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Abstract: Wind power is one of the sustainable ways to generate renewable
energy. In recent years, some countries have set renewables to meet future
energy needs, with the primary goal of reducing emissions and promoting
sustainable growth, primarily the use of wind and solar power. To achieve
the prediction of wind power generation, several deep and machine learning
models are constructed in this article as base models. These regression models
are Deep neural network (DNN), k-nearest neighbor (KNN) regressor, long
short-term memory (LSTM), averaging model, random forest (RF) regressor,
bagging regressor, and gradient boosting (GB) regressor. In addition, data
cleaning and data preprocessing were performed to the data. The dataset used
in this study includes 4 features and 50530 instances. To accurately predict the
wind power values, we propose in this paper a new optimization technique
based on stochastic fractal search and particle swarm optimization (SFS-
PSO) to optimize the parameters of LSTM network. Five evaluation criteria
were utilized to estimate the efficiency of the regression models, namely, mean
absolute error (MAE), Nash Sutcliffe Efficiency (NSE), mean square error
(MSE), coefficient of determination (R2), root mean squared error (RMSE).
The experimental results illustrated that the proposed optimization of LSTM
using SFS-PSO model achieved the best results with R2 equals 99.99% in
predicting the wind power values.
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1 Introduction

Wind energy is crucial to reducing global carbon emissions. Wind turbine producers’ power
curves are an efficacious way of showing wind turbine overall effectiveness. Nevertheless, wind
power prediction is difficult because of the complexities of offshore wind turbine dynamics and the
surrounding cruel environment but prediction is necessary to permit condition monitoring [1]. Wind
energy production has a significant influence not just on power markets, but also on retail market
and wholesale layouts. Jointly, technological challenges occur as an output of the requirement to
assure the power grid’s proper operation. High-quality, long-term wind data values are necessary to
create technique findings which resulting in good policy suggestions. Middle and long-term prediction
requirements (e.g., reliability, thoroughness and rapidity) are more stringent, making it challenging to
generate trustworthy findings [2].

Wind forecasting technologies have been the focus of global research, serving as the foundation
for power system planning and operation, power dispatch reference and optimum energy flow
distribution. With the advancement of information, artificial intelligence technologies and edge
computing devices, forecasting approach is evolving toward surveillance refinement. The real-time
forecasting of wind power can help wind turbines improve their overall productivity by enabling
sophisticated wind turbine adjustment planning and pre-setting of pitch, yaw surveillance devices
[3]. Wind power prediction is important for power traders’ unit obligation, maintenance schedul-
ing and profit optimization. The present progress of effective and precise wind power prediction
methodologies provides an improved cost-effective operating and maintenance strategies for futuristic
wind turbines [4].

AI techniques have showed great accuracy, enhanced generalization performance, and better
learning capability, making them excellent for dealing with unreliable, inflexible, and discontinuous
wind power. Because of its high thoroughness, versatility, and enhanced efficiency, AI-based hybrid
techniques for wind power prediction such as deep learning, classification and regression, neural
network and rule-based techniques have recently gained popularity [5]. Accurate wind power and wind
speed (WP/WS) prediction has steadily become more important in reducing wind power variability
in network deployment management. Because of their greater capacity to cope with complicated
nonlinear issues, data uncertainties, and missing features, deep learning techniques are widely being
evaluated for WP/WS prediction as intelligent methodologies, particularly deep learning [6].

Wind power forecasting has evolved through the years into a method of addressing the high
fluctuation issues produced by large-scale integration. Improved forecast accuracy is essential for
improving power grid reliability and economics. Machine learning techniques have been used to
improve wind power forecasting. Bagging Neural Networks, Adaptive Boosting, Gradient Boost-
ing and Random Forest. Machines are some of the methods utilized for prediction. Ensembles
increase predicting accuracy by diversifying the model and are appropriate for middle and long-
term prediction. Optimization algorithms, signal decomposition techniques and several of mentioned
algorithms are integrated into hybrid models, which encompass the integration of both unsupervised
and supervised algorithms employing clustering models such as Spectral and Bayesian, and clustering
analysis is performed using K-means [7]. Aside from traditional machine learning techniques, the
effective employment of deep learning in object classification have attracted an increasing number
of academics and experts in the field of prediction. Given deep learning’s distinct advantages in
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time-dependent depictions and feature extraction, it is appropriate to integrate it with auxiliary
mode decomposition in forecasting of wind power [8]. Furthermore, when a substantial quantity of
hidden layers are employed in the building of a prediction models, deep learning techniques improve
computational and statistical approaches, although they are attacked for their comparatively poor
learning rates [9].

