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Abstract: The quality of the air we breathe during the courses of our daily lives
has a significant impact on our health and well-being as individuals. Unfor-
tunately, personal air quality measurement remains challenging. In this study,
we investigate the use of first-person photos for the prediction of air quality.
The main idea is to harness the power of a generalized stacking approach and
the importance of haze features extracted from first-person images to create an
efficient new stacking model called AirStackNet for air pollution prediction.
AirStackNet consists of two layers and four regression models, where the
first layer generates meta-data from Light Gradient Boosting Machine (Light-
GBM), Extreme Gradient Boosting Regression (XGBoost) and CatBoost
Regression (CatBoost), whereas the second layer computes the final prediction
from the meta-data of the first layer using Extra Tree Regression (ET). The
performance of the proposed AirStackNet model is validated using public
Personal Air Quality Dataset (PAQD). Our experiments are evaluated using
Mean Absolute Error (MAE), Root Mean Square Error (RMSE), Coefficient
of Determination (R2), Mean Squared Error (MSE), Root Mean Squared
Logarithmic Error (RMSLE), and Mean Absolute Percentage Error (MAPE).
Experimental Results indicate that the proposed AirStackNet model not only
can effectively improve air pollution prediction performance by overcoming
the Bias-Variance tradeoff, but also outperforms baseline and state of the art
models.

Keywords: Personal air quality; prediction; airstacknet; ensemble learning;
feature extraction; stacking

1 Introduction

Air pollution is one of the greatest environmental threats to human health and well-being
worldwide. According to the World Health Organization (WHO), exposure to air pollution leads to
nearly seven million premature deaths each year due to the exacerbation of many chronic diseases such
as respiratory infections, aggravated asthma, heart disease, and strokes [1,2]. Monitoring air pollution
is therefore of paramount importance. It is necessary to study the characteristics of the surrounding
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environment and track air pollution accurately so that people can be aware of the air pollution levels
in their current location and accordingly act.

To quantify the level of air pollution, government agencies have defined the Air Quality Index
(AQI). AQI is conventionally derived by sensing, sampling, and measuring, regularly throughout
the city, the microgram per cubic meter (g/m3) concentrations of several air pollutants, including
particulate matter (PM2.5), ozone (O3), and nitrogen dioxide (NO2) [3,4]. This method has severe
limitations in terms of time and location, due to variability in AQI within a city related to weather,
traffic, and land use [5]. Accordingly, people should have access to real-time pollution concentration
information as they commute to work, walk around town, or spend time outside, so they can choose
the healthiest route to their destination and take precautions to protect their health [3,6]. Hence,
determining the personal AQI accurately in real-time is a topic that merits further exploration.
Accordingly, local information on air pollution (e.g., PM2.5 , NO2 , O3) and weather (e.g., temperature
and humidity) is important at the personal level, however, it is not always possible to collect a large
amount of these data [7,8]. Rather than relying solely on conventional air monitoring stations, mobile
technology and artificial intelligence can provide valuable clues from first-person images to understand
that environmental situations in cases in which precise data from air pollution stations are lacking. In
fact, image quality has steadily improved, allowing for the estimation of AQI from images using image
processing and machine learning [5,7,8]. Thus, the public can easily take photos of the surrounding
environment using their mobile phones, get instant air quality information from the image analysis
process, and take timely actions to prevent exposure to air pollution.

Recently, the prediction of air quality based on the analysis of images has received increasing
attention. The assumption behind image-based air quality prediction is the correlation between
environmental data (PM2.5 , O3 and NO2 data as ground truth) and images. It enables the development
of reliable image-based models that can provide insights into personal AQI. These models use image
processing algorithms to extract features from first-person images and estimate the air quality based on
these features [5,9–11]. Despite the above Image-based prediction models having acceptable prediction
performances, the use of a single model for prediction to deal with the randomness of air pollution
concentrations often leads to poor model generalization [12]. Using a single model is unlikely to
capture the entire underlying structure of the data to yield optimal results. A model with a high variance
may represent the data set accurately, but it may also be over-fitted to noisy or unrepresentative
training data. Likewise, a model that exhibits a low variance and a large bias will underfit the target.
As an alternative, Ensemble learning, as a general meta-approach to machine learning, has become
a hot research topic. The method seeks to make better predictions by combining multiple learners
through an ensemble of models in order to capture the underlying distribution of the data more
accurately [13,14].

Boosting, Bagging, and Stacking are the three most prevalent Ensemble learning approaches. The
advantage of stacking is that it can combine the capabilities of several heterogeneous high-performing
learners to solve a regression or classification problem, whereas bagging and boosting consider only
homogeneous weak learners. It is worth mentioning that bagging and boosting focus more on reducing
the variance and bias, respectively, while stacking targets both by finding the model that exhibits a
small variance and a large bias.

Stacking, also known as a stacked generalization, consists of combining multiple learners where
a meta-level (or level-1) learner uses the output of base-level (or level-0) learners. This approach has
been introduced to the field of air pollution prediction and shows improvements in the prediction
accuracy [13,14]. Most of these applied stacking models predict and forecast air quality based on
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weather, location, and environmental sensors data [15,16]. Furthermore, these models use arbitrary
choices of Level-0 and Level-1 learners without focusing on optimizing the stacked structure.

To the best of our knowledge, this is the first study that deals with the optimal combination of
base-level and meta-level learners, to predict PM2.5, O3, and NO2 concentrations, at a precise place,
using discriminate haze-relevant features extracted from photos rather than using environmental data.
Indeed, we define a novel optimized Stacking model, AirStackNet, to improve the overall regression
performance. AirStackNet consists of Boosting algorithms as the base-level learners (XGBoost,
CatBoost, LightGBM) and one of Bagging algorithms (Random Forest/Extra-trees) as the meta-level
learner. The greatest strength of AirStackNet is that the meta-data inherited from its diverse boosting
base-level learners enhance its training performance to generate a better-quality model. Our model
aims to compensate for the inadequacies of current air quality detection technologies and provide a
fine-grained, low-cost air quality monitoring. To evaluate the designed model, we perform experiments
on Personal Air Quality Data Set (PAQD) to demonstrate the generalizability of the designed stacking
structure.

