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Abstract: There exists various neurological disorder based diseases like tumor,
sleep disorder, headache, dementia and Epilepsy. Among these, epilepsy is the
most common neurological illness in humans, comparable to stroke. Epilepsy
is a severe chronic neurological illness that can be discovered through analysis
of the signals generated by brain neurons and brain Magnetic resonance
imaging (MRI). Neurons are intricately coupled in order to communicate
and generate signals from human organs. Due to the complex nature of elec-
troencephalogram (EEG) signals and MRI’s the epileptic seizures detection
and brain related problems diagnosis becomes a challenging task. Computer
based techniques and machine learning models are continuously giving their
contributions to diagnose all such diseases in a better way than the normal
process of diagnosis. Their performance may sometime degrade due to missing
information, selection of poor classification model and unavailability of qual-
ity data that are used to train the models for better prediction. This research
work is an attempt to epileptic seizures detection by using a multi focus dataset
based on EEG signals and brain MRI. The key steps of this work are: feature
extraction having two different streams i.e., EEG using wavelet transformation
along with SVD-Entropy, and MRI using convolutional neural network
(CNN), after extracting features from both streams, feature fusion is applied to
generate feature vector used by support vector machine (SVM) to diagnose the
epileptic seizures. From the experimental evaluation and results comparison
with the current state-of-the-art techniques, it has been concluded that the
performance of the proposed scheme is better than the existing models.
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1 Introduction

Epilepsy is a non-communicable disease and one of the most frequent neurological disorders in
humans, typically characterized by abrupt attacks [1]. An early aberration in the electrical activity of
the brain that affects a part or the entire body is a sudden seizure. Around 60 million people in the
world suffer from epileptic seizures of various forms [2]. In some cases, these attacks might induce
cognitive problems that can lead to the patient suffering from serious physical injuries. People with
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epileptic seizures may also experience emotional suffering as a result of their condition and the stigma
associated with it. This is why it is important for doctors to be able to recognize and treat epileptic
seizures as soon as possible [3].

There are around 50 new occurrences of epilepsy per 100,000 people each year, making it one of
the most prevalent neurological disorders [4]. Epilepsy affects roughly 1% of the population, and about
a third of those sufferers have refractory epilepsy [5]. There are about 0.5 new epilepsy cases per 1,000
people in the United Kingdom (UK) per year, which equates to about 1% of the population. Doctors
in the acute care and emergency departments need to have a thorough understanding of seizures and
seizure mimics [6].

If an epileptic seizure can be predicted early enough, medication can be administered to prevent it;
this gives doctors plenty of time to prepare. A seizure has four stages: the preictal state, which occurs
prior to the onset of the seizure, the ictal state, which occurs during the seizure and is followed by
an attack, the postictal stage, which begins following an attack, and the interictal stage, which begins
following the postictal stage of a first seizure and ends before the preictal stage of a subsequent seizure
[6]. Fig. 1 depicts three alternative input states for each of the channels.

Figure 1: States of epileptic seizure adopted from [5]

Diagnosing seizures and epilepsy relies heavily on clinical history and physical examination, with
laboratory testing serving as a supplemental tool [7]. Clinical back-ground, such as premonitory
indications, as well as specifics of the seizure itself, including phenomenology, responsiveness, focal
features and the postictal state, are important historical facts. Furthermore, detail investigation is
engrossed on finding out if an epilepsy syndrome is present, which defines how extensive a diagnosis
is, as well as determining therapy and prognosis [8]. EEG, positron emission tomography (PET), mag-
netoencephalography (MEG), single-photon emission computed tomography (SPECT), functional
MRI (fMRI), and electrocorticography (ECoG) are the most important functional neuroimaging
methods. When it comes to diagnosing epileptic seizures, studies show that EEG modalities are the
most commonly used by doctors [9].