Wind power prediction relies heavily on assessment. Evaluating suggested prediction models
enables for ongoing comparison of alternative models and, as a result, their continuous evolution.
Both probabilistic and deterministic forecasts require evaluation. Over the years, basic comparison
measures like as Mean Squared Error (MSE), Mean Absolute Error (MAE) and Root Mean Squared
Error (RMSE) have been employed in deterministic prediction to assess the effectiveness of prediction
methods. Furthermore, assessing probabilistic projections is more difficult than assessing point
predictions. While the variance between anticipated and measured power values is used to evaluate
point predictions, this is not viable in probabilistic prediction since such a comparison is not achievable
explicitly [10].

Our contributions can be stated as follows. (1) Data preprocessing and data cleaning were
performed to the chosen dataset. (2) Deep neural network (DNN) model, k-nearest neighbor
(KNN) regressor model, long short-term memory (LSTM) model, averaging model, random forest
(RF) regressor model, bagging regressor model, and gradient boosting (GB) regressor model are used
as regression models for predicting wind power. (3) Five evaluation criteria namely, mean absolute
error (MAE), median absolute error (MedAE), mean square error (MSE), coefficient of determination
(R2), root mean squared error (RMSE) were utilized to estimate the efficiency of the regression models.
Fig. 1 illustrates the framework of the recommended methodology for wind power prediction.

Figure 1: Framework for the proposed wind power prediction
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The rest of the paper is organized as follows. The categorization of existing wind power forecasting
systems was presented in Section 2. Section 3 discussed the different ML/ DL strategies that may be
utilized to increase wind power forecasting performance. Section 4 presented the proposed model for
wind power prediction. Performance evaluation and results discussion were provided in Section 5. At
last, conclusion and future work are mentioned in Section 6.

2 Related Works

Machine learning approaches are currently utilized in many applications to classify and predict
the enrolled features based on supervised learning [11]. Furthermore, its ability to cluster the data and
reduce the dimensionality size of the features based on unsupervised learning. Deng et al. [12] used
a bidirectional gated recurrent unit approach with deep learning system to anticipate wind power.
The findings demonstrate the model’s capacity to spontaneously simulate the link between wind
direction, speed and power. Yildiz et al. [13] presented a Convolutional Long Short-Term Memory
network (Conv-LSTM) for short-term wind power prediction. To remove any irregularities in the raw
data, Variational Mode Decomposition (VMD) was applied. Following that, Conv-LSTM is used
to generate early forecasting findings, along with extract spatiotemporal data from the forecasted
samples. In two separate studies, the suggested model outperformed the other models in terms of
RMSE, MSE, MAE, and MRE error metrics. Authors in [14] suggested a two-step revolutionary deep
learning technique for wind power forecasting: feature extraction based on VMD, followed by an
enhanced CNN to predict wind power. Due to its competitive effectiveness, the suggested technique
surpassed the other systems and provided impressive outcomes for extremely short-term prediction.

Authors in [15] suggested SVM-based approach with Improved Dragonfly Algorithm (IDA) for
a hybrid wind power forecasting approach. When compared against existing models, such as the
Gaussian Process Regression and Back Propagation Neural Network (BPNN), the suggested model
outperformed them (GPR). The suggested IDA-SVM model outperformed the other techniques for
winter and fall datasets using the R2, NMAE, MAPE and NRMSE error metrics. Authors in [16]
suggested a new deep transfer learning strategy based on a one-of-a-kind serio-parallel CL feature
extractor for multi-step forward wind power forecasting of targeted wind ranches in the absence of
wealthy historical information. The findings validated the supremacy of the proposed model over
the independent LSTM and CNN techniques. Furthermore, the suggested CL-TL-CSO and CL-TL
approaches outperformed the other non-transfer techniques irrespective of whether they were deep
learning algorithms (i.e., LSTM, CNN, etc.) or shallow-layer network techniques (i.e., ELM and
Elman).