The main research questions that we want to address in this paper are:

1) How should base-level and meta-level learners be paired in AirStackNet?
2) Can the AirStackNet stacking structure outperform the baseline learners?
3) What effect does the tuning of the hyperparameters of the base-level learners have on AirStack-

Net’s prediction quality?
4) What is the performance of AirStackNet in comparison to other ensemble techniques?

Our paper is organized as follows: In Section 2, we provide an overview of air quality prediction
methods. In Section 3, we describe our proposed model, AirStackNet, for air quality prediction. In
Section 4, we present the experiments and discussion.

2 Related Work

Personal air quality is a significant indicator during the evaluation of the air pollution impact
on personal health [17]. Air Quality Index (AQI) is a rank indicator of air pollution, which is a very
critical environmental impact on the public health [10]. Over the last 40 years, city-wide air quality
prediction has been of interest [18]. All of these studies, however, were limited to evaluating the
levels of air pollutants at the city scale for the general population. At the individual level, current
research has focused on crowdsourcing computing by capturing data from sensing devices [8]. These
sensors produce lifelog data that can be categorized into numerical data and non-numerical data
(environmental variables, weather data, Global Positioning System (GPS), health measurements, time,
etc). In recent years, the air quality measurement based on computing methods using lifelogging data
has attracted much attention of the researchers [11]. Predicting personal air quality has the main
challenge that is developing an effective model based on a small training dataset in contrast to the
public stations of atmospheric monitoring [17]. This work aims to predict personal air quality utilizing
numerical lifelog data.

Reference [15] studied a methodology based on multi-source machine learning to estimate the
local AQI score and level according to the location of users in a huge city. The utilized machine
learning algorithms are Extreme Gradient Boosting, CatBoost, LightGBM, Random Forest, and
Support Vector Machine. The researchers conducted several experiments on three main datasets are
“MNR-HCM”, “MNR-Air-HCM”, and Surrounding-Environment Personal-Health Lifelog Archive
(SEPHLA)-MediaEval 2019 gathered in Fukuoka (Japan) and Ho Chi Minh (Vietnam) cities. Various
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useful related features are extracted from the datasets, such as geographic data, timestamp informa-
tion, sensor data (temperature and humidity), emotion tags from users (such as calm, green, etc.),
the semantic attributes of images taken by users, and the public weather data (including pressure,
temperature, humidity, dew point, and wind speed) of the corresponding cities. The results showed
that the random forest model with sensor data consolidated with public weather data is best suited to
estimate AQI values and ranks in many experiments.

Reference [19] presented a study to predict AQI level based on several models of machine
learning using sensor data (including temperature, humidity), location, timestamp features, and public
weather data. The experiments are conducted using “MNR-HCM II” dataset. The findings found that
adopting stacking generalization with these features achieves higher overall performance than other
models and features.

Reference [20] developed different predicting models based on ma-chine learning algorithms
to predict AQI level utilizing an eleven-year dataset gathered by Taiwan’s EPA (Environmental
Protection Administration). The utilized machine learning algorithms are stacking ensemble, artificial
neural network, adaptive boosting, random forest, and support vector ma-chine. The findings found
promising results for predicting AQI level and the best performance found in the stacking ensemble
and AdaBoost.

Reference [21] proposed a framework of aerial-ground air quality sensing for fine-grained three
dimensional AQI monitoring and predicting based on a light-weight Dense-MobileNet model using
haze images acquired by UAVs (Unmanned Aerial Vehicles). Also, the researchers presented a Graph
Convolutional neural network-based Long Short-Term Memory (GC-LSTM) model using graph
topology to realize AQI prediction. The experiments are conducted using a real-world dataset.

Reference [22] developed a simple but effective image prior that is a dark channel prior for haze
removal from a single image. The researchers directly estimated the haze thickness and recover a high-
quality image of haze-free. Reference [23] proposed an approach based on Support Vector Machine
(SVM) and Random Forest (RF) models to estimate the local AQI level and score. The experiments
are conducted using the dataset provided at MediaEval 2020 based on K-Fold cross-validation and
Randomized-Search.

The researchers in [24] developed a model to forecast the personal AQI using IDW (Inverse
Distance Weighted) algorithm for estimating the missing levels of air pollutants. The experiments are
conducted using the dataset provided at MediaEval 2020 based on the pollutants O3, NO2, PM2.5. In
[7] presented a voting regression algorithm to predict AQI using three base regressors that are Random
Forest, Gradient Boosting, and linear regressor. The experiments are conducted using the dataset
provided at MediaEval 2020. Reference [25] presented a complex event analysis to predict the traffic
risk based on three Dimensional-Convolutional Neural Network (3D-CNN) and a related events set
that are extracted from different sources of urban sensing data. Where they a model to reserve and
wrap the spatio-temporal information into 3D raster images to conduct the predictive analytics using
3D-CNN. The researchers evaluated the proposed model by the real dataset during 2014 and 2015
collected in Kobe, Japan.

In [26], the authors proposed a prediction model based on CRNN (convolution recurrent
neural network) for short-term PM2.5 pollution prediction utilizing the spatial-temporal features of
atmospheric sensing data. The experiments were conducted using the atmospheric sensing dataset
from thirty-three coastal cities in China and Fukuoka’s environmental monitoring dataset from 2015
to 2017.
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In [11] developed a DCWCN (double-channel weighted convolutional network) ensemble learning
method utilizing the extraction features from various parts of the environmental image. For feature
extraction, the researchers built a DCWCN using each channel for training the various parts of the
environment images. Then a self-learning weighted feature fusion method was proposed that weights
and con-catenates the vectors of extracted features for measuring the air quality. The experiments were
conducted using a dataset of an environmental image with random sampling time and locations.

In [17], the authors developed a transfer learning model using an encoder-decoder structure based
on Wasserstein distance to match atmospheric monitoring station data representing the heterogeneous
distribution of the source domain and personal air quality representing the target domain. The
experiments were conducted using the dataset of public atmospheric monitoring stations collected by
AEROS (Atmospheric Environmental Regional Observation System) in Japan as the source domain.
The target domains are the private data collected in Fujisawa and Tokyo, Japan.