Electroencephalography (EEG) is frequently used because it is inexpensive, portable, and able to
display distinct rhythms in the frequency range. Electroencephalograms (EEGs) are used to measure
the bioelectric activity of the brain by measuring voltage fluctuations in the brain’s neurons. To identify
epileptic seizures, it must be documented for a long period of time. These signals are also captured in
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many channels, making the analysis more difficult. The main power source, electrode movement, and
muscle tremor can all introduce distortions into EEG signals. It will be difficult for doctors to detect
epileptic seizures based on EEG readings that are too loud. EEG modalities and other methods such
as MRI paired with Artificial Intelligence (AI) approaches are being used to diagnose and forecast
epileptic episodes [10]. Conventional machine learning and deep learning (DL) approaches have been
used in the field of epileptic seizure diagnosis.

As compared to the standard diagnosis process of medical domain, computer-based programs
and model also play a vital role in the detection of all such diseases with more accurate results in less
time. Epileptic seizures may also be detected by a variety of computer and machine learning based
methods that use a wide range of statistical, temporal and frequency-based methods [11]. In all such
methods a step-by-step procedure has been adopted that may include the selection of key features and
classification in standard machine learning techniques. Moreover, data mining techniques and signal
processing expertise are also required to build a benchmark model that work effectively even with
sparse amounts of data. The traditional ma-chine learning algorithms may not perform as effectively
as they formerly did now that data is so readily available. Thus, the state-of-the-art deep learning
(DL) approaches as a sub level method have been used. The methods require large amount of data
required for training in DL models, which is unlike standard machine learning approaches. Other
issue of feature overfitting may sometime occur in these models when there is a dearth of data due of
their extensive feature spaces [12].

There always exists a gape in machine learning model that gives an absolutely re-liable approach
for both preprocessing and feature extraction due to the advancement in the nature of dataset,
new modification in the models and machine learning pro-grams. This work presents an effective
and reliable machine learning model for the prediction of epileptic seizures from EEG signal and
brain MRI. The key steps of the proposed model are feature extraction, feature fusion and final
classification.

1.1 Research Contribution

The following are the main contributions of the paper:

• Because of the novelty of the proposed work and very less availability of the required datasets, a
new dataset of 5,544 amalgamated images of brain MRI with EEG for classification of seizures
and normal diagnosis have been created. The dataset is further divided by using train test split
strategy of 80–20, in which 80% are train images and 20% is the test images.

• This research work provides an efficient multi domain based model for seizure detection that
is considered to be the better model for seizure detection rather than traditional uni-model
methods such as decision tree and association rule mining that relies on EEG only.

• The experimental evaluation of the proposed model has been carried out by using sensitivity,
specificity, ROC curve and cross validation. It has been concluded that the proposed model
produces better detection than current state-of-the-art techniques.

The rest of the paper is laid out as follows: Section 2 focuses on Materials and Methods, in which
proposed technique is explained in detail. Section 3 provides the results in which, experimental data
are summarized and compared. Conclusion and future work are discussed in Section 4.
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2 Materials and Methods

In this section, the proposed epileptic seizure detection technique from an EEG and brain MRI
images has been presented. Initially, the description of the main dataset has been outlined, while later
on, the feature extraction process based on Singular Value Decomposition (SVD) Entropy from EEG
signals and CNN for MRI-Images have been discussed. A standard machine learning model that solely
considers images as input might often fail to give improved results when they are blurry or of poor
quality. The proposed approach fixes this problem by introducing a hybrid feature extraction method
from EEG and MRI image to increase the accuracy of model. The brief description of the proposed
model has been provided in below sub section.

2.1 Dataset of the Study

In this study, a new dataset based on several web sources of EEG and brain MRI reports
of different hospitalized patients has been collected for the experiments. Some of epileptic seizure
detection images and EEG signals were also collected from GitHub and Kaggle repositories. However,
majority of seizure images were collected from miscellaneous laboratories on public request. The
distribution of dataset has been shown in Tab. 1. The images datasets are divided into MRI-I, MRI-II
and MRI-III respectively, that contains total 6,896 images in which 3,480 images with a confirmed
cases and 3,416 images of normal patients. The images have resized to 260 × 260 resolution.

