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Abstract: With the increasing number of smart devices and the development
of machine learning technology, the value of users’ personal data is becoming
more and more important. Based on the premise of protecting users’ personal
privacy data, federated learning (FL) uses data stored on edge devices to
realize training tasks by contributing training model parameters without
revealing the original data. However, since FL can still leak the user’s original
data by exchanging gradient information. The existing privacy protection
strategy will increase the uplink time due to encryption measures. It is a
huge challenge in terms of communication. When there are a large number
of devices, the privacy protection cost of the system is higher. Based on
these issues, we propose a privacy-preserving scheme of user-based group
collaborative federated learning (GrCol-PPFL). Our scheme primarily divides
participants into several groups and each group communicates in a chained
transmission mechanism. All groups work in parallel at the same time. The
server distributes a random parameter with the same dimension as the model
parameter for each participant as a mask for the model parameter. We use
the public datasets of modified national institute of standards and technology
database (MNIST) to test the model accuracy. The experimental results show
that GrCol-PPFL not only ensures the accuracy of the model, but also ensures
the security of the user’s original data when users collude with each other.
Finally, through numerical experiments, we show that by changing the number
of groups, we can find the optimal number of groups that reduces the uplink
consumption time.
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1 Introduction

Since the end of the last century, with the development of Internet technology, more and more
people have begun to contact and use network communication equipment. In recent years, hardware
devices have been continuously updated and iterated, and the level of processing data has been greatly
improved. With the proposed concepts of smart home [1], Internet of Things (IoT) [2] and smart city
[3], the number of mobile terminals and IoT equipment has increased significantly. It is speculated
that by 2025, there will be 80 billion access devices on the Internet [4] and the generated data will be
massive.

Currently, data is still in the form of isolated islands due to issues such as competitive relationships
and trust levels among industries, enterprises, and even individuals. Traditional distributed machine
learning [5,6] collects all data for unified training. However, in many applications, data is scattered
among mobile edge devices and cannot be shared and transmitted safely and effectively. And more
and more laws have made relevant provisions for the protection of personal data privacy, such as the
principle of “focused collection or data minimization” outlined in the 2012 White House Report [7].
The collection of user data to servers is becoming more expensive and unrealistic.

This problem has been improved since federated learning (FL) was proposed by Google in 2016
[8,9]. FL is that the parameter server uniformly distributes the model parameter to the client. The
device uses local data to train the model after receiving parameters from the server. When all users
complete training, the updated parameters are sent to the parameter server. The parameter server
aggregates the model globally. After several iterations, the model convergence is finally achieved.
This prevents the user’s original data from being transmitted and only needs to transmit the model
parameters to the server.

In recent studies [10–12], in the process of FL exchanging model gradient, malicious attackers
can recover the original information of users through model parameter (i.e., gradient). This shows
that FL cannot fully guarantee users’ privacy. Therefore, many researchers have proposed solutions to
this problem, most of which are based on differential privacy (DP) [13–15] and secure multi-party
computing (SMPC) [16–18]. The DP scheme is to add Gaussian noise or Laplacian noise to the
gradient [19,20], which interferes with the local model parameters. The server uses the disturbed model
parameters for global aggregation to protect privacy. But this solution will lead to the problem of
low model accuracy. Moreover, the communication overhead of SMPC is large, and the computing
performance decreases significantly with the increase of the number of users, and it is also not easy
to deploy mobile devices. Reference [21,22] leverages conditional generative adversarial networks to
achieve high-level privacy protection.

Recently, we have paid attention to [23] using the chained privacy-preserving FL framework
(chain-PPFL) to add a random number to the first node of the chain. It uses this random number
as noise to join the model parameters and correctly subtracts this random number on the server-side.
It not only ensures the accuracy of the model, but also protects the user’s data privacy. However, we
found through analysis that although this method provides a new idea in privacy protection, there are
still some problems to be solved. First of all, under the chained structure, [23] cannot solve the problem
of two nodes on a jump discontinuity in a chain that can correctly decrypt the gradient information
of the intermediate node by collusion. Secondly, due to the chained structure, the user nodes behind
will have to wait for the transmission of the previous nodes, and the convergence rate of the model will
slow down, resulting in the long uplink communication time.

