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Abstract: Melanoma remains a serious illness which is a common form of skin
cancer. Since the earlier detection of melanoma reduces the mortality rate, it
is essential to design reliable and automated disease diagnosis model using
dermoscopic images. The recent advances in deep learning (DL) models find
useful to examine the medical image and make proper decisions. In this study,
an automated deep learning based melanoma detection and classification
(ADL-MDC) model is presented. The goal of the ADL-MDC technique is
to examine the dermoscopic images to determine the existence of melanoma.
The ADL-MDC technique performs contrast enhancement and data aug-
mentation at the initial stage. Besides, the k-means clustering technique is
applied for the image segmentation process. In addition, Adagrad optimizer
based Capsule Network (CapsNet) model is derived for effective feature
extraction process. Lastly, crow search optimization (CSO) algorithm with
sparse autoencoder (SAE) model is utilized for the melanoma classification
process. The exploitation of the Adagrad and CSO algorithm helps to properly
accomplish improved performance. A wide range of simulation analyses is
carried out on benchmark datasets and the results are inspected under several
aspects. The simulation results reported the enhanced performance of the
ADL-MDC technique over the recent approaches.

Keywords: Biomedical images; dermoscopic images; deep learning; melanoma
detection; machine learning

1 Introduction

Computation analysis for gathering the skin lesion information is the field of study is important
due to its treatment planning and cancer diagnosis. Melanocytes are melanin-producing cells that
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primary objective is to offer color to eyes, skin, and hair [1]. Skin cancer is one of the common types
of cancer [2], which is categorized into melanoma and non-melanoma. The considerable healthcare
cost and higher morbidity related to the malignant types of lesion have inspired authors to propose
more flexible and accurate models for earlier melanoma [3]. While abnormal melanocyte cells divide
out of control and affect other parts of the body and it became high metastases and increases deaths
rate. As per the information reported by American Cancer Society 2018, the rate of skin cancer has
been increased over the past few years. In 2018, nearly 91,270 new melanoma cases would be detected
and 9320 people are predicted to die of skin cancer in the US. But the skin cancer is extremely curable
when it is detected at earlier stages.

Effective non-invasive diagnosis method assists dermatologists to gather information, providing
insight into melanoma shape and structure. Macroscopic images, commonly called clinical images
or non-dermoscopic since these images are taken by the traditional digital cameras that are non-
invasive and inexpensive–utilized in computation analysis for patients of distinct ethnicities and ages
[4,5]. Dermoscopic images are attained by dermoscopy, a special non-invasive imaging instrument,
commonly have good invariance to contrast and illumination [6]. But, distinct image acquisition
parameters and conditions like non-ideal illumination, image quality limits, variable distance, and poor
resolutions like artefacts, noises, reflections, shadows, and hairs reduce the image quality which can
compromise the strength of the melanoma analysis. Thus, a computer aided diagnosis (CAD) scheme
is capable of analyzing dermoscopy-based images might be considered for assisting dermatologists in
skin cancer diagnoses [7].

Recently, neural network has once again boomed in a wide-ranging of applications. By attaining
reasonable outcomes, it becomes a promising tool for skin lesion classification. A convolutional neural
network (CNN) is depending on the convolutional process of the image with various filters, offering
varied and extensive data. Initially, CNN gets the edge and line features, whereas, in the deeper layer,
they find more detailed information in the image. It is familiar that the convolutional process isn’t
invariant for geometric transformations such as scale, translation, and rotation [8]. For this reason,
neural network requires a massive amount of training images for extracting each possible way that
the image can have, so their higher computation cost. Additionally, images of skin lesions could have
lower contrasts among the healthy skin and lesion that can interfere with the accurate segmentation of
the lesion [9]. That might result in loss of data that is utilized for accurate classification of the injury.

This paper presents an automated deep learning based melanoma detection and classification
(ADL-MDC) model. The ADL-MDC technique performs contrast enhancement and data augmen-
tation at the initial stage. Followed by, the k-means clustering technique is applied for the image
segmentation process. Next, Adagrad optimizer based Capsule Network (CapsNet) model is derived
for effective feature extraction process. Finally, crow search optimization (CSO) algorithm with sparse
autoencoder (SAE) model is utilized for the melanoma classification process. The exploitation of the
Adagrad and CSO algorithm helps to properly accomplish improved performance. A wide range of
simulation analyses is carried out on benchmark datasets and the results are inspected under several
aspects.

