose approach) and using PAFs for an accurate
joint prediction from there (OpenPose solution). Another path could be to propose a modification
in the framework such that we could find the optimal skeleton detection threshold in a data-driven
manner for HAR recognition purposes. One possibility is to add an extra layer in early stages. The
positive results we achieved using different thresholds on data recorded in unrestricted environments,
encourage us to foresee this as future work.
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Figure 13: Visual plots for analyzing the achieved results

Regarding the Enhanced-BlazePose topology proposed in this study, it is unable to provide
additional information were the skeleton joints from where the new set of edges are constructed (i.e.,
joints with indexes 0, 9, 10, 11 or 12) are not accurately predicted by the BlazePose system (either
for obstruction or a weak inference). In this scenarios, no additional information is provided with
respect to the baseline topology (BlazePose). This can be solved by considering the values of the joints
surrounding each eye to connect the head with the shoulders. With this new proposal, the additional
edges will not depend on any of the individual joints.

Additionally, we intend to evaluate the experiments in this study using different partitioning
strategies. In particular, using the full distance, connection and index splits proposed in previous work.

8 Conclusion

In this research, we present the first implementation of the BlazePose skeleton topology upon
the ST-GCN architecture for action recognition. To provide a valid comparison with the base model
in, we have selected Kinetics and NTU-RGB+D benchmark datasets. We proposed the use of
different skeleton detection thresholds that can rise the model performance when the visual data has
been recorded in unrestricted environments. Finally, we have provided a comparison study between
the OpenPose and the BlazePose systems for skeleton data extraction. We have shown that the
supplementary information of the feet and hands of the BlazePose topology does allows this tool to
provide a more accurate information about the action performed. Moreover, the Enhanced-BlazePose
topology proposed in this study can achieve even higher performance.
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