Authors in [17] suggested four ML techniques, namely, SVR, ANN, RF and regression trees for
wind power forecasting. The findings indicated that using a single metric that takes into account both
training time and performance, the SVR might be the optimum choice. Authors in [18] utilized a
unique STCM based on CNN-LSTM for ultra-short-term wind power prediction. The efficacy and
supremacy of the suggested CNN-LSTM technique were demonstrated by comparing four assessment
criteria with LSTM and CNN employed separately. The experiment findings demonstrate that the
overall model’s mean MAE, MAPE, RMSE, and NRMSE reduce by 33.77 percent, 30.69 percent,
25.3 percent, and 23.3 percent (compared to CNN), and 12.0 percent, 10.6 percent, 14 percent, and
12.7 percent (compared to LSTM). The suggested STCM for multi-step prediction based on CNN-
LSTM completely addressed the spatio-temporal correlation of meteorological parameters across the
wind farm and can predict wind farm power more correctly.
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Authors in [19] suggested a hybrid wind power projection technique based on ELM and KMPE.
The results indicated that the suggested ELM-KMPE strategy outperformed the traditional FFBPNN
approach. Nonetheless, because to the fixed-point phase, ELM-KMPE demonstrated a slower esti-
mating speed. As a result, more investigation is necessary to address the computation complexity
difficulties. Authors in [20] introduced a parameter optimization mechanism into the framework of
back-propagation neural networks (BPNN), where layers are merely piled in depth, to improve training
effectiveness. Authors in [21] demonstrated a hybrid technique for predicting wind power production
for twenty-four hours in advance. This unique technique is built on CNN with a Radial Basis Function
Neural Network (RBFNN). The simulation outcomes show that the suggested technique was more
effective than standard methods for estimating wind power 24 h in advance. Authors in [22] introduced
a novel effective hybrid prediction model integrating variational mode decomposition (VMD) and
mixed Kernel ELM (MKELM) for accurate wind energy forecasting. According to the results, the
suggested model produced the best effective predictive results with the lowest SMAPE, MAE and
RMSE values. A recent study presented by Alkesaiberi et al. [23] presented a comparative study of
wind power prediction using machine learning methods. The models presented in [23–30] describes
the algorithms and approaches to predict the wind power based on different evaluation matrices as
presented in Tab. 1.

Table 1: Some of ML/DL for wind power prediction

Paper Technique Criterion Value Conclusion

[1] Deep Learning
Neural Networks
(DNN)-Isolate
Forest (IF) and

MSE 0.003 IF (for outlier identification) was a
more successful approach, when the
input characteristics could not be
expected to be Gaussian.

[23] Ensemble learning
(ES)- Gaussian
process regression
(GPR) models

R2 0.95 The findings demonstrate the value
of considering the input factors and
lag data for forecasting wind power.
The improved GPR and ensemble
algorithms also surpassed the other
machine learning techniques,
according to the results.

[24] LSTM- Wavelet
Decomposition
(WD)

MAPE 5.831 When compared to a single
prediction model and machine
learning, the approach can more
correctly anticipate wind power
generation all over the state.

[25] Gaussian Mixture
Model (GMM),
Long Short-Term
Memory Network
(LSTM)

RMSE 6.37 The LSTM approach was
demonstrated to be more accurate
and have a quicker convergence rate
than the other techniques.
Furthermore, the GMM technique
outperformed and was evaluated
superior to the other approaches.

(Continued)
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Table 1: Continued
Paper Technique Criterion Value Conclusion

[26] Grey model,
Extreme Learning
Machine (ELM)

MSE
R2

0.000376
0.99376

The findings reveal that the
suggested approach outperformed
the standard extreme learning
machine technique in predicting
wind speed in the research region.