Table 1: EEG and MRI dataset with detailed description

# Dataset type Dataset repository No. of records Web source

1 MRI-I DSI Studio 3900 Images DSI-Studio: A Tractography
Software Tool for Diffusion
MRI Analysis | DSI Studio
Documentation (labsolver.org)

2 MRI-II DWI_controlX.zip 1500 Images 10.1016/j.neuroimage.
2019.116345

3 MRI-III DWI_YY.zip 900 Images 10.1016/j.neuroimage.
2019.116345

4 MRI-IV Neuro 596 Images http://bids-
apps.neuroimaging.io

5 EEG-I Clinical EEGs 500 S.C Signal https://arxiv.org/abs/
2108.01030

6 EEG-II Bonn Database 500 S.C Signal pf.edu/web/ntsa/downloads/-
/asset_publishe

7 EEG-III Manually Labeled 6927 Records sip.piconepress.com/projects/
tuh_eeg/html/downloads.shtml

As far as the EEG signals dataset are concerned, the first dataset EEG-I consists of five subsets
EEG-A, EEG-B, EEG-C, EEG-D and EEG-E having exactly 100 pieces of single chancel EEG
signal. The length of each signal is recorded as 23.6 s. In the distribution, the EEG-A and EEG-B
set were recorded from the scalp skin of five healthy volunteers using the 10–20 standard electrode
placement approach. Furthermore, EEG-A is based on volunteer awake with their eyes open and
EEG-B is awake with their eye closed respectively. The sets EEG-C, EEG-D and EEG-E is collected
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from patient’s archive before their surgery. The EEG-II dataset is an open source and publically
available on Bonn Barcelona database in the form off 500 single channel signals. This dataset is
also of five classes to stream with the previous dataset. While the EEG-III dataset is a manually
annotated, labeled and preprocessed data with a particular epileptic seizures and normal EEG signals.
This channel distribution of this dataset is also unified with the previous data set to make the process
smooth. The labeled of the dataset is marked as 0 (Normal Data) and 1 (Seizures) each of the class
having 3905 and 3022 sample respectively.

2.2 Preliminary Pre-processing

In this phase, EEG signals and MRI images have been preprocessed before feature extraction. It
is observed that the power line and Electromyography (EMG) generated noises frequently interfere
with EEG signals that have significant impact on clinical diagnosis and must be eliminated in order to
provide a clearer picture. Therefore, Interferences Reduction Algorithm (IRA) [13] has been applied to
preprocessed the dataset. Additionally, the MRI images were filtered to remove noise and then resized
to 260 × 260 pixels for better viewing. The epileptic seizure cases for each image in the collection were
labeled using a Numpy array. In this work, zero labels stand for epileptic seizure images. Later on the
data was merged by concatenate method and at the end, it was randomly shuffled.

2.3 Features Extraction

The feature extraction process has been carried out in two different dimensions. In the EEG
dataset, each individual dataset is stored in two different matrices (Normal and Seizure) containing
the sample signals and loaded into Google-Colab [14]. Further on, both matrices are passed to
wavelet filter that decompose the signals. Although, there exist numerous methods for signals feature
extraction such as Fast Fourier Transformation [15] Eigenvectors and Time-Frequency Distributions
[16]. However, wavelet transformation (WT) is considered to be the most optimal method due to its
key role in diagnostic field and its noncomplex compression of data points in biomedical signals. In
this process, the EEG signals are represented as building block usually called as wavelet. A customized
wavelet functions known as shift and stretching on a particular time axis has been applied to raise the
obtained wavelet from the mother wavelet. There are two categories of wavelet that are continued and
discrete.

The Continuous Wavelet Transform (CWT) can be expressed as:

CWT(a, b) =
∫ ∞

−∞
x (t) � (a, b) (t) (dti) (1)

where x(t) is the EEG signals, a and b are the dilation and translation factors � (a, b)(t) represents the
complex conjugation that can be computed by using

� (a, b) (t) = 1√|a|�
(

t − b
a

)
(2)

where, �(t) represents the wavelet.

