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Abstract: In this paper, the throughput and delay of cooperative communi-
cations are derived when solar energy is used and relay node is selected using
a timer. The source and relays harvest energy from sun using a photo voltaic
system. The harvested power is used by the source to transmit data to the
relays. Then, a selected relay amplifies the signal to the destination. Oppor-
tunistic, partial and reactive relay selection are used. The relay transmits when
its timer elapses. The timer is set to a value proportional to the inverse of
its Signal to Noise Ratio (SNR). Therefore, the relay with largest SNR will
transmit first and its signal will be detected by the other relays that will remain
idle to avoid collisions. Harvesting duration is optimized to maximize the
throughput. Packet’s waiting time and total delay are also computed. We also
derive the statistics of SNR when solar energy is used. The harvested power
from sun is proportional to the sum of a deterministic radiation intensity
and a random attenuation due to weather effects and clouds occlusion. The
fixed radiation intensity depends on season, month and time t in hour. The
throughput of cooperative communications with energy harvesting from sun
was not yet studied.

Keywords: Solar energy harvesting; timer based relay selection; relaying
techniques; throughput and delay analysis

1 Introduction

In solar energy harvesting, the harvested power is proportional to the radiation intensity I(t)
[1-3]. The radiation intensity is the sum of a deterministic radiation intensity I1(t) and a random
radiation intensity 12(t) [4-7]. I1(t) is a deterministic radiation intensity that depends on time t in
hour, month and season. 11(t) is maximum at t=12 h and zero at t=6 and t=18 [8-10]. I2(t) is a
random attenuation due to weather effects as well as clouds occlusion [11-15]. I2(t) has a zero mean
Gaussian distribution with variance a® [1]. Therefore, the harvested power has a Gaussian density. In
this article, we study cooperative communications with energy harvesting from sun. The source and
relays harvest energy using a photo voltaic system. The source use the harvested power to transmit
data to relays. Relay nodes harvest energy from sun and set a timer to a value proportional to the
inverse of its Signal to Noise Ratio (SNR). The timer of relay with largest SNR will expire first. This
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relay amplifies the source signal and its signal will be detected by the other relays that will remain idle
to avoid collisions. We use Opportunistic Amplify and Forward (OAF), Partial and Reactive Relay
Selection (PRS and RRS). The main contributions of the paper are

A simple timer based relay selection is used. The throughput, the collision and the delay of timer
based relay selection will be derived. The throughput is maximized by optimizing harvesting duration.

The motivation of this work is to evaluate the throughput and delays with solar energy harvesting.
Another motivation is to evaluate the performance of the suggested timer based relay selection. The
main contribution of the paper is to derive the statistics of SNR with solar energy harvesting. The
throughput, waiting time and total delay are evaluated with solar energy harvesting. A simple relay
selection process using a timer is suggested. No signalization is required and the selection process is
very simple since each relays uses a timer initialized to a value proportional to the inverse of its SNR.
The relay with largest SNR transmits and the other relays remain idle when they detect its signal
to avoid collisions. The throughput and delay analysis with energy harvesting from sun were not yet
derived.

Section 2 studies the statistics of the harvested power from sun. The collision probability of timer
based relay selection is evaluated in Section 3. Section 4 evaluates the throughput, packets’ waiting
time and total delay. Section 5 comments on the obtained results. Section 6 concludes the paper.

2 Solar Energy Harvesting

Fig. | shows the system model where the source S and relays Ri harvest energy from sun using
a Photo Voltaic (PV) system. Then, S sends data to relays Ri. A selected relay amplifies the signal to
the destination D. The harvested solar power using a PV system at noon is approximately 1000 W/m?.
The harvested power P at the source S and relays Ri using a PV system is proportional to the radiation
intensity.
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Figure 1: Network model

P =nI(?), (1)

where 1 is the efficiency of power conversion and I(t) is the radiation intensity. The radiation intensity
is the sum of a deterministic radiation intensity I11(t) and a random attenuation I2(t) [16—18]

I() = I1(0) + 12() (2)

where I1(t) is a deterministic radiation intensity that depends on time 6 <t < 18 in hour, month and
season. [1(t) is modeled as [1]
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11(t) = Imax (—3 + t§ — %) 3)

where Imax is the maximum of radiation intensity.