[27] Tabu Search- Non
Symmetric Fuzzy
(TS-NSFM)

MAE (Feb.)
18.995
(July)
18.932

In terms of modelling accuracy and
efficiency, the suggested algorithm’s
answer exceeds the results generated
by its competitors.

[28] xGBoost, SVR, and
RF algorithms

R2

MAE
0.995
7.048

RF is the most efficient technique
for predicting long-term total daily
wind power.

[29] LSTM- Enhanced
Forget-Gate (EFG)

MSE 5.5311 LSTM-EFG can better estimate
wind power at a given moment,
relieving the burden of surge and,
hesitation control in the power
system and making maximum use of
wind power.

According to the previous table, numerous strategies are routinely employed to forecast wind
power, although with limited model enhancement and data preprocessing capabilities. This shortage of
experience is a substantial problem for authoritative and consistent wind energy forecasts. As a result,
in comparison to the prior research discussed in this article, we suggest an approach to attain the best
performance of the wind power prediction system.

3 Proposed Methodology

A Deep Neural Network (DNN) is essentially an ANN with several hidden layers. The approach
is believed to be especially useful when working with huge data samples. It is built on a feedforward
multilayer network. A backpropagation method is used in the learning phase to change neuron weights
in order to decrease training error. The knowledge between layers is transferred through a nonlinear
activation function modification. Multiple layers of nonlinearity result in improved feature extraction
and info gain [30]. Deep learning techniques are very deep structures based on successive layers
of impersonation and abstraction [31]. Fig. 2 presents the deep network architecture of DNN with
multiple layers network.

In this work, we utilized DNN architecture with three basic layers which are the input layers that
represents the features selected from the applied wind dataset. The hidden layers which include five
stacked hidden layers each with five neurons in each layers with an ReLU activation function and
Adam optimizer. We utilized 50 epochs as a number of iterations with a patch size 64 and the learning
rate 0.0001. The proposed scheme is a hybrid model of type sequential hybrid means the first paradigm
is the LSTM that passes its output to the second paradigm SFS-PSO to optimize the results and to
boost the evaluation criteria results.
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Figure 2: Deep network architecture with multiple layers

3.1 Long Short-Term Memory

Long Short-Term Memory (LSTM) is a type of recursive neural network (RNN) that may learn
to depend on input for an extended period of time. Furthermore, it is appropriate for analyzing and
anticipating necessary events in time series with relatively lengthy gaps and delays. LSTM has had
significant success and is extensively utilized on a variety of conditions [29]. The LSTM presents a
memory unit based on RNN that is regulated by input, forgetting gates and output. It may improve
the screening, storage, and information flow monitoring under the time feedback procedure, efficiency
avoid risk of data loss, and address the gradient absence and explosion issue. The transformation
equation is defined as in Eqs. (1) to (5) [29]:

ft = σ(Wf [ht−1; xt] + bf ) (1)

it = σ(Wi [ht−1; xt] + bi) (2)

ot = σ(Wo [ht−1; xt] + bo) (3)

st = ft � st−1 + it � tanh(Ws [ht−1; xt] + bs) (4)

ht = ot � tanh(st) (5)

where notation [ht−1; xt] is the union of the previously concealed state with the current vector of input.
� represents the elementwise multiplication and σ denotes the logistic function defined elementwise
by Eq. (6):

σ (x) = 1
1 + e−x

(6)

The cell state st is the core innovation of LSTM. In comparison to the rapid shift in the concealed
state ht, The cell state can recall a more extensive past. The forget gate ft controls its memory. Through
an output gate, the hidden state ht is acquired from st.

3.2 Particle Swarm Optimization

When it comes to the particle swarm optimization (PSO) method, it’s inspired by the way flocks
of birds move together [32]. For example, the social behavior of birds may be simulated using the PSO
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algorithm Changes in velocity are used to guide the movement of swarms in their quest for food. These
are the parameters of each particle in the PSO.