In an environment with a large number of users and the problem of mutual collusion, we propose
a novel group collaborative FL framework. We first divide a large number of users into groups, so
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that the groups do not affect each other. To a certain extent, the parallelism of the system uplink is
improved. Secondly, we connect the users in the group in a chained structure to form a communication
mode for transferring data between users. Only the last user of each group needs to upload data. The
last user in each group contains the information of all users in the group. In this way, the number
of nodes communicating with the edge server at the same time can be greatly reduced, which not
only effectively utilizes the communication resources between users, but also relieves the pressure on
bandwidth. Based on [23], we let the server distribute random numbers to each user. After each user
completes training, the sum of training result and the random number is passed to the next user to
protect user privacy. It can solve the problem of collusion between users.

We summarize our main results and contributions as follows:

• We propose a user-based group collaborative federated learning privacy protection framework
(GrCol-PPFL), which uses two-scale transmission methods to increase local computation on
the traditional FL architecture and reduce the number of connections to the server.

• We analyze the time consumed by GrCol-PPFL, and theoretically prove that GrCol-PPFL
can find the optimal solution by changing the number of groups to minimize the uplink
consumption time.

• Our subsequent experiments prove that our scheme can effectively solve the problem of user
collusion. By changing the number of groups to reduce the prolonged uplink consumption time
of the system caused by the chained structure, and it is better than classic federated averaging
(FedAvg).

In Section 2, we discuss existing related work. In Section 3, we discuss the design of the model as
well as the basic workflow of the architecture and present our algorithm. In Section 4, we analyze the
accuracy of the model, the security of the system, and the relationship between the number of groups
and the uplink consumption time. In Section 5, we present comparative experiments and discuss the
experimental results. Finally, we summarize the findings of this paper in Section 6.

2 Related Works

Due to the upgrading of hardware equipment and the popularization of Internet intelligence, a
large amount of personal data has been generated. With the development and application of artificial
intelligence, data plays an indispensable role. However, the privacy of personal data is also concerned
by people, and relevant protection regulations have been proposed in law. FL plays the role of privacy
protection in more and more fields, such as Google input tools [24], intelligent cognitive systems [24],
relation extraction in medical field based on FL [25–27], robotics [28], etc. Its security and privacy
issues [17] still exist: (1) Since the implicit knowledge in the training data can be obtained by combining
the local model update and the global model parameters, the user’s personal information may be
leaked to untrusted servers or other malicious users. For example, even prototype samples generated
from training data from other users can potentially be stealthily stolen by malicious users. (2) Under
the collusion attack of untrusted cloud servers and malicious participants, everyone’s exact private
information may be leaked.

The model parameters (i.e., gradients) of each edge node need to be uploaded to the server
instead of uploading the user’s original data. However, this scheme has been proved to be insecure,
and attackers can deduce the user’s original data through gradient [10–12]. To address this problem,
there are mainly DP [13–15] and SMPC [17].
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DP mainly hides the original attributes of the data by adding noise to the data, so that the attacker
cannot analyze the original information to achieve the purpose of protection. DP has strong theoretical
guarantees [29], and the communication overhead is smaller than that of encryption algorithms.
In their work, DP mainly uses Laplace mechanism or exponential mechanism. The model gradient
information of edge nodes is added to noise by DP technology. And [20] propose a novel FL framework
that uses online Laplace approximation to approximate posteriors on both the client and server side.
Reference [30] presents the scheme of FL with local DP that implements a suite of selection and
filtering techniques for perturbing and sharing select parameter updates with the parameter server.

SMPC is mainly performed in a network that does not trust each other. After a series of operations
are performed using cryptography, the result is consistent with the plaintext computation. Reference
[31] perform privacy-preserving FL on longitudinally distributed data by using entity resolution
and homomorphic encryption. Reference [32] proposed a privacy-preserving asynchronous averaging
algorithm using Shamir’s secret sharing scheme to maintain the privacy of each individual.

In terms of communication problems in practical applications, especially when the global model
is large, the network bandwidth limitation and the number of working nodes will exacerbate the
communication bottleneck of FL. And the server processing capacity is limited, which will lead to the
straggler problem. Under the classic FL framework, these straggling devices are usually discarded and
not aggregated by the server. But this way will affect the results of model training and user experience.
Although it is feasible to divide server’s computing and communication pressure into several edge
servers [33], user resources are still not fully utilized, and security is not considered. Reference
[34] proposes a multi-agent deep q-networks for efficient edge FL communications. Reference [35]
intelligently selects client devices participating in each round of FL, balances the bias of the data, and
improves the convergence rate.