In [27], the authors analyzed the association among the greenness exposure and the depressive
symptoms based on constructing the logistic regression models. The experiments are conducted based
on the data collected in 2009 from the Korean Community Health Survey. NDVI (Normalized
Difference Vegetation Index) and land-use data (forest area and forest volume) are utilized to assess
the greenness. To report the depressive symptoms, the OR (Odds ratios), with 95 percent confidence
intervals (CI) were estimated with the quartile 1 (quartile of the lowest NDVI).

In [28] presented two frameworks to estimate the air pollution level. In the first framework, the
images were preprocessed, the features extracted from the images using Gabor transform, and then
two shallow classifiers are utilized for modeling and predicting the air pollution level. In the second
framework, CNN was developed to input a sky image and output the air pollution level. The experi-
mental findings found that CNN classifier fulfilled accuracy better than the traditional combination
methods of feature extraction and classification. In [10] presented an association framework between
AQI rank of lifelogging data and visual features. In the training phase, the visual data (environmental
images) and lifelog numerical data (environmental AQI measurements) are used. CNN model is used
for the feature extraction of the visual data and the standard AQI ranking is used for numerical data.
Then the outputs are combined as the input data for a multi-layer perception algorithm to estimate
the relationship of association between the visual feature and the rank of AQI.

The researchers in [13] developed a stacked ensemble model to analyze and forecast the daily
average concentricity of PM2.5 in Beijing city (China). Special processes are conducted to extract signifi-
cant features before modeling, including simplification, transformation polynomial, and combination.
Tree-based and stability feature selection approaches are applied to determine the important attributes.
XGBoost, Adaboost, Least Absolute Shrinkage and Selection Operator (LASSO), and multi-layer
perceptron with the genetic algorithm are utilized in the space of level-0 and then in the space of level-1
are integrated by support vector regression via stacked generalization. The experiments indicated that
the ensemble model produces better performance than one non-linear predicting model. The summary
of existing approaches is shown in Tab. 1.



2078 CMC, 2023, vol.74, no.1

Table 1: Summary of existing approaches

Ref. Techniques Dataset Performance
measurements

Limitations

[21] Graph convolutional
neural network-based
Long Short-term
memory (GC-LSTM)

Real-world dataset -GC-LSTM: RMSE
up to 9.145

-Expensive
communication
overhead.

-Difficulty in achieving
long-term AQI
monitoring.
-Large-scale and
complicated deep
learning models
cannot be deployed to
UAVs.

[6] Semantic and instance
segmentation, Image
retrieval, Transfer
learning, Fuzzy
negation and Periodic
frequent pattern
mining

MNR-HCM,
VisionAir India

-Prediction Precision:
MNR-HCM = 0.9022
and VisionAir India
0.7343.

-location constraints.

-No estimation of
PM2.5 at the Real time.

[5] A deep learning and
image-based model
using residual neural
network (RESNET)

(Northwest Normal
University dataset)
NWNU-AQI:
multi-scenario air
quality image database

-Mean Accuracy = 74 -Daytime air quality
monitoring.

-Due to different
constraints such as
(atmospheric
differences and
different regional
climate), the model
will not be able to
match the monitoring
accuracy of air quality
monitoring stations.

(Continued)
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Table 1: Continued
Ref. Techniques Dataset Performance

measurements
Limitations

[4] Semisupervised
learning, Artificial
neural network and
Linear-chain
conditional random
field

Road networks, taxi
trajectories,
meteorological data
and point of interests
(POIs)

-PM10:
Precision = 0.828 and
Recall = 0.826.

-Datasets variety.

-NO2:
Precision = 0.808 and
Recall = 0.798.

-There are only a few
existing monitor
stations.
-Aerosols and other
pollutants are not
included in the
methodology.

[3] AQI-T-RM (Air
pollution and Traffic
Risk Map)

MNR-HCM -Exposure reduction
30.25.

-Data with a
granularity of less than
10 m was collected.

[23] SVM and RF Dataset provided at
mediaeval 2020

-SVM: MAE 12.74,
RMSE 15.93, and
SMAPE 0.32.

-Each subtask’s model
is optimized and
evaluated separately.

-RF: MAE 12.93,
RMSE 15.96, and
SMAPE 0.32.

[24] IDW Dataset provided at
MediaEval 2020

-SMAPE: Up to
0.521219253

-There is a significant
gap in O3 and NO2

prediction results.
Because the model
equation does not have
any offset factors to
adjust for the large
difference between
personal weather data
collected by volunteers
and public weather
data from weather
stations.

-RMSE: Up to
78.4465017
-MAE: Up to
30.32401094

(Continued)
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Table 1: Continued
Ref. Techniques Dataset Performance

measurements
Limitations

[7] Voting regression
algorithm based on
three base re-gressors
that are Random
Forest, Gradient
Boosting, and linear
regressor

Dataset provided at
MediaEval 2020

-RMSE: average score
of 35.39 for Walker
and 51.16 for Car.

-AQI and individual
air pollution levels are
predicted based on
regression methods.

[11] DCWCN
(double-channel
weighted
convolutional
network)

Building an
environmental image
database with random
locations and sampling
time.

-Accuracy over 87% -It’s difficult to
discriminate between
images with adjacent
grades and similar
information.

[25] 3D-CNN Real dataset collected
in Kobe, Japan

-Short-term: Best
MSE is 5494.44

-Prediction model
based on atmospheric
environmental data

-Medium-term: Best
MSE is 6676.25
-Long-term: Best MSE
is 6617.74

3 Methodology

This section describes the proposed approach and its associated process flow that consists of three
main steps for predicting personal air quality index, as shown in Fig. 1. The main process flow is as
follows:

Step 1: Data preparation.

Missing values can heavily influence regression models. Personal Air Quality Data Set (PAQD)
contains some missing values such as air pollutants concentration data PM2.5, NO2, O3 and weather
data (e.g., temperature and wind). We apply Imputation method using Ball Tree algorithm with
Haversine distance to estimate the missing values.

Step 2: Haze-relevant Features Extraction.

224-dimension vectors of six Haze-relevant features were obtained from original images.

Step 3: Model construction.