2 Related Works

Daghrir et al. [10] established a hybrid technique for melanoma skin cancer recognition which
is utilized for examining some suspicious lesions. The presented method depends on the forecast of
3 distinct approaches: A CNN and 2 typical machine learning (ML) techniques trained with group
of features relating the border, texture, and color of skin lesion. These techniques are next related to
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enhancing its efficiency utilizing popular voting. Kassani et al. [11] estimated the efficiency of many
recent CNNs from dermoscopic images of skin lesions. The experiment was demonstrated on graphics
processing unit (GPU) to speed up the trained and utilization procedure. For enhancing the quality
of image, it can utilize distinct pre-processed stages. It also implements data augmentation techniques
like horizontal as well as vertical flipping approaches for addressing the class skewness issue.

Thiyaneswaran et al. [12] purposed for detecting the symptom of melanoma primary with images
of moles attained in image processing devices and classifying the varieties. The intensity of image
was downsampled for decreasing the bit depth. When the illumination of downsampled image is
not uniform, afterward gamma corrected was implemented for obtaining the uniform illumination.
A textural feature was removed in the segmentation image. In ML approach was implemented for
classifying the melanoma image. In [13], 2 approaches were planned for classifying melanoma cancer
stage. A primary method classifies melanoma as stage 1 as well as stage 2. Secondary methods classify
melanoma as stage 1, stage 2, or stage 3 melanoma. The presented technique utilizes CNN technique
with Similarity Measure for Text Processing (SMTP) as loss functions.

In [14], a comparative analysis to classify the set of melanoma utilizing the supervised ML
technique. The group of melanoma in dermoscopic data was presented for helping the medical
consumption of dermatoscopy imaging techniques skin sores classification. The melanoma has been
segmentation in the background utilizing adaptive k-means clustering technique with 2 clusters then
feature extraction techniques were dependent upon intensity and texture feature in the segmentation
data that is succeeded by trained of classifier and eventually testing on unknown dermoscopic data.
Ali et al. [15] examined an automated technique for skin lesion border irregularity recognition. This
technique contains removing the skin lesion in the image, identifying the skin lesion border, calculating
the border irregularity, trained a CNN and Gaussian naive Bayes (GNB) ensemble, to automatic
recognition of border irregularity that outcomes in an objective decision if the skin lesion border
was regarded as regular/irregular. ALEnezi [16] presented an image processing based technique for
identifying skin disease. This technique gets the digital image of disease affects skin area, afterward
utilize image analysis for identifying the kind of diseases. This technique work on input of color image.
Afterward, resize of image for extracting features utilizing pre-trained CNN. Then the classified feature
utilizes Multiclass support vector machine (SVM).

3 The Proposed Model

In this study, a novel ADL-MDC technique has been derived for melanoma detection and classi-
fication using dermoscopic images. The ADL-MDC technique encompasses several stages including
pre-processing, K-means segmentation, CapsNet based feature extraction, Adagrad optimizer based
hyperparameter tuning, SAE based classification, and CSO based parameter optimization. The
exploitation of the Adagrad and CSO algorithm helps to properly accomplish improved performance.

3.1 Image Pre-processing

At the initial stage, the pre-processing of the dermoscopic images takes place using two ways
namely contrast enhancement and data augmentation. In this study, Contrast Limited Adaptive
Histogram Equalization (CLAHE) is used for image equalization [17], which processes on smaller
areas in the image instead of the whole image. Besides, the adjacent tiles are integrated by the use of
bilinear interpolation approach for the removal of artificial boundaries. It is mainly applied to boost
the contrast level of the image. Next, data augmentation takes place in two ways as given below.
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• Flipping: flipping the image vertically or horizontally
• Rotation: rotates the image by a specified degree.

3.2 Image Segmentation

Next, the K-means algorithm is used to segment the dermoscopic images and thereby determine
the infected regions. Flow level clustering needs effectively subdividing gathered flows for all appli-
cations into groups according to the transferred NetFlow attribute. The most leading unsupervised
clustering methods are the k-means clustering method chosen on another approach like hierarchical
clustering, because of its improved computation efficacy [18]. k-means minimize a provided amount of
vectors through selecting k random vector as initial cluster center and assign all vectors to clusters as
defined as a distance metrics compared to the cluster centers (a squared error function) as shown
in Eq. (1). Then, Cluster center is recalculated as the average (or mean) of the cluster member.
This process repeats continuously, terminating whether the cluster converges or a certain amount of
processes can be defined as:

J =
k∑

j=1

n∑
i=1

‖xj
i − cj

2‖ (1)

where cj represent cluster centers, n equal the sizes of sample space (gathered flow), as well as k
represents the selected values for amount of single cluster (flow class). Therefore, with k-means, n
flow is separated as k class. k value is very important since it influences directly the amount of flow
class that affects overfitting.