In the current literature to solve the problem of bandwidth resources, they mainly use compression
Reference [36] and sparsification models [37]. Reference [38] handle an optimized deduplication
strategy. Cluster-based users [39] only need a small number of users to upload models after consensus
communication using device-to-device (D2D) technology.

The above solutions will have problems such as low model accuracy, high communication
overhead or consumption of a lot of computing resources, and none of them consider and solve
the balance between security and communication. Based on [23], our scheme solves the problem of
collusion between dishonest clients and shortens the uplink transmission time by changing the number
of groups without changing the size of the model.

3 System Model and Method

In this section, we will introduce several basic models of the system and how the approach used
by this architecture to improve safety and efficiency.

3.1 Network Model

As shown in Fig. 1, we consider a FL system with an edge server and K participants. We represent
K users as group-based L clusters G1, . . . Gl, . . . GL, where Gl = {1, . . . k, . . . κl}. Each group has κl =
|Gl| clients, so K = ∑L

l=1 |Gl|.
We adopt a system architecture that is different from classical FL. Within the cluster, participants

can communicate with each other and pass data by D2D technology, as shown in Fig. 2.
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Participating users can choose their neighbor nodes according to different networks. For example,
[40] constructed a P2P network model based on a “neighbor-neighbor” list. Each node contains a list,
which not only includes the names, addresses and other information of connected neighbor nodes,
but also includes the neighbor node information of the neighbor nodes, in order to improve the self-
healing and robustness of the network. Even if a node is attacked, it can quickly establish a connection
with a new neighbor node, avoiding the loss of some nodes and the impact of offline nodes on the
entire network. It can also create a D2D neighbor network graph Graph = (Gl, El) based on physical
distance, transmission power and channel conditions [39], where El represents the set of edges.

Figure 1: K clients are divided L groups

Figure 2: Users’ communication process in the group
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3.2 FL Model

We take the group as a unit, and the participant i in the group l has a local dataset Dl
i of size

|Dl
i |. In a supervised FL setting, Dl

i is represented as a set
{
xj, yj

}
jεDl

i
, where xj ε R

d is a vector with

d-dimensional input samples and yj ε R is a sample output label for xj. We let f l
j (w, xj, yj), abbreviated

as f l
j (w), as the loss function of a data sample of user i, where j ∈ Dl

i . We use the parameter w to
predict the sample (xj, yj) loss. Let Fl

i (w) be the total loss function of all local data samples Dl
i of user

i. Then the loss function of user i after completing one round is expressed as:

Fl

i (w) = 1
|Dl

i |
∑

j∈Dl
i

fj(w). (1)

Then the total loss function of the group l is:

F̂l(w) =
∑

i∈Gl

1
κl

Fl

i (w). (2)

Therefore, the loss function of the global model is:

F(w) =
∑

lεL

1
K

F̂l(w). (3)

3.3 Computation and Communication Model

The time consumed by FL mainly includes the server broadcasting the global model, the user’s
local training, the transmission time of model parameters uploading to the server and the time for the
server to aggregate the model. The transmission power of the server is larger than that of the upstream
communication, so it can be ignored. Classic FL systems use the star topology network structure.
This makes in synchronous FL, a large number of users communicate with the server at the same time,
and sometimes network congestion occurs. As shown in Fig. 2, users in the group transmit model
parameters through D2D propagation, and the last user in the group uploads all nodes’ information to
the server, which greatly reduces the number of users connected to the server and relieves the pressure of
network traffic. And we shorten the consumed time by changing the number of groups in Section 4.3.

We set the local computing capability of user i to be al
i , and the number of rounds of the CPU

cycle of the device when calculating data samples is Cl
i , so the local computing time of user i is:

τ l

i = Cl
i Dl

i

al
i

. (4)

Since the local computation is synchronous, the local computation time required by the system is:

Γc = max
i∈Gl ,lεL

τ l

i . (5)

In a wireless network, we use orthogonal frequency division techniques to transmit the local FL
model to the server through D2D, the transmission rate of the device is:

rl
i = Bl

i log2

(
1 + pl

i|hl
i|2

N2
d Bl

i
2

)
. (6)

where Bl
i is the bandwidth, pl

i is the transmission power, Nd is the white noise power spectral density,
and hl

i is the channel coefficient.
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We let the FL model parameter size be z, which is a constant, so the communication duration is:

tli = z
rli

. (7)

So the communication duration of each group is:

Tcomm_l =
∑

i∈Gl

tli . (8)

3.4 GrCol-PPFL Algorithm

In this part, we will introduce the improvements made to the system security in the GrCol-PPFL
framework in detail and show the specific working process.