The extracted feature vectors were entered into the base regressors which are XGBoost, Light-
GBM, and CatBoost to estimate the probability of each of pollutant concentration from each base
regressor. The obtained vector of meta-data from the base-level learners was entered into the Random
Forest/Extra-Trees meta-regressor to predict PM2.5, O3, and NO2 values from images.
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Figure 1: System architecture

3.1 Data Preparation

To impute the missing data, we propose to perform a local neighborhood search using a BallTree
k-nearest neighbors (KNN) algorithm with the Haversine distance metric. The missing values of the
pollutants are replaced by the mean of the known values in the nearest neighboring areas. Haversine,
as a formula for navigation, calculates the angular distance between two points on the surface of a
sphere. This metric calculates the shortest path between two points, just like Euclidean distance. The
difference is that a straight line is not possible since both points are assumed to be on a sphere. To
calculate Haversine distance between two points on the sphere, The first coordinate of each point is
assumed to be the latitude, the second is the longitude, given in radiance [29]:

D(x, y) = 2arcsin
[√

(sin2

(
x1 − y1

2

)
+ cos cos (x1) ∗ cos cos (y1) sin2

(
x2 − y2

2

)
)

]
(1)

3.2 Haze-relevant Features Extraction

Haze is an atmospheric phenomenon where dust, smoke, and other fine particles obscure the
clarity of the scene. Therefore, outdoor photographs can be used to estimate the concentration of air
pollutants using haze information. We need to find the statistical features that are most relevant to the
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haze density in the image, regardless of the image content. In image processing, an image influenced
by haze can be described using the atmospheric model follows [30]:

I(x) = J (x) t (x) + A (1 − t (x)) (2)

where x is the pixel coordinates, I is the observed hazy image, J is the haze-free image, t represents the
medium transmission, and A denotes the global atmospheric light. Images with higher air pollution
tend to look hazier due to lower transmission and contrast. Hence, image features that correlate to
haze level enable pollutant concentration estimation. In the following, we investigate six haze-relevant
features.

a. Dark Channel Prior: Dark channel prior is based on the observation that in most haze-free
outdoor images at least one color channel has some pixels with very low intensity. Conversely,
hazy images have a significant increase in luminance as a result of additive air light, resulting in
no dark pixels. The dark channel is an informatcurreive feature for haze detection. It is defined
as the minimum of all pixel colors in a local area and can be calculated using the following
equation [31]:

Jdark (x) = minc∈r,g,b

(
miny∈�r(x)

Jc (y)
)

(3)

where Jc represents one of the RGB channel of J, and x denotes all pixel colors in a local patch.

b. The Transmission: Based on the Dark Channel Prior, we assume that the atmospheric light A
is given, and the transmission is constant in a local area r(x). If we use the minimum operation
in the local area in Eq. (1), we can estimate the transmission as follows:

t = 1 − ω minc

(
miny∈�r(x)Ic (y)

Ac

)
(4)

In our experiment, we fix the value of w to 0.95, the patch is set to 45 × 45 for an image.

c. RMS Contrast: Low contrast is one of the observable characteristics of a blurred image due
to the scattering and diffusion of reflected light reaching the cameras. Therefore, contrast is
one of the most perceived features for haze detection and estimation. In this study, we use the
root mean square (RMS) of an image to describe the contrast, which is defined as the standard
deviation of the image pixel intensities [21].

RMS =
√( 1

mn

(∑n−1

i=1

∑m−1

j=1

(
Iij − avg(I)

)2

(5)

where Iij is intensity at (i, j) pixel of the image with size M by N, and avg(I) is the average intensity of
all pixels in the image.

d. Atmospheric Light: To estimate the atmospheric light, we first pick the top 0.1% brightest pixels
in the dark channel. Among these pixels, the pixels with highest intensity in the input image I
is selected as the atmospheric light [22].

e. Power Spectrum: Usually, air pollution time series have a broad spectrum related to
the periodicity of physical processes in the atmosphere and precursor emissions. We calculate
the power spectrum of an image I with magnitude NN by squaring the magnitude according
to the Discrete Fourier Transform (DFT) [32]:

S (u, v) = 1/N2 |I (u, v)|2 (6)
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where (u, v) denotes the image transformed by DFT. We represent the two-dimensional frequency in
polar coordinates, thus u = f cos θ and v = f sinθ , f denotes the radius of power spectrum image, and
θ denotes the angle of the polar coordinates.

f. Normalized Saturation: It can be observed that the image saturation varies greatly with the
change in haze concentration. Therefore, we consider the characteristic of local saturation,
which indicates how close the colour is to the spectral colour [33]. For an image I, we calculate
the normalized saturation for each pixel by:

Sx,y = (Ix,y − min (S1))/((S1) − (S1)) (7)

where max(S1) is the maximum saturation value and min(S1) is the minimum saturation value of
image I.

3.3 Stacked Ensemble Regressor and Model Construction

Single-base regressors are algorithms that follow the basic rules of machine learning. These
algorithms use a training dataset and apply only one of the machine learning algorithms to build
a predictive model, e.g., LR, MLP, and SVM, etc. Ensemble methods, on the other hand, usually
combine many weak learning algorithms to obtain a strong model. The stacked ensemble regressor
is an integrated method proposed by [34]. The prediction results of several ordinary learners are used
as new features for retraining to achieve a minimum error rate of the prediction model. Compared
to the individual regressors, the stacking regressor has a stronger non-linear expressiveness. In this
paper, we use the AirStackNet model to predict personal air quality, as presented in Algorithm 1.
The AirStackNet model is based on a stacked ensemble regressor that includes two learning stages
to predict pollutant concentration levels. In the first stage, the extracted visual features are input to
the base-level boosting regressors. We decide to use the combination of XGBoost, LightGBM and
CatBoost as boosting base regressors. Then, the output of the base regressors are estimated via ten-
fold cross-validation to avoid the problem of over-fitting. In the second stage, these outputs are used
as input for the bagging meta-regressor (Random Forest/Extra trees regressors).

The idea of cross validation is combined with Stacking to avoid using the same training set for
building both base-level and meta-level regressors. Instead of using all the training examples to get
base-level regressors, we now partition data in D into K subsets and get K regressors, each of each
is trained only on K-1 subsets. Each regressor is applied to the remaining one subset and the output
of all the base-level regressors constitute the input feature space for the meta-level regressor. After we
build the meta-level regressor based on the base-level regressors’s predicted labels, we re-train the base-
level regressors on the whole training set D so that all the training examples are used. Applying the
meta-level regressor on the updated base-level regressors outputs provides the final ensemble output.