• The fitness function is used to evaluate the particles’ current positions.
• Last best positions, which store better positions’ values of the particles.
• Velocity or rate of position change.
• Position, which indicated a point in the search space.

All particles’ locations and speeds change during the algorithm’s rounds. The following commands
are used to change the particle’s location as in Eq. (7).

xt+1 = xt + vt+1 (7)

where xt+1 is the new particle position, and the updated velocity of each particle vt+1 can be calculated
as in Eq. (8):

vt+1 = ωvt + C1r1 (pt − xt) + C2r2(G − xt) (8)

where ω is the inertia weight, C1 and C2 represent cognition learning factor and the social learning
factor. Parameter G is the global best position and r1 and r2 are random numbers in [0; 1].

3.3 Stochastic Fractal Search

An algorithm that uses random fractals as an inspiration for metaheuristic algorithms can be
as efficient and accurate as the original fractal technique. To find a solution to a given problem, the
Fractal Search (FS) technique follows three basic rules.

1. The best particles are kept while the others are removed with each new generation.
2. There are several ways to make and disperse new particles. In the new particles, the original

particle energy is shared.
3. A particle can have electrical potential energy.

Finding fractals in any given object is possible with the use of the Stochastic Fractal Search
(SFS), as explained in detail in [33]. The fractal-shaped objects are built using the Diffusion Limited
Aggregation (DLA) process. When compared to the original FS approach, the SFS method makes use
of diffusion and two distinct types of update processes. This solution BP might be surrounded by the
solutions BP1-BP5 in order to arrive at the best potential outcome.

3.4 Diffusion Process

The Gaussian distribution approach is used in the DLA growth process to produce new particles
based on the diffusion procedure of SFS. In the diffusion process, a list of walks created by the best
solution

−→
P may be determined as Eq. (9).

−→
P′ = Gaussian (μ−→

P , σ) +
(
β × −→

P − β ′ × −→
V

)
(9)

where the updated best solution is denoted by
−→
P′ . The values of β and β ′ are selected randomly from

the range [0; 1]. The point in the group is denoted by
−→
V , whereas the position of the best point is

referred to as
−→
P . In addition, μ−→

P is equal to |−→P | and σ is equal to |−→V − −→
P |. A better solution can

be found by using the application of SFS into the process of PSO, which is an exploration method
based on the algorithm’s diffusion process. The proposed algorithm is based on employing the SFS
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to improve the exploration of the PSO optimization algorithm. The details of the proposed algorithm
are presented in Algorithm 1.

3.5 The Proposed SFS-PSO Algorithm

To improve performance of LSTM network, we proposed a new optimization approach based on
PSO and SFS to achieved better balance between the exploration and exploitation of the optimization
process, the proposed algorithm employs the SFS technique to boost the performance of the exploita-
tion step. The steps of the proposed algorithm are listed in Algorithm 1, and the balance between the
exploration and exploitation is depicted in Fig. 3 depicts. In addition, the flowchart shown in Fig. 4
clarifies the steps of the proposed methodology.

Algorithm 1: The proposed SFS-PSO algorithm

1 Initialize the population particles
−→
Xi (i = 1, 2, 3, . . . , n) with size n,

2 Fitness function Fn, and max iterations iter_max.
3 Initialize the particles with random positions and velocities.
4 Initialize parameters ω, C1, C2, r1, r2, β, β ′

5 Evaluate fitness function Fn for each
−→
Xi

6 Find best individual
−→
Xi

∗

7 While t < iter_max do
8 for (i = 1; i ≤ n) do
9 Update particle positions using:
10 xt+1 = xt + vt+1

11 Update particle velocities using:
12 vt+1 = ωvt + C1r1 (pt − xt) + C2r2(G − xt)

13 end for
14 for (i = 1; i ≤ n) do
15 Apply Diffusion Process:
16

−→
P′ = Gaussian (μ−→

P , σ) + (β × −→
P − β ′ × −→

V )