Alternatively, discrete wavelet transformation (DWT) has also been considered when there exists
a need for multi-scale feature extraction in which each scale represents a particular thickness of EEG
data. The DWT can be expressed as:

DWT (a, b) =
∫ ∞

−∞
x (t) � (a, b) (t) (dti) �<= x (t) , � (a, b) (t) (3)
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During the decomposition process through WT process, each EEG signal is decomposed into sub
bands that are further visualized as shown in Fig. 2. In the very next phase, SVD Entropy has been
applied to measure the dimensionality of data [17]. In this work, SVD Entropy is act as an indicator of
the number of eigenvector that are essential for providing descriptions of the particular EEG signal.

Figure 2: EEG band visualized shape of ellipse signals

Algorithm 1: EEG based Feature Extraction Process
Input: WT decomposed signal X, with ordered parameter (OP)
Output: SVD-Entropy Calculated Value
X = [2.4, 4.5, 6.2, 8.4 . . . . . . . . . . . . . . . . . . . . . .]
OP= Length of the EM
SVD-Ent(X, OP)
{

Return 0.76 value { between 0 and 1}
}

The SVD Entropy of a signal Si is defined as:

SVD − Ent = −
∑K

i=1
xilog2(xi) (4)

where K is number of singular value of the embedded matrix (EM) and x1, x2, x3, . . . xn are the single
normalized value of EM. The EM is formally defined by:

EMi = [xi, xi + delay, . . . ..xi + (Order − 1) ∗ dela (5)

EMi = [EM1, EM2, . . . ..EMi + (N − (order − 1)) ∗ delay (6)



CMC, 2023, vol.74, no.1 629

The resultant matrixes of are shown in Fig. 3. Algorithm 1 provides the working of this phase
where initially WT based decomposed signals is given as an input.

Figure 3: EEG features extraction process

In another stream of the proposed architecture the MRI images data has been filtered and further
processed for feature extraction. In order to reduce the complexity of the proposed work a CNN
based features extraction strategy has been adopted [18]. The fundamental advantage of CNN over
its predecessors is that it discovers essential features without the need for human intervention [19,20].
In this work, the MRI images are resized into a fix size of (32 × 32). The CNN model in the first
stage is able to extract the features of the input image at the time of the query by having multiple
convolution layers and pooling layers that are built with a different set of filter sizes. The pooling layer
will evaluate the most important data while ignoring irrelevant data section. This technique is known
as subsampling, and it aims to lower the size of the data map without sacrificing importing data. The
convolution layer extracts the features of an input image while learning image features to preserve the
relationship between pixels. The most optimal features can be discovered by increasing the number of
filters in the convolution layer, but this may increase the cost of training time [21].

With the subsampling-based operation, the pooling layer retains the most valuable information
and reduces the parameter set. Finally, the fully connected layer defined a vector matrix that is further
processed for next phase.
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2.4 Feature Fusion

After the formation of two different types of features vectors, the obtained features are coupled
by applying feature fusion strategy. This process facilitates the classification of by increasing fault
tolerance. In the fusion process, both types of features are set into a same network that is further
mapped into a single dimensional feature vector. The feature vector process is a formation of FV1
(EEG feature set) and FV2 (Image based features) with equal dimensional. The final fusion feature
vector (FFV) is formed by using Eq. (7).

FFV = W1FV1 + W2FV2 (7)

whereas, W1 and W2 are the fusion weight that are computed during the training process. After the
fusion layer, two fully connected layers are used to classify the in-put signals. There are hundreds of
neurons in the first and in the last fully connected layer corresponds to the categories of classification
tasks. Softmax is used to convert the vector of the final fully linked layer into a probability distribution
form. [22].

2.5 SVM Based Classification

After the formation of the feature set, the classification phase is initiated as shown in Fig. 4. There
is a plethora of classification algorithms available, of which the Support Vector Machine (SVM) is
a state-of-the-art technique that is the most widely used for classification, and it has been shown
to achieve higher accuracy and computational efficiency than some other traditional classification
approaches [23]. A no longer increases classification performance; instead, the classification starts
with more discriminative features and gradually adds fewer discriminative features as input to the
SVM classifier as the classification progresses. When compared to conventional classifiers, SVM are
capable of dealing with extremely huge feature spaces and exhibiting good generalization capabilities.
It is also important to limit the risk of structural misclassification while training an SVM classifier,
whereas classical classifiers are often trained to decrease the risk of empirical misclassification (as
opposed to structural misclassification).