3.4.1 Double-Masking Privacy Protection Scheme

In this paper, we consider the privacy protection problem assuming that the server is honest and
the transmission channel with the participants is reliable. But we do not assume that users are honest,
because in a network environment where users collude with each other, the Single-Masking chained
privacy protection method [23] can still leak user’s privacy.

In each round of training, the parameter server will generate the same number of random numbers
Ul

i,t in advance as the participants, Ul
i,t is a matrix with the same dimension as the model parameter

w. Its role is to add noise to each local model parameter. Unlike DP, this does not affect the accuracy
of the model. In the round t of training, the participant i in the group l will add Ul

i,t to the model
parameter wl

i,t. This result is then passed to the next neighbor node. Except for the first participant,
the other participants not only use U to add noise, but also calculate the parameters passed by the
previous node at the same time, that is, we adopt the double-masking privacy protection scheme.

This mechanism makes each participant’s result contain not only the random number used as
a mask, but also the information of the previous participant. This allows only the last participant
in the group to upload the parameters to include the information of all users in this group. This
effectively eliminates the problem of collusion between participants while assisting in the transmission
of information.

3.4.2 Chain Transmission Process

Step 1:

Aggregation server: In round t of training, the server distributes the global model parameter wt.
And each participating user i simultaneously obtains Ul

i,t.

Step 2:

Participating users: After the users receive the information from the server, the model is trained
according to the local data within a specified time. Users use mini-batch stochastic gradient descent
(SGD) to train locally. When the local training of user i is completed, the model parameter wl

i,t is
obtained. Then it will be calculated:

Ml

i,t = Ul

i,t + wl

i,t (9)



1930 CMC, 2023, vol.74, no.1

For the first user in the group l, Ml
1,t will be passed to the second user. And for other users i, in

addition to calculating Ml
i−1,t, it should also calculate the data of the previous user communicating with

it, we express it as:

Sl

i,t = Ul

i,t + wl

i,t + Ml

i−1,t (10)

Step 3:

Aggregation server: When delivered to the last user in the group l, user κl will upload Sl
κl ,t to the

server. Since the parameter server will calculate all the random parameters
∑

iεGl ,lεL Ul
i,t in advance. The

server only needs to add up the parameters uploaded by the last user of each group. The average is:

wt+1 = 1
K

(∑
lεL

Sl

κl ,t −
∑

iεGl ,lεL
Ul

i,t

)
(11)

After the server is aggregated, the model training of the round t + 1, the server regenerates Ul
i,t+1,

and broadcasts wt+1 and Ul
i,t+1 to participating users, repeat step1-step3 until the convergence of the

model is reached. The specific GrCol-PPFL algorithm we propose is given in Algorithm 1.

Algorithm 1: GrCol-PPFL Algorithm
Aggregation Server:

Divide the clients into groups 1, 2, . . . ,L
Initialize and broadcast w0, Ul

i,t

FOR round t = 1, 2, . . . Do
FOR i ∈ Gl, lεL DO

Receive Sl
i,t from every group

wt+1 ← 1
K

(∑
lεL Sl

κl ,t −
∑

iεGl ,lεL Ul
i,t

)
UserUpdate(wt, Ul

i,t) // run on user i
B ← (select batches of size)
FOR local epochs from 1 to E DO

FOR batch b ∈ B DO
w ← w − η∇l (w; b)

Ml
i,t ← Ul

i,t + wl
i,t

Sl
i,t ← Ml

i,t + Ml
i−1,t

IF i == κl THEN
Send Sl

κl ,t to the Aggregation Node
ELSE

User i + 1 ← (select the next node)
Send Sl

i,t to User i + 1

4 Analysis and Comparison

In this section, we will analyze three aspects: (i) model accuracy; (ii) privacy protection; (iii) uplink
time consumed by the system.
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4.1 Model Accuracy

In the field of privacy protection, part of the accuracy is often sacrificed for the purpose of privacy.
For example, DP [20] adds noise to the model parameter w, but it sometimes seriously affects the model
accuracy. As shown in Eq. (11), the server subtracts all random numbers during aggregation, and the
result is the average parameter of all user model parameters. Even if we add more random numbers,
these random numbers are generated on the server-side, which can easily calculate the correct average
aggregation result. In the experimental part, we also give the corresponding model accuracy diagram,
which proves that our scheme can ensure the accuracy of the model.