17 end for
18 Update parameters ω, C1, C2, r1, r2, β, β ′

19 Evaluate fitness function Fn for each
−→
Xi

20 Find best individual
−→
Xi

∗

21 Set t = t + 1
22 end while
23 return

−→
Xi

∗

In this paper, we present Exploitation that described as a greedy strategy in which the proposed
model use estimated value rather than real value to try to acquire greater rewards. As a result, we
use this strategy to make the best decision possible based on current knowledge. Unlike exploitation
strategies are more concerned with enhancing their understanding of each action than with receiving
more rewards in order to reap long-term gains. Accordingly, this work depends on multi-feature learn-
ing model with greater local attention. At the same time, this model might gain more representative
global and local properties. To extract more complete global characteristics, global features combine
both the middle and final layers [34,35].



724 CMC, 2023, vol.74, no.1

Figure 3: The balance between exploration and exploration tasks of the proposed method

Figure 4: Flowchart of the proposed SFS-PSO optimization algorithm steps
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4 Results

The results of the conducted experiments on the wind forecasting using the proposed approach
along with the traditional baseline models are presented and discussed in this section. The section
starts with presenting the employed dataset, followed by presenting the achieved results.

4.1 Dataset

As a case example, the studies use a wind power forecasting dataset to estimate hourly power
output at seven wind farms for up to 48 h in advance. On Kaggle, the dataset is called Wind
Turbine Scada Dataset linked in https://www.kaggle.com/datasets/berkerisen/wind-turbine-scada-
dataset. Fig. 5 shows the correlation matrix of the features of this dataset. In addition, a statistical
analysis of the dataset features is presented in Tab. 2, and the histogram of the wind power values is
shown in Fig. 6.

Figure 5: Correlation matrix of the wind dataset features

Table 2: Statistical analysis of the wind dataset features

Count Mean Std Min 25% 50% 75% Max

Power 50530 1307.68 1312.45 2.4714 50.677 825.83 2482.50 3618.73
Wind_speed 50530 7.55795 4.22716 0 4.2013 7.1045 10.3000 25.2060
Theor_power 50530 1492.17 1368.01 0 161.32 1063.77 2964.97 3600
Wind_dir 50530 123.687 93.4437 0 49.315 73.7129 201.696 359.997

4.2 Evaluation Criteria

The evaluation of the proposed approach is performed in terms of the metrics presented in
Tab. 3. These metrics are Nash Sutcliffe Efficiency (NSE), coefficient of determination (R2), mean
bias error (MBE), root mean error (RMSE) and mean absolute error (MAE) where N is the number
of observations in the dataset; V̂n and Vn are the nth predicted and actual wind power values, and V̂n

and Vn are the arithmetic means of the estimated and observed values Eqs. (10)–(14).

https://www.kaggle.com/datasets/berkerisen/wind-turbine-scada-dataset
https://www.kaggle.com/datasets/berkerisen/wind-turbine-scada-dataset
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Figure 6: Histogram of the wind power based on the records of the wind dataset

Table 3: Performance evaluation metrics

Metric Value

RMSE √√√√ 1
N

N∑
n=1

[
V̂n − Vn

]2
(10)

MAE
1
N

N∑
n=1

∣∣V̂n − Vn

∣∣ (11)

MBE
1
N

N∑
n=1

(
V̂n − Vn

)
(12)

R2

1 −
∑N

n=1

(
Vn − V̂n

)2

∑N

n=1

((∑N

n=1 Vn

) − Vn

)2 (13)

NSE

1 −
∑N

n=1

(
Vn − V̂n

)2

∑N

n=1

(
Vn − V̂n

)2 (14)

4.3 Evaluation Results

In this section, the prediction results of the wind power is performed in terms of two experiments.
Firstly, the prediction using the proposed optimized LSTM. Secondly, the prediction using a set of
baseline models. These models include, deep neural network, K-nearest neighbor, average ensemble
model, random forest, bagging regression model, and gradient boosting regression model. The
discussion of the achieved results is presented in the next section.
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4.3.1 Results Using the Proposed Approach

The proposed optimized LSTM is employed to predict the wind power values. Fig. 7 shows the
mapping between the predicted and actual wind power values. As shown in the figure, this mapping is
fitted to a line which indicated the accurate prediction of the wind power values. The number of samples
employed in this experiment is 500 samples. On the other hand, the assessment of the achieved results
is performed and the results are listed in Tab. 4.