SVM is based on a linear separable optimum classification hyperplane, whose essential is to
identify the support vector required to generate the ideal classification hyperplane in the training
sample [24]. This is due to the solution of a quadratic optimization problem in mathematics, which
can be traced back to this period [25]. First, SVM maps input data into a high-dimensional vector
space using an algorithm called a nonlinear transformation. Next, it builds an optimal classification
hyperplane in the feature space to develop a linear classification. Finally, it maps the data back to the
original space and turns it into an impute space classification using a nonlinear transformation.

Assume {Ti, Vi} ∀Ni = 1 be a training dataset, where T is the input sample, and V is the label of
classes (Seizures and Normal). Then the hyperplane is defined as

d = w.t + d = 0 (8)

where t is a point representation on hyperplane, w is the orientation and d represents distance from
the origin to hyperplane. A quadratic optimization problem in mathematics can be implicated for the
phenomenon. Nonlinear classification in the imputation space is achieved by first mapping the input
data into a high-dimensional vector space via a nonlinear transformation, followed by the construction
of the optimal classification hyperplane in the feature space to build the linear classification.

As sample of linear separable is:(
xi,yj

)
and j = 1, 2, 3 . . . , l, xj ∈ Rn, yj ∈ [−l , l ] (9)
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Figure 4: CNN based feature extraction and seizures prediction

In Eq. (9), n is the dimension of space sample, yi is the category of sample and l is the total number
of training sample

The linear discriminant function in the dimension 0.225 + space d is

(x) = p ∗ x + t (10)

where parameter variable is donated by p, Classification value of threshold is donated by t and vector
inner product operation is p ∗ x.

From the above re-equipment, final classification equation is:

yi[(p ∗ xi + t) ≥ 1 and j = 1, 2, 3, . . . , l (11)

For reducing the classification error, we introduced a slack variable £i (£i ≥ 0) in Eq. (11) then

yi[(w ∗ xi + t) ≥ 1–ξj j = 1, 2, 3, . . . , l (12)

In case 1 > £j > 0 then classification is precise using Support Vector Machine. Transformation of
the nonlinear issue can be done and the optimal classification plane can be found in this transformation
space. In general, this strategy is difficult to apply because of the complexity of this change. Kernel
function K is applied to the transformation space’s inner product if it fulfills the necessary functional
theory’s requirements. By employing a suitable inner product function, linear classification of a non-
linear transformation can be achieved. The RBF kernel function is applied in this research to evaluate
SVM. The RBF kernel function is as follows:

(xi,xj) = exp
(

−||x − xj||2

2σ 2

)
(13)
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The corresponding classification decision function is:

f (x) = sgn
[∑j

i=0
αj ∗ ∗ yj(xxj) + t∗

]
(14)

From above equation, αi
∗ and b∗ are optimal solution.

SVM-based classification employs n samples, n-l samples to train the classifier, and the remaining
for testing. Classification is carried out in this manner with distinct iterations and test samples. The
final performance is presented as the average of the outcomes of all n trials. Thus, the classification of
the normal and abnormal regions occurs.

3 Results

This section describes the evaluation of the proposed model. The analysis of model performance
evaluated for each intensive classification based on accuracy is summarized. For every 100 epochs,
the proposed model detected some patterns. The learning rate of the model that has been observed
as 0.0001 and batch size is set to 20. In this work, the ADAM optimizer [23] is used to reduce loss
performance. In case of MRI images dataset, we have resized all images according to selected models
requirements and collected the results one by one. Similarly, all the images are resized by 260 × 260
before fed into the feature extraction process.

3.1 Model Evaluation Metrics

Two different types of results matrices have been considered for the evaluation of the proposed
work that are most typical for classification models. The detail of each of them is presented in below
sub section.