Algorithm 1: AirStackNet with K-fold Cross Validation
Data: Training data D = (x1 , y1), (x2 , y2), . . . , (xm , ym)
Step 1: split D into K subsets: D = {D1, D2, . . . , DK }
for k in [1..K] do
Learn T base-level regressors

for t in [1..T] do
train a regressor hkt from D\Dk

end for
(Continued)
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Algorithm 1: Continued
Construct a training set for the meta-level regressor

for xi ∈Dk do
calculate {x′

i, yi},
wherex′

i = {hk1(xi), hk2(xi), . . . , hkT(xi)}
end for

end for
Step 2: Learn a meta-level regressor
Learn a new regressor h′ from the set of {x′

i , yi}
Step 3: Re-train the base-level regressors
for t in [1..T] do
Train a regresssor ht based on D
end for
Result: H(x) = h′(h1(x), h2(x), . . . , hT(x)) where H is an ensemble regressor

4 Experimental and Results

The aim of this section is to present key aspects of the dataset, the model settings, and the
performance evaluation metrics we used to compare the proposed stacked ensemble model with other
selected models. All the experiments conducted to answer the above-mentioned research questions are
summarized in this section.

4.1 Dataset Description

To conduct the experiments, we used the Personal Air Quality Data Set (PAQD), provided within
the MediaEval 2020 task “ Multimodal personal health lifelog data analysis”, to answer the following
question “Can personal air quality be predicted using images captured by personal devices and some
open source data ?” [8]. The aim of this task is to find out if we can use only lifelog data (i.e., images
of the environment) and some open source data (such as weather and air pollution data) to predict
personal air pollution data. PAQD was collected from March to April 2019 along the marathon route
at the 2020 Tokyo Olympics and the running route around the Imperial Palace using wearable sensors.
There were five data collection participants who were assigned to five routes to collect the data. Each
participant started collecting data at 9AM on each day of the week and took approximately one hour
to complete each route. The data collected includes weather data (e.g., temperature and humidity),
atmospheric data (e.g., O3, PM2.5, NO2, GPS data, and captured photos. The dataset contains 116751
records and their corresponding images. Each record contains the following information: ID of the
record, Identifier of the user, DateTime, Latitude, Longitude, Altitude, Wind speed, PM1, PM2.5, PM10,
O3, NO2 and the path to the associated photo.

In order to gain insights from raw data that helps in making informed decisions, we performed
descriptive statistical data analysis. We calculated the mean, min, std, 25%, 50%, 75% and max
values for each of the atmospheric data (e.g., O3, PM2.5, NO2. Fig. 2 summarizes the obtained results.
Pollution levels in central Tokyo remain high, as evidenced by a maximum PM2.5 level of 46 and a mean
value of 22, which is categorized as unhealthy for sensitive groups.
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Figure 2: “Personal Air Quality Dataset” (PAQD) analysis

4.2 Models Setting

Our models are implemented on WindowsTM 10 Pro, Intel(R) Core(TM) i7-10510U CPU@
1.80 GHz 2.30 GHz, with RAM storage of 16 GB. We used the regression class from the PyCaret
library, an open source low-code machine learning library in Python. During the training process,
70% of the images were randomly selected for the training set, and the remaining 30% were used as
the test set. During the training process, we tuned the hyperparameters using Randomized SearchCV
with 10-fold cross-validation to find the best com-bination of hyperparameters for each base regressor
from the list of base regressors (Gradient Boosting Regressor, LightGBM Regressor, CatBoost
Regressor). Randomised SearchCV is a very effective method for tuning the parameters that increase
the generalizability of the model. This process searches a predefined parameter space for each model
and selects the hyperparameters with the best performance. After 50 iterations of the random search
process via 10-fold cross-validation to optimize the performance metric “MAE”, we obtained the
optimal regressor parameters. The best performing hyper-parameters selected based on the lowest
values on MAE are used to fit each regressor to the full training dataset. Tab. 2 shows the results
of tuning the hyper-parameters for each base regressor. The tuned regressors were used as base-level
regressors to predict the concentration values of the following pollutants (NO2, O3, PM2.5).

Table 2: Details of hyperparameters tuned values for each regression model

Regressor Tuned hyper-parameters values

LightGBM regressor Bagging_fraction = 0.8,
Bagging_freq = 3,
Boosting_type = ‘gbdt’,
Feature_fraction = 0.6,
Importance_type = ‘split’,
Learning_rate = 0.15,
Max_depth = −1,

(Continued)
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Table 2: Continued
Regressor Tuned hyper-parameters values

Min_child_samples = 36,
Min_child_weight = 0.001,
Min_split_gain = 0.6,
N_estimators = 200,
Num_leaves = 256

XGBoost regressor Base_score = 0.5,
Booster = ‘gbtree’,
Colsample_bylevel = 1,
Colsample_bynode = 1,
Colsample_bytree = 0.7,
Enable_categorical = False,
Learning_rate = 0.15,
Max_delta_step = 0,
Max_depth = 11,
Min_child_weight = 3,
N_estimators = 140,
Objective = ‘reg:squarederror’

CatBoost regressor Learning_rate = 0.2,
Bagging_temperature = 0.1,
12_leaf_reg = 30,
Depth = 12,
Max_bin = 255,
Iterations = 100,
Loss_function = ‘Logloss’,
Bootstrap_type = ‘Bayesian’

4.3 Evaluation Metrics

To evaluate the performance of the prediction models for PM2.5, NO2, and O3, we used six
evaluation metrics, namely Mean Absolute Error (MAE), Root Mean Square Error (RMSE) and
Coefficient of Determination (R2), Mean Squared Error (MSE), Root Mean Squared Logarithmic
Error (RMSLE), and Mean Absolute Percentage Error (MAPE), as seen in Tab. 3. MAE represents
the average difference between the target value and the predicted value. RMSE represents the square
root of the standard deviation of the differences between the predicted and actual values. R2 is the
proportion of the variance in the response variable that is predictable by the explanatory variables.
MSE is the second moment of the error and thus includes both the variance of the estimator and
its bias. RMSLE is like RMSE but is mainly used for large variance predictions by transforming the
predicted and the real dependent variable into a logarithmic value. MAPE means the average difference
between the predicted value and the target value. A good regression model is the one that has the lowest
MAE, RMSLE, MAPE, MSE, RMSE, and the highest R2.