The harvested solar power using a PV system at noon t = 12 is approximately 1000 W/m?. For a PV
system of 2 m?, the maximum solar radiation intensity is Imax = 2000 W. 12(t) is a random attenuation
due to weather effects as well as clouds occlusion. 12(t) has a zero mean Gaussian distribution with
variance a’ [1]. Therefore, the Probability Density Function (PDF) of 1(t) is expressed as [1]

1 exp(—(x—n(z))z) @
V2 2a?

where x > 0 is the variable of PDF function and a? is the variance of random attenuation 12(t).

Ji(x) =

Energy harvesting from the PV system is performed continuously. The harvested energy during
oT seconds is used to transmit data by S and a selected relay during (1—a)T/2 s where 0 < o < 1 and
T is frame length. The harvested energy by the source and relays during aT seconds is expressed as [1]

E=aTP )

The symbol energy Es is the ratio of the harvested energy E given in (5) and the number of

transmitted symbols (1 —a) 7/75[1]
2T.E _ 2anT,I(1)

E = - = 6
1 -wT 1—a ©
where Ts is the symbol duration.
Since I(t) has a Gaussian distribution, Es follows also a Gaussian distribution with PDF
_ 1 — (x = m())’
) = exp (3 ™)
where m(t) and o? are the mean and the variance of Es written as
n2a7T,11(¢)
m(l) = ———— ®)
—a
an2aT.I1(H) 7
—a
The SNR at relay Rk is written as
Es | hsw|’
Vsre = N—SORk (10)

where hXY is channel gain of the X-Y link and NO is noise variance.

Let E(|hSRk|?) = Ak = PL d0™*/dSRK™F where PL is the path loss at distance d0, dXY is the
distance from X to Y. Let Zk = |hSRk|*/NO. For Rayleigh channels, Xk follows an exponential
distribution with Cumulative Distribution Function (CDF) equal to

Fu(x) =1—exp (—xNTO) , (11)
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Therefore, the SNR is the product a Gaussian random variable (r.v.) Es and an exponential r.v.
Xk. The Cumulative Distribution Function (CDF) of the SNR can be computed as follows [19]:

+o0 X
FVSRk (x) = / S Fz (;) dy (12)
0
The CDF of SNR of Rk-D link is written similarly.

3 Collision Probability

The relay selection process uses a timer. Each relay sets a timer proportional to the inverse of
its SNR. Therefore, the timer of the relay with best SNR expires the first and amplifies the signal to
the destination. When the relay transmits the other relays detects its signals and remain idle to avoid
collisions. Let Xk be the timer of relay Rk

x =L (13)
Vsric

when Partial Relay Selection (PRS) is employed. 8>0 is a constant used to set the timer.

x =2 (14)
VriD

when Reactive Relay Selection (RRS) is employed.

x, =" (15)
VsrikD

when opportunistic relay selection is employed and y SRkD = min(y SRk, y RkD).
Let X(1) be the timer of best relay and X(k) be the timer of k-th best relay: X(1) < X(2) < ...
< X(K).

There is a collision if the gap between the timer of second best relay X(2) and that of the best relay
X(1) is lower than the propagation between d between relay nodes:

X2) < X(1)+d (16)
The joint PDF of X(1) and X(2) is expressed as [20]
K K K
Srowo GLxD =230 > fGDfGD] T = Fa(2)], (17)
The collision probability is equal to
+00 +0o0
cp = / / Srayxo (x1, x2)dx1dx2 (18)
x2=d J x1=x2—d

fXk(x) is computed by a simple derivative of FXk(X).