3.1.1 Confusion Matrix

Numerous metrics has been used to check the correct and incorrect diagnoses of epileptic seizure
disease by testing the chosen dataset. The different criteria for assessing the performance of taxonomic
models were accuracy classification, accuracy, F1-score, sensitivity and specificity [26,27].

Accuracy = TP + TN
TP + TN + FP + FN

(15)

Precision = TP
TP + FP

(16)

Recall = TP
TP + FN

(17)

F1 = 2 × (P × R)

(P + R)
(18)

Due to the unbalanced nature of the test dataset, sensitivity and specificity are considered to be
the most appropriate matrices used to report model performance. The traditional calculation for each
measure has been presented in Eqs. (15) to (18). A confusion matrix has some effects on prediction
over a classification problem such as the number of predictions that are right or wrong are categorized
by class with count values that leads to matrix uncertainty.
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However, sometimes to characterize a classification model output on collection of test data, the
true values are usually known. This work test dataset or a validation dataset with expected results.
We make test dataset for prediction of each instance. The number of predictions is correct for each
class counts from the predicted outcomes and predictions. Additionally, we also used Operating
Characteristic Receiver (ROC) [28] curve that is provide the TF rate as a function of the FP rate.
We have displayed curve of ROC by using:

• This ROC represents specification trade-off between sensitivity and specificity.
• Here the curves represent in quadrant of top left side is diagnostic of accurate correctness of

test output inclination toward the border. Correspondingly, diagonal shows the less correctness
of output result of the curve.

3.2 Experimental Setup and Evaluation

As far as the experimental setup is concerned, a classification model was trained to categorize
the features set data into epileptic seizure disease. The implementation has been performed using
MATLAB 2019 with following configuration of the PC: Core i9, 3.7 GH (Intl R), and 16 GB RAM.
For the ease of processing some of open source tools and models such as Tensor Flow (2.0) and open
source deep learning model have also been used.

The evaluation of the proposed model has been performed on a set of features that were split
into test and train by K-Fold cross validation. From analysis it has been shown that the stratified cross
validation shows the same distribution in evaluation set. The validation splits the feature into a number
of K subsets for training and testing, in our experimentations we have used 10-fold cross validation.
Fig. 5 (0 for Seizures and 1 for Normal) and Tab. 2 represent the best performance on each fold for
the proposed model. From this, it has been shown that the proposed work diagnoses epileptic seizure
disease correctly. The matrix presents a high level of correctness of which the first diagonal represents
correct identification of epileptic seizure disease.

Figure 5: (Continued)
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Figure 5: Cross fold validation of the proposed work

Table 2: Performance of the model on classification of epileptic seizure disease

Fold k Accuracy (%) Precision (%) Recall (%) F Score (%)

1 95.5 95 96 96
95.5 96 95 95

2 98 97 99 98
98 99 97 98

3 95.5 97 94 96
95.5 94 97 95

(Continued)
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Table 2: Continued
Fold k Accuracy (%) Precision (%) Recall (%) F Score (%)

4 98.5 98 99 99
98.5 99 98 98

5 98 99 97 98
98 97 99 98

6 97 99 95 97
97 99 95 97

7 97 96 98 97
97 98 96 97

8 98 97 99 98
98 99 97 98

9 98.5 98 99 99
98.5 99 98 98

10 98 97 99 98
98 99 97 98

Fig. 6 shows the accuracy curve used for the model to calculate that how accurately our model is
perform on validation set. The accuracy of the proposed model on the selected dataset is recorded as
96.98%.