The mathematical formulae are presented in the following equations, where yi is the actual value
of the ith sample case, ŷi is the predicted value of the ith sample case, y is the average of the actual values
and n denotes the total number of sample cases.
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Table 3: Summary of used performance metrics

Mean absolute error MAE = 1
n

n∑
i=1

|yi − ŷi|
Mean squared error MSE = 1

n

n∑
i=1

(yi − ŷi)
2

Root mean squared error RMSE =
√

1
n

n∑
i=1

(yi − ŷi)
2

Coefficient of determination R2 = 1 −
1
n

n∑
i=1

(yi−ŷi)
2

1
n

n∑
i=1

(yi−y)
2

Mean absolute percentage error MAPE = 100%
n

n∑
i=1

|yi−ŷi|
yi

Root mean squared logarithmic error RMSLE =
√

1
n

n∑
i=1

(log log (yi + 1 ) − log log (ŷi + 1)) 2

5 Results and Discussion

To assess the proposed approach and illustrate the performance of the AirStackNet model, we
conducted four case studies over the PAQD dataset, in accordance with the research questions. First,
we compared the conventional regressors to determine which estimators should serve as base and
meta regressors in our AirstackNet model structure. In addition, we studied whether AirstackNet
could enhance prediction capabilities compared to conventional individual models. Furthermore, we
investigated the impact of tuning the hyperparameters on the reliability of the selected base regressors,
yet the stability of AirstackNet. Lastly, in order to assess AirstackNet’s contribution to the literature,
we compared it with state-of-the-art models. Below are the details and results of the case studies.

5.1 First Case Study: Choice of Base Regressors

In the first case study, we aim to select the top-10 base estimators for our stacking model. Thus, we
conducted comparative study between the following conventional regressors to estimate PM2.5, NO2,
and O3 pollutants concentration values. The obtained results are reported in Tabs. 4–6.

Table 4: Comparison among different conventional regressors for predicting PM2.5 values based on
PAQD dataset

Model MAE MSE RMSE R2 RMSLE MAPE TT (Sec)

Extra trees regressor 0.8018 3.3342 1.8253 0.9679 0.1318 0.0698 71.6620
Random forest
regressor

0.9638 5.2981 2.3013 0.9490 0.1453 0.0766 351.2130

CatBoost regressor 2.0008 9.2298 3.0377 0.9110 0.2021 0.1536 27.5680

(Continued)
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Table 4: Continued
Model MAE MSE RMSE R2 RMSLE MAPE TT (Sec)

Extreme gradient
boosting

2.0140 9.7609 3.1241 0.9059 0.2005 0.1496 60.5490

Light gradient bossting
machine

2.6135 15.7547 3.9688 0.8482 0.2415 0.1984 2.6150

Gradient boosting
regressor

4.3352 37.1397 6.0939 0.6421 0.3506 0.3502 116.5250

AdaBoost regressor 6.3794 60.7483 7.7934 0.4145 0.4474 0.5387 23.8170
Orthogonal matching
pursuit

6.6966 75.9248 8.7132 0.2683 0.5413 0.7060 0.0570

K Neighbors regressor 6.1283 76.6029 8.7519 0.2617 0.5083 0.5967 0.8120
Ridge regression 6.9717 79.4272 8.9002 0.2346 0.5454 0.7039 0.1750
Elastic net 7.1860 84.3538 9.1842 0.1871 0.5447 0.7162 2.0590
Lasso regression 7.1909 84.4550 9.1897 0.1861 0.5448 0.7163 1.6550
Linear regression 7.2028 84.9466 9.2164 0.1813 0.5459 0.7181 0.3420
Huber regressor 6.8999 94.3894 9.7152 0.0904 0.5515 0.7026 3.8250
Bayesian ridge 7.9878 103.6192 10.0852 0.0014 0.6205 0.7618 1.3990

Table 5: Comparison of base regressors performance before and after hyperparameters tuning

Model Before tuning After tuning

MAE R2 RMSLE MAE R2 RMSLE

Catboost regressor 2.0008 0.9110 0.2021 1.7549 0.9339 0.1817
Extreme gradient boosting 2.0140 0.9059 0.2005 1.0924 0.9588 0.1408
Light gradient boosting
machine

2.6135 0.8482 0.2415 1.1070 0.9628 0.1376

Table 6: Comparison of AirStackNet variants performance vs. individual base regressors

Model MAE R2 RMSLE

CatBoost regressor 2.0008 0.9110 0.2021
Extreme gradient boosting 2.0140 0.9059 0.2005
Light gradient boosting machine 2.6135 0.8482 0.2415
AIRSTACKNET_PM25_rf 0.7028 0.9675 0.1263
AIRSTACKNET_PM25_et .7552 0.9687 0.1243
AIRSTACKNET_PM25_ET_tuned 0.4720 0.9825 0.0902

As shown in Tab. 4, We can note that Extra Trees Regressor, Random Forest Regressor, CatBoost
Regressor, Extreme Gradient Boosting, and Light Gradient Boosting Machine perform the best with
corresponding R2 scores of 0.9679, 0.9490, 0.9110, 0.9059, and 0.8482, while Linear Regression, Huber
Regressor, and Bayesian Ridge perform the worst in terms of R2 corresponding scores of 0.1813,
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0.0904, and 0.0014. Meanwhile, in terms of training time, we note that the Random forest regressor
requires a lot of time with 351.2130 s, compared to the Linear regressor and Ridge regressor which
needs only 0.1750 s. The findings from Tabs. 5 and 6 are similar to those from Tab. 4.

The computation time for each model during the training process is provided in the last column
of Tab. 4. Computation time is affected by the complexity of the selected base learners and the selected
training data. Since Extra Trees Regressor and Random Forest Regressor, as bagging regressors,
provide the best results in terms of predicting PM2.5, O3 and NO2 values, meanwhile they require much
time for training, we select these estimators as the meta-regressors for our AirStackNet model.