4.2 Privacy Protection

In [23], the author is based on the assumption that users do not collude with each other. Only
the first node in a chain receives a random number U0,t from the server-side. This node will add U0,t

to the trained model parameter w1,t. Then a new U1,t will be generated. And this node continues to
transmit to the next node, performing the same operation until the last node. However, in the network
environment of FL, the problem of user collusion cannot be avoided. According to the chain FL
strategy, when colluding with any two jumping user nodes, the model parameters of the intermediate
users can be easily calculated:

Ui+1,t − Ui−1,t =
(∑i+1

j=1
wj,t + U0,t

)
−

(∑i−1

j=1
wj,t + U0,t

)
= wi,t (12)

As shown in the Eq. (12), the intermediate user parameter wi,t can be calculated only by subtracting
the values of the two jumped nodes. This is obviously a big hidden danger in the FL privacy protection
framework. In our scheme, each user has a random number for itself to cover the local model
parameters. Although local computing is increased, the problem of user collusion is solved:

Sl

i−1,t − Sl

i+1,t = Ul

i,t + wl

i,t (13)

We can see that even if it is collusion, the calculated result is a mixed result X = Ul
i,t + wl

i,t. It is
hard to roll out the original parameter information. Similarly, no matter how users collude with each
other, the result will be the sum of the parameters of the attacked user and a random number. In theory,
it is proved that our scheme can still ensure the security of local data in the network environment where
users collude with each other.

4.3 Analysis of Latency

In a regional environment, the connection method of a chain will cause the transmission of
information to be too slow. Therefore, in our scheme, the K users in the network are divided into
several groups in order to improve the parallelism of the communication process.

But unlimitedly increase the number of groups L, that is, we set L = K, then it becomes the
FedAvg. If L = 1, the communication method will be the same as [23]. So, we try to find an
optimal number of groups, so that our communication efficiency is the best. Since we use synchronous
FL, the time to train the model locally will always wait for the slowest node, so we ignore this
part of the time when comparing several algorithms. Therefore, the total time spent by the system
includes the communication time Tcomm, the local extra computation time Tcomp_c in the chain mechanism
and the server time Tcomp_s for calculating the model parameters, so the total time is:

Ttotal = Tcomm + Tcomp_c + Tcomp_s. (14)
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We define the ability of the two devices to process information, that is, the size of the number of
bytes processed per unit time. For the convenience of analysis, we express it as the number of model
parameters processed per unit of time. One is the client-side, which we set as C, and the other is the
server-side, which is set as S. We use the average transmission rate r as the transmission speed of each
user i. Each group has the same number of users. Then for FedAvg, the total time it takes to iterate K
users at one round is:

TFedAvg = z
r

+ K
S

. (15)

The total time for a round of chain-PPFL is the time for K local users to transmit information,
the time for the last user to upload to the server and calculated time on the server:

Tchain−PPFL = z
r

K + (K − 1)
1
C

+ 1
S

. (16)

In our solution, since the users under the same edge server are divided into L groups, the processes
between the groups are performed in parallel, which obviously reduces the total upload time. The total
time TGrCol−PPFL includes the time of communicating between users in a group, uploading L users from
last user of each group to the edge server and calculating on the server:

TGrCol−PPFL = Kz
Lr

+
(

K
L

− 1
)

1
C

+ L
S

. (17)

Since subsequent nodes need to spend more waiting time. Obviously, when there are enough users,
the chain-PPFL scheme takes longer than FedAvg, that is, TFedAvg ≤ Tchain−PPFL. Our goal is to reduce
the time of TGrCol−PPFL, so we let TGrCol−PPFL ≤ TFedAvg:

z
r

+ K
S

≥ Kz
Lr

+
(

K
L

− 1
)

1
C

+ L
S

. (18)

After simplification, the quadratic discriminant is:

ξ =
√(

z
r

− K
S

+ 1
C

)2

. (19)

We can observe that the ξ is greater than or equal to 0, so there is L that makes the inequality true.
In the experimental part we also show that the presence of L makes the time consumed by the system
better than other schemes.