4 Throughput and Delay Analysis
The throughput at D using OAF and a timer based relay selection is computed as:
Thr®" = 0.5(1 — a)[1 — cp]log2(M)[1 — PEP°*, (19)

where M is the constellation size, cp is the collision probability and PEP°** is the Packet Error
Probability (PEP) of OAF.
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The throughput of PRS with timer based relay selection is computed as:
Thr™ = 0.5(1 — a)[1 — cp]log2(M)[1 — PEP™®), (20)
PEP™S is the PEP of PRS.
The throughput of RRS with timer based relay selection is computed as:
Thr™*® = 0.5(1 — a)[1 — cp]log2(M)[1 — PEP*"®], (1)
where PEP®®S is the PEP of RRS relaying.
The PEP of different relaying techniques are computed as [19]

PEP*" < Fy®"(TH) (22)
PEP™ < Fy"™5(TH) (23)
PEP*" < Fy®"(TH) (24)
+00
TH = / 1 —[1 — SEPwW)]" dw, (25)
0
L is packet length and [21]
1 3
The average waiting time W of packets is given by the Pollaczek Khinchin formula [22]:
LE (TR?) T?
+0.57, (27)

T2 -rE(TR)) '
A 1s packet arrival rate, TR is the number of transmission attempts [21]

E(TR) = (28)

1 — PEP’
3PEP? N 3
(1 - PEP) 1— PEP
The total delay D is equal to the average waiting time plus the service time, E(TR)T, expressed as
D=W+E(TRT, (30)

E(TRY) =

2, (29)

5 Theoretical and Simulation Results

Figs. 2-4 depict the throughput of timer based relay selection using OAF, PRS and RRS for
cp=0.2, 0.1, 0.05. The curves were plotted vs. the average Signal to Noise Ratio (SNR) per it Eb/NO.
Eb is the average transmitted energy per bit and NO is noise variance. The distance between source
and relays is 5 and the distance between relays and destination is 4. The path loss exponent was set to
three. The size of the PV system was 0.5 m* . The used parameters are 1 = 0.5, a = 0.5, the variance of
radiation intensity is a’= 1 and t = 12. The number of relays is K = 2. We observe that the performance
improves as cp decreases and becomes close to best relay selection due to less collisions. In fact as cp
decreases as there are less collisions and a larger throughput is achieved. Fig. 5 shows that OAF offers
the best performance as it uses the SNR of two hops. PRS is better than RRS since the relays are
closer to the destination. In fact, PRS selects the best relay of first hop and offers good performance
when relays are close to the destination. RRS selected the best relay of second hop and offers good
performance when relays are close to the source. Fig. 6 shows that the throughput of OAF is better at
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t =12 since the solar energy is larger than t =8. Fig. 7 shows that we can increase the throughput of
OAF by optimizing the value of harvesting duration a. When « is very small, the harvested power is
small and the performance is bad. When « is very large, the harvested power is large but the remaining
time for communication is small leading to a small throughput. Fig. 8 shows that the throughput can
be easily maximized as it is a concave function with respect to a and there is a single maximum. Fig. 9
shows the total delay for T=1ms and arrival rate A = 0.001. We observe that the timer based relay
selection offers similar delays to best relay selection for cp =0.05 since there are only few collisions.
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Figure 2: OAF using a timer based relay selection
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Figure 3: PRS using a timer-based relay selection
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Figure 4: RRS using a timer based relay selection
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Figure 6: Throughput of OAF for cp=0.05, K=2and t=38§, 12
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Figure 7: Throughput optimization of OAF for cp=0.2
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Figure 9: Total delay of OAF for cp =0.05

6 Conclusions

In this article, the throughput, packets’ waiting time and total delay of cooperative communication
with solar energy harvesting are derived. The relay selection process uses a timer. Each relay sets a timer
proportional to the inverse of its SNR. Therefore, the timer of the relay with best SNR expires the first
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and amplifies the signal to the destination. When the relay transmits the other relays detects its signals
and remain idle to avoid collisions. The throughput was also maximized by optimizing harvesting
duration.
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