Moreover, we select CatBoost regressor, Extreme Gradient Boosting, and Light Gradient Boost-
ing Regressor as base regressors in our AirStackNet Model since they demonstrate high R2 scores
and low mean errors. These results confirm the boosting and bagging models efficiency. Thus, our
AirStackNet model will be composed of boosting models in the first layer for the base regressors, and
of bagging models in the second layer for the meta-regressor. Obviously, the prediction performance of
the proposed stacking model depends largely on the prediction performance of the base models. Fig. 3
illustrates the comparison of the standard deviations of error metrics for AirStackNet and individual
models. The relative stability of the proposed technique, with the minimum Standard Deviation of
0,0024 for R2, 0,0057 for RMSLE, 0,0029 for MAPE, with respect to its ingredients, demonstrates
the efficiency of the model in handling stochastic variations. Indeed, In AirStackNet, we combine
different training mechanisms and demonstrate their complementary properties.

Figure 3: Comparison of the standard deviations of error metrics for AirStackNet and individual
models

As shown in Tab. 4, we note that Extra Trees Regressor, Random Forest Regressor, CatBoost
Regressor, Extreme Gradient Boosting, and Light Gradient Boosting Machine perform the best with
corresponding R2 scores of 0.9679, 0.9490, 0.9110, 0.9059, and 0.8482, while Linear Regression, Huber
Regressor, and Bayesian Ridge perform the worst in terms of R2 corresponding scores of 0.1813,
0.0904, and 0.0014. meanwhile, in terms of training time, we note that the Random forest regressor
requires a lot of time with 351.2130 s, compared to the Linear regressor and Ridge regressor which
needs only 0.175 s. Since Extra Trees Regressor and Random Forest Regressor, as bagging regressors,
provide the best results in terms of predicting PM2.5 values, meanwhile they require much time for
training, we select these estimators as the meta-regressors for our AirStackNet model. Moreover, we
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select CatBoost regressor, Extreme Gradient Boosting, and Light Gradient Boosting Regressor as base
regressors in our AirStackNet Model since they demonstrate high R2 scores and low mean errors.
These results confirm the boosting and bagging models efficiency. Thus, our AirStackNet model will
be composed of boosting models in the first layer for the base regressors, and of bagging models in the
second layer for the meta-regressor. Obviously, the prediction performance of the proposed stacking
model depends largely on the prediction performance of the base models.

5.2 Second Case Study: Impact of Hyper-Parameters Tuning on Regression Performance

Based on the outcomes of the first case study that aims at selecting the estimators that build
our AirStackNet model, we focus now on optimizing our stacking model by tuning the hyper-
parameters of each estimator. For this reason, we perform k-10-fold cross-validation using grid search
optimization. The obtained results are shown in Figs. 4 and 5. Fig. 4 displays the comparison of base
regressor performance before and after tuning hyperparameters in terms of MAE, R2, and RMSLE
metrics. As a result of tuning, MAE and RMSLE values have been decreased for the three regressors,
while R2 values have been increased for all as well. According to this finding, the base regressors’
performances have been improved after tuning. The stability of the proposed AirStackNet model is
mostly determined by the reliability of its ingredients, which are the base regressors. We can make
inferences about the reliability of base regressors by looking at the standard deviation of each model
between folds. Fig. 5 illustrates the variation of standard deviations between folds for the metrics
(R2, RMSLE, MAPE) before and after regressors tuning. We note that the standard deviations of
GradientBoosting Regressor, LightGBM Regressor, CatBoost Regressor have been decreased after
tuning for the selected metrics, reflecting that the models produce stable results.

Figure 4: Hyper-parameters tuning using k-10-fold CV based on Mean

In this case study, AirStackNet model demonstrates that all of the individual models are combined
to overcome the limitations of the low-performance prediction of single models. Therefore, it can be
concluded that the proposed technique is well suited to the prediction of air pollution.
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Figure 5: Hyper-parameters tuning using k-10-fold CV based on SD

5.3 Third Case Study: Assessment of the AirStackNet Model

After tuning and evaluating the base estimators of the stacking model, we focused on assessing
the performance of our AirStackNet vs. its base regressors which are LightGBM, CatBoost, and
XGBoost, when predicting PM2.5 values. In this experiment, AirStackNet has Extra Trees regressor
as the meta-regressor.

The obtained results are illustrated in Tab. 7. By using AirStackNet, the MAE values were dropped
to 0.7552 compared to 2.008 with CatBoost Regressor, 2.0140 with Extreme Gradient Boosting
Regressor, and 2.6135 with LightGBM Regressor. Similar finding was found for RMSLE metric.
As for R2, AirStackNet outperforms the individual regressors with 0.9687 vs. 0.9110 for CatBoost
Regressor, 0.9059 for Extreme Gradient Boosting Regressor and 0.8482 for LightGBM Regressor.
Based on these results, we can conclude that the PM2.5 prediction was improved with AirStackNet.
This improvement is due to the use of different boosting algorithms having their own specific rules
that can greatly reflect the advantages of this diversity. Indeed, this diversity makes the stacking
result more effective and accurate which makes the predicted effect more justified. Furthermore, when
comparing the two last rows in the Tab. 7, hyperparameter optimization for individual regressors has
improved prediction performance of AirStackNet by minimizing MAE to 0.4720 and RMSLE to
0.0902, reflecting the importance of the regressors tuning step.

Table 7: Comparison of AirStackNet variants performance vs. individual base regressors O3

Model MAE R2 RMSLE

AIRSTACKNET_NO2_et 2.0380 0.9596 0.1593
AIRSTACKNET_NO2_Tuned 1.2687 0.9782 0.1142
AIRSTACKNET_O3_et 0.8060 0.9619 0.2954
AIRSTACKNET_O3_Tuned 0.4445 0.9822 0.1925

To validate the generalization of our proposed stacking model, we conducted experiments over the
O3 and NO2 pollutants values. the corresponding results are displayed in Tab. 7. It can be seen from
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this table the improvement of performance when using tuned base regressors. In addition, we can note
that the range of performance is similar for all pollutants, which reflects the stability and reliability of
our proposed model for all air pollutants prediction.