5 Experiment

In this section, we describe the relevant experimental settings, and compare the model accuracy,
user privacy protection, and system uplink communication time with several schemes.

5.1 Experiment Setup

We test the model accuracy of GrCol-PPFL, FedAvg, Chain-PPFL and DP. The experimental
environment is the same, both are based on pytorch simulation environment. The batch size B = 10 for
local training and the learning rate η = 0.1. Among them, for DP, we choose different noise variances
10−1 and 10−4, the purpose is to add different degrees of noise to the model parameters to observe
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the impact on the model accuracy. In terms of transmission and computation, we set the size of the
model z = 28.1 kbit, and the average transmission rate of the client is 281 kbit/s. At the same time,
we set C and S to 1 and 5. More importantly, we continuously adjust the number of groups L for the
selected 100 users to verify whether there is an optimal number of groups that reduces the system time
compared with other schemes.

The MNIST [41] handwritten digits database has a training set of 60,000 examples and a test set
of 10,000 examples. The numbers are normalized and centered in the fixed-size image. We divide the
data into two forms: (i) independent identically distribution (IID), the data is shuffled and divided into
100 users, each user receives 600 samples; (ii) non-IID, the data is sorted by number tags and divided
into 200 shards of size 300. We allocate two shards for 100 users. In terms of models, we use the two
5 × 5 convolutional layer convolutional neural network (CNN) model, its fully connected layer has
512 units and rectified linear unit (ReLU) activation function, a softmax output layer. Then, we use the
datasets of canadian institute for advanced research (CIFAR)-100 and deep leakage from gradients
(DLG) algorithm [10] to recover the image by the gradient for testing the security of the system. We
evaluated our model on a Dell Precision 3630 desktop computer, which uses the 9th generation Intel
Core i7-9700K CPU, 16 GB.

5.2 Training Accuracy

In the model accuracy test, we select the CNN model to train 500 rounds on the dataset of non-
IID. As shown in Fig. 3, the accuracy of FedAvg, chain-PPFL, Laplacian noise-10−4 (L-10−4) and
GrCol-PPFL can remain above 95%, which proves that our scheme does not affect the correctness of
the model parameters during aggregation. In DP experiments, we can see that the size of the noise will
affect the accuracy of the model. When the variance is 10−4, the accuracy of the model is generally
not affected, which is consistent with that of FedAvg. When the variance is 10−1, the noise added to
the model parameters is large, and the fuzzification of the parameters is obvious, which affects the
accuracy of the model.

Figure 3: The accuracy of MNIST CNN non-IID

Tab. 1 shows the values of accuracy change with the increase of training rounds model. It can
be seen that the accuracy of the other four cases is basically consistent except Laplacian noise-10−1
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(L-10−1). Therefore, the accuracy of GrCol-PPFL scheme on non-IID dataset will not be affected. At
server aggregation, the correct parameters can be obtained.

Table 1: Model accuracy (%) vs. rounds

Rounds FedAvg Chain-PPFL L-10−4 L-10−1 GrCol-PPFL

1 20.82 19.1 18.96 20.27 29.39
10 77.61 86.27 84.52 54.97 78.49
50 94.41 93.09 94.5 56.03 93.33
100 96.33 96.82 96.72 49.17 94.46
200 98.27 96.41 97.21 31.62 97.69
300 98.52 97.75 97.72 38.66 98.16
400 98.28 97.96 98.07 39.5 98.36
500 98.53 96.77 97.16 42.86 98.27

The approximate direction of the curve in Fig. 4 is consistent with Fig. 3. In order to see the change
of the curve more clearly, we set the interval of the y-axis to 88–100. The curve is smoother than non-
IID. Except for L-10−1, the accuracy is above 98% after 500 rounds of training. This is because the data
assigned to users is IID. This situation is more similar to centralized machine learning, so the curve
will be smoother. The L-10−1 has the same situation as Fig. 3, which is due to adding too much noise,
but the server has no way to find the correct parameters. On the contrary, even though GrCol-PPFL
and chain-PPFL have more noise than the L-10−1 policy, the server can reduce the excess noise and
get the correct parameters.