0
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1

0 0.2 0.4 0.6 0.8 1

Figure 7: The predicted vs. actual values of wind power values with line fitting

Table 4: Values of the evaluation metrics of the achieved results using the proposed approach

Metric Value

rmse 2.25E−05
mae 2.01E−06
mbe 1.46E−06
r 1
R2 0.999999
RRMSE 0.219512
NSE 0.999999
WI 0.999995

4.3.2 Results Using the Baseline Models

The baseline models included in this experiment are deep neural network, K-nearest neighbor,
random forest, bagging regression model, and gradient boosting regression model. The parameters of
these models are presented in Tabs. 5–8.
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Table 5: Parameters setting of the deep neural network

Batch size Learning
rate

Epochs Optimizer Activation function
used in output

Activation function
used in hidden

64 0.0001 50 Adam Linear ReLU

Table 6: Parameters setting of KNN regressor

Model Parameters

KNN regressor n_neighbors = 2, weights = distance

Table 7: Parameters setting of bagging regressor

Model Parameters

Bagging regressor n_estimators = 10, max_samples = 1

Table 8: Parameters setting of gradient boost regressor

Model Parameters

GB regressor n_estimators = 200, learning_rate = 0.1

On the other hand, the alignments of the predicted and actual values of the wind power using
the five baseline models are shown in Fig. 8. Only 100 points of test samples are employed in this
experiment. Although the alignment of the test points in this figure are properly fit a line, this alignment
does not perform the same way when the number of points increased. This makes the proposed
approach superior as it performs better in case of employing larger set of test points.

4.3.3 Results Comparison

A comparison between the results achieved by the proposed approach and the baseline models is
presented in Tab. 9. As presented in the table, the proposed approach could achieve the best results
among the models included in the conducted experiments. The MAE of the proposed approach is
(0.000002), NSE is (1.2 × 10−7), MBE is (0.00001), R2 is (99.99%), and RMSE is (0.00002).
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Figure 8: The predicted vs. actual values of wind power values with line fitting

Table 9: Evaluation criteria results using the proposed and other machine learning models

Model MAE NSE MBE R2 RMSE

DNN 0.0021 1.42 × 10−5 0.0008 99.96% 0.0037
KNN 0.0007 5.43 × 10−6 0.0001 99.98% 0.0023
LSTM 0.0002 1.05 × 10−6 0.0001 99.99% 0.0010
Averaging 0.002 4.38 × 10−5 0.0008 99.90% 0.0070
RF regressor 0.003 3.65 × 10−5 0.0016 99.90% 0.0060
Bagging regressor 0.001 1.3 × 10−5 0.0002 99.96% 0.0040
Gradient Boost regressor 0.004 5.3 × 10−5 0.0014 99.86% 0.0070
Proposed SFS-PSO LSTM 0.000002 1.2 × 10−7 0.00001 99.99% 0.00002

5 Conclusions

Wind forecasting data is used in this study to test the proposed optimized LSTM model’s
efficiency. A new optimization technique is used to optimize the parameters of the LSTM network.



730 CMC, 2023, vol.74, no.1

To improve the exploration and exploitation capabilities of the PSO optimizer, this optimization
strategy utilizes both the PSO optimizer and SFS to generate stochastic groups of agents. Experiments
were done to evaluate the suggested approach’s performance and compare it to findings from six
other machine learning models to demonstrate its viability. To assess the success of the project, five
assessment criteria are used. This approach’s stability and effectiveness were further illustrated with
analysis plots derived from the obtained data. It’s clear from the comparisons with other models that
the strategy we’ve provided is superior. The future of this study entails testing the suggested technique
on different datasets and assessing its applicability to other prediction tasks.

Data Availability: A data availability found in https://www.kaggle.com/datasets/berkerisen/wind-
turbine-scada-dataset.
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