As shown in Tab. 6, the prediction performance is improved using AirStackNet variants compared
to individual models. AirStackNet_PM25_RF achieves a low MAE value of 0.7028 while CatBoost,
XGBoost, and LightGBM achieve MAE values superior to 2. Thus, AirStackNet_PM25_RF outper-
forms these base regressors. Similarly, AirStackNet_PM25_ET achieves a low MAE value of 0.7552.
This improvement is due to the use of different boosting algorithms having their own specific rules
that can greatly reflect the advantages of this diversity. Indeed, this diversity makes the stacking result
more effective and accurate which makes the predicted effect more justified.

To further study the impact of the stacking model, we com-pare the two variants in terms of
MAE, R2, and RMSLE. The obtained results illustrate that AirStackNet_PM25_RF and AirStack-
Net_PM25_ET achieve similar results with a slight improvement of AirStackNet_PM25_ET in terms
of R2, and as light improvement of AirStackNet_PM25_RF in terms of MAE. This similarity is
justified by the fact that Random Forest and Extra Trees are two ensemble methods having a lot of
common rules. Both are composed of a large number of decision trees and have the same growing tree
procedure.

The last variant AirStackNet_PM25_ET_tuned consists of stacking tuned base regressors and
using Extra Trees as meta regressor. The performance results of this variant report an improvement
in the prediction by achieving the highest R2 score with 0.9825 and the lowest error rate in terms of
MAE and RMSLE with corresponding scores 0.4720 and 0.0902. This improvement is due to the
hyperparameters tuning of the base regressors.

To validate our proposed stacking model, we conducted experiments over the O3 and NO2

pollutants values. the corresponding results are displayed in Tab. 7. It can be seen from this table the
improvement of performance when using tuned base regressors. In addition, we can note that the range
of performance is similar for all pollutants, which reflects the stability and reliability of our proposed
model.

5.4 Forth Case Study: Optimization of the AirStackNet Structure

Constructing an optimal ensemble of models is challenging, as it entails selecting which models
should be included. A successful ensemble depends heavily on the quality and variety of its individual
learners. These learners need to be accurate and diverse enough in order to reflect the structure of the
data. In particular, bagging and boosting represent different aspects of the data, and when combined,
can reveal the entire data space more effectively.

Based on this assumption, and in order optimize the structure of AirStackNet, four variants
of the AirStackNet model were derived, varying in the way the base regressors and meta regressors
were combined. In fact, we would like to check the influence of base regressor nature as well as the
meta regressor on the prediction results in our stacking model. The obtained results are reported
in Tab. 6. As such, in the two first rows of Tab. 6, we used the Random Forest as a meta regressor
in the first variant AirStackNet_PM25_RF, while we used the Extra Trees regressor in the second
variant AirStackNet_PM25_ET. We compare the two variants in terms of MAE, R2, and RMSLE.
The obtained results illustrate that AirStackNet_PM25_RF and AirStackNet_PM25_ET achieve
similar results with a slight improvement of AirStackNet_PM25_ET in terms of R2, and as light
improvement of AirStackNet_PM25_RF in terms of MAE. This similarity is justified by the fact
that Random Forest and Extra Trees are two ensemble methods having a lot of common rules. Both
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are composed of a large number of decision trees and have the same growing tree procedure. By
changing the bagging meta-regressor by a linear meta-regressor such as Ridge and Lasso as illustrated
for AirStackNet_PM25_Lasso and AirStackNet_PM25_Ridge, In terms of reported errors metrics
values, we can observe a degradation of performance. It is primarily due to the probability of linear
regression being unbiased and producing smaller residuals. This variant Stacking (ET, RF, LightGBM)
is an ensemble model using the bagging models as base learners and the boosting algorithms as
meta-learners. Our aim is to check the capability of bagging to perform the role of base regressors.
Unfortunately, This ensemble model cannot outperform the two first variants. Indeed, the boosting
learners aim to provide various fitted prediction, while the role of Bagging is to combine all the base
boosting learners together in order to “smooth out” their predictions. As such, the optimal structure
of AirStackNet is to use boosting for base learners and Bagging for meta-learners. Aside from these
variants, one state-of-the-art benchmark is used to compare with it the results of the designed model
AirStackNet. This benchmark [16] does not perform well comparing to our proposed AirstackNet
model due to the use of the linear regression in the meta-learner stage. Fig. 6 shows some example
smartphone photographs from the test dataset with corresponding ground-truth PM2.5 concentrations
and the PM2.5 concentrations estimated by the AirStackNet model. It can be seen that the estimated
PM2.5 concentrations correlate well with the PM2.5 ground-truth concentrations.

Figure 6: Some example smartphone photographs from the test dataset with corresponding ground-
truth PM2.5 concentrations and the PM2.5 concentrations estimated by the AirStackNet model

6 Conclusion

This research contributed to solving the challenge raised in MediaEval2020’s Insights for Wellbe-
ing task “Can personal air quality be predicted using images captured by personal devices and some
open source data?”. Our three-step method predicts local AQI values by imputing missing data using
the ball tree algorithm, extracting haze-relevant features, and building the AirStackNet model. The
model relies primarily on the stacking ensemble learning approach in order to create an efficient,
scalable, and reliable air quality prediction. We mainly contributed to justifying the stacked structure
of the model. With our realized experiments, we showed that boosting regressors are highly efficient
as base learners, whereas bagging regressors perform well as meta-learners in the stacking model
structure. To refine the model, we proved the importance of hyperparameter-tuning the base learners
using k-10 cross-validation. The obtained small error variance values confirm the reliability of the
base learners and the stability of our model. Comparing AirStackNet to its base regressors and to
existing methods, the results showed AirStackNet performed the best which reflects its effectiveness
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in terms of used error metrics. Thus, the proposed stacking model structure can serve as a useful and
generalized reference model for air quality prediction.

To make our model even more effective, we plan to add pre-training models like VGGNet, ResNet,
Inception, and Xception, as well as new semantic features about outdoor areas, traffic, and buildings.
Additionally, we plan to integrate our proposed model into an API and create a mobile application that
will let citizens take a picture of the sky and get the air quality index by calling the API encapsulating
our proposed model. By using this application, users will be able to identify the predominant pollutants
at a place and the risks they face.
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