Figure 4: The accuracy of MNIST CNN IID

Tab. 2 shows the variation of the model accuracy with the number of rounds in the case of IID,
which can also verify that GrCol-PPFL does not lose the model accuracy.
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Table 2: Model accuracy (%) of MNIST CNN IID vs. rounds

Rounds FedAvg Chain-PPFL L-10−4 L-10−1 GrCol-PPFL

1 84.07 85.18 86.79 63.66 83.34
10 96.71 96.93 96.89 93.97 96.67
50 98.47 98.62 98.42 94.77 98.58
100 98.93 98.83 98.72 94.51 98.84
200 98.99 99.09 98.95 93.17 98.91
300 99.11 99.19 99.03 92.4 99.06
400 99.14 99.13 99.1 91.92 99.1
500 99.1 99.18 99.1 89.7 99.16

5.3 Privacy Preservation

We utilize the DLG algorithm [10] to match the model gradients. The DLG algorithm uses the
gradient uploaded by users to generate dummy data and labels with the same dimension. Then by
calculating the dummy gradient, the distance between the dummy gradient and the real gradient is
continuously reduced, and the original gradient is finally recovered. Chain-PPFL can obtain model
parameters with user collusion. Therefore, chain-PPFL, like the FedAvg scheme, can expose the model
parameters to the attacker to reveal the original image. So, when drawing DLG attack images, we see
these two schemes as the same.

We can see from Figs. 5a and 5b that after 300 rounds of training, the gradient matching loss value
of FedAvg/chain-PPFL and Laplacian noise with variance 10−4 is almost 0, which can completely leak
the user’s original image information. However, the gradient matching loss value of Laplacian noise
with the variance of 10−1 remained at about 8 after 300 rounds of training, and the image information
is not recovered. The GrCol-PPFL scheme has a higher gradient matching loss value and also has the
effect of privacy protection.

Figure 5: The gradient match loss of the DLG attack
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So we can see that when the variance of the noise is larger, that is, the more interference, the
stronger the ability to protect privacy. But the interference is not the bigger the better. Below we will
introduce the comparison of accuracy and safety in detail.

We compare several schemes with data for non-IID distribution and training average accuracy for
500 rounds and gradient matching loss (GML) for DLG after 300 rounds. As can be seen from the
Tab. 3, only L-10−1 and GrCol-PPFL have the ability to defend against DLG attacks, but the accuracy
of L-10−1 has lower accuracy due to the addition of larger Laplacian noise. Our scheme can not only
protect privacy in a network environment where users collude with each other, but also does not affect
the accuracy of the model.

Table 3: Comparison of accuracy and security

FedAvg Chain-PPFL L-10−4 L-10−1 GrCol-PPFL

Accuracy 96.34% 95.72% 95.80% 48.46% 96.04%
GML 0.0000 0.0000 0.0011 8.3889 305.1746

5.4 Latency

We measure the uplink consumption time of the GrCol-PPFL framework by changing the number
of groups.

As shown in Fig. 6, when the number of groups is 1, GrCol-PPFL is equivalent to chain-PPFL,
which has the highest communication delay, because there are many nodes that need to wait for the
transmission of the previous node to complete. When L = 100, GrCol-PPFL is equivalent to FedAvg,
and all users communicate with the server at the same time. Since we make TGrCol−PPFL ≤ TFedAvg, and
users in FedAvg will not be grouped, we regard FedAvg as Baseline. We try to change the number
of groups. We can see that the part below the baseline is the number of groups that are lower than
FedAvg. Within these group fractions, the uplink consumption time of the system can be reduced, and
an optimal group that minimize the uplink consumption time can be found.

Figure 6: The relationship between the number of groups and the consumption time
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In Fig. 7, the green curve represents the system uplink consumption time under the optimal group
of GrCol-PPFL scheme. We can observe that the time of chain-PPFL increases significantly with the
increase of users. GrCol-PPFL can dynamically adjust the number of groups with the increase of users,
and the time is lower than FedAvg.

Figure 7: Uplink consumption time as devices increase

6 Conclusion and Future Work

In this paper, we propose a user-based group collaborative FL privacy protection framework,
which aims to improve the system uplink communication time. Our experiments show that our method
can still protect privacy even when users collude with each other, and does not affect the accuracy of
model training. Through analysis and experimental verification, we can obtain the optimal number
of groups that make the total uplink time of the FL system. In future work, we will continue to study
the security and communication issues of FL in mobile communication networks, and propose better
resource allocation schemes.
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