Figure 6: The accuracy of implemented model

The proposed scheme has been evaluated using ROC curves with different state-of-the-art
methods represented as Model 1 [29] and Model 2 [30] respectively. Fig. 7a shows the comparison
with the work of Model 1. In which the performance of the proposed scheme is better than the Model
1. In terms of MRI images, the proposed technique is compared with Model 2 having significant results
as depicted in Fig. 7b. Moreover, due to the rare availability of using multiple techniques in parallel for
different streams of data, very less benchmark methods are available for the comparison. Therefore,
the Model 1 and Model 2 are combined (EEG + MRI) to perform the comparison with our proposed
scheme. Fig. 7c portray the combined comparison of the proposed method with Model 1 and Model 2
for both EEG and MRI datasets. The comparison shows that the amalgamated results of our proposed
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technique is much better than the existing work due to the introduction of novel similarity measure
and fusion strategies. Last but not the least, the effectiveness of MRI with EEG signals is compared
to check the importance of both the features vectors for seizures detection. Fig. 7d shows MRI images
with EEG signals to determine the relative importance of each other. It is clear from this comparison
that MRI images with EEG signals increases the detection of Epileptic seizures as compare with the
alone EEG signal detection.

Figure 7: ROC based performance: (a) Comparison of proposed scheme with existing model using
only EEG signals, (b) Comparison of proposed scheme with existing model using MRI datasets, (c)
Comparison of proposed scheme with existing model using EEG signals + MRI datasets and (d)
Comparison of proposed scheme with self using EEG signals vs. MRI datasets

Tab. 3 demonstrates the results of different model architectures in comparison with the proposed
work. In term of accuracy and Area under Curve (AUC), the proposed model gives best results among
all. The AUC, sensitivity and Positive Prediction Values are recorded as 96.98%, 93.90%, 95.95% and
88.75% respectively. However EfficientNetB1 was runner up as it secures 96.50%, 92.50%, 95.70% and
85.90% in accuracy, AUC, sensitivity and Positive Prediction Values respectively. Moreover, we can see
that in term of sensitivity, VGG16 gave 100% results but it gave worst result, 69.23% only, in Positive
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Predictive Value (PPV). The proposed model performed significantly better than the state-of-the-art
models by giving 96.98% accuracy in all.

Table 3: Performance comparison of proposed model with existing state-of-the-art methods

Model Accuracy AUC Sensitivity Positive predictive value
(PPV)

EfficientNet B0 91.40% 84.60% 86.30% 72.40%
EfficientNet B1 96.50% 92.50% 95.70% 85.90%
EfficientNet B3 95.20% 93.30% 86.80% 90.00%
VGG16 92.95% 84.60% 100% 69.23%
VGG19 93.70% 85.50% 89.50% 72.90%
MobileNet 92.70% 86.50% 93.40% 74.70%
ResNet50 90.70% 81.70% 90.00% 63.60%
Proposed 96.98% 93.90% 95.95% 88.75%

Fig. 8 shows the performance of observed models. As per this bar graph, it is very clear each
model performed well to predict epileptic seizure disease from MRI images and EEG signals. We can
observe that the proposed model performed better in terms of accuracy, AUC, sensitivity and PPV than
the EfficientNet B0, EfficientNet B1, EfficientNet B3, VGG16, VGG19, MobileNet and ResNet50
models. Performance of ResNet50 was least among all tested models as its accuracy and AUC was
only 90.70% and 81.70% respectively. Whereas MobileNet exhibit 92.70% accuracy and its sensitivity
was 93.40%. Overall, proposed model performed well in all performance criteria’s.

Figure 8: Performance of proposed model in term of accuracy, AUC, sensitivity and PPV
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4 Conclusion & Future Work

In this paper, the classification of epileptic seizure disease from EEG Signals and MRI images
using WT transformation, CNN, feature fusion and SVM has been presented. An effective multi-
machine learning architecture has been applied to identify seizure. The proposed model has been
composed of data gathering, preprocessing, feature extraction using WT transformation method,
CNN and finally classification using SVM classifier. Numerous experiments have been conducted to
evaluate the proposed work’s performance. From the experimental evaluation, it has been observed
that the proposed SVM based approach considerably improved the accuracy by 96.98% and AUC of
low-cost EEG epileptic seizure. In this work, feature fusion based strategy to combine the EEG and
MRI images were applied to construct robust network architecture for tracking down the epileptic
seizure disease patient. This approach seeks to manage the use of machine learning and data science
models to be carried out in medical and neurological domain furthermore in the future. In future,
the improved version of this work using more advance similarity measure can be implemented for
detecting epileptic seizure disease.
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