3.3 Feature Extraction

During feature extraction process, the CapsNet model is derived for the useful extraction of the
images. The CNN is widely employed technique for 2D object classifications. But data for example
pose and position in the object is removed by the CNN because of its data routing process. In order
to compensate for the limitations of CNN, a network structure named the capsule network has been
introduced [19]. The activation neuron represents the characteristics of components in the object. All
the capsules are accountable for describing an individual component in the object, and each capsule
collectively describes the general architecture of the object. Unlike some DL models, this architecture
preserves objects component and spatial data. Like CNN, a CapsNet is made up of a multilayer
network. Fig. 1 demonstrates the architecture of a capsule and how data is routed from the low-level
capsule to the high-level capsule.

Figure 1: Structure of CapsNet model

The inputs and outputs of the capsule are vectors. The length of the output uj signifies the
likelihood of presence of its respective components, and the direction of the vector ui encodes several
features (for example., position, size) of its respective components. The prediction vector û denotes
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the belief, that encodes the relationships amongst the i−th capsules in the low-level capsule and j−th
capsules in the high-level capsule with a linear transformation matrix Wij:

ûj|i = Wij · ui (2)

Specifically, the pose data and detected presence of components are utilized for predicting the pose
data and whole existence. In the training model, the network learns to alter the conversion matrix of
the capsule pair by the respective relationships among the whole in the object and components [20]. In
high level capsule, sj and vj indicates the input and output of capsule j, correspondingly sj indicates the
sum values of the predictive vectors ûj|i with respective weight cij in lower-level capsules i. In Eq. (3),
cij shows the coupling coefficient and is described by an iterative dynamic routing model, whereas∑

j

cij = 1 and cij ≥ 0. If cij = 0, there is no data transmission among capsule i and j, but if cij = 1, each

data of capsule i is transferred to the higher-level capsules j. The squash function can be expressed in
Eq. (4):

sj =
∑

i

cij · ûj|i (3)

vj = ||s2
j ||

1 + ||s2
j ||

sj

||sj|| (4)

cij = exp(bij)

Σk exp(bik)

′bij ← bij + ûj|i · vj (5)

If the low- and high-level capsules are reliable with the prediction, the values of cij become large by
Eq. (5), and get small if they are unreliable. By altering the routing coefficients, the dynamic routing
method guarantees that the low-level capsule transmits the predictive vector to the high-level capsule
which is reliable with the prediction, thus the output of the sub-capsule is transmitted to the accurate
parent capsule.

To properly adjust the hyperparameters of the CapsNet model, the Adagrad optimizer is applied.
During the Adagrad optimizing process, the gradient and accumulated squared gradient to all the
variables are calculated at the round [20]:

Gt =
t∑

τ=1

gτ � gτ , (6)

where � implies the elementwise multiplication and gτ ∈ R
|θ | stands for the gradient of existing

variables at τ round. The variable from the Adagrad is upgraded in Eq. (7):

Δθt = − α√
Gt + ε

� gτ (7)

where α defines the rate of learning and ε represents the smoothing modules that remove the division
by 0. As the rate of learning was set earlier to trained method, Eq. (8) is represented as:

	θt = −α

(
1√

Gt + ε
� gτ

)
(8)

It can be recognized that Gt refers the calculation of previous gradient and g′
t is signified as:

g′
t = 1√

Gt + ε
� gτ (9)



2448 CMC, 2023, vol.74, no.2

So, the Adagrad is upgraded in Eq. (10):

Δθt = −αg′
t, (10)

It can be same as the upgrading method of the typical gradient descent (GD). Thus, Adagrad
optimizing is regarded as hyperparameter tuning utilizing the gradient.

3.4 Image Classification

At the final stage, the SAE model is applied to classify the dermoscopic images into various class
labels. AE is a feed forward neural network (NN), comprises input, hidden, and output layers. It
receives the input x and performs encoding process to a latent representation h by the use of encoding
unit. The final layer includes the identical node count as the input layer and the input can be retrieved
at the final layer. The issue of trivial identity mapping can be resolved by the use of sparsity constraints.
The AEs including the sparsity regularization constraints to the hidden units are termed as SAE [21].
The neuron can be treated as firing when the outcome is closer to 2 and it is considered inactive when
the outcome lies in the range of [42, 43]. Another limitation is included and therefore, the outcome
can come nearer to 0 in several cases. Consider the average activation of hidden layer j be

ρ̂j = 1
k

k∑
i=1

hj (11)

The approximation takes place ρ̂j = ρ where ρ is the sparsity proportion variable indicating a
small integer value, roughly equals to 0. For imposing the constraints, a penalty term is included using

the Kullback-Leibler (KL) divergence that can be defined by
k∑

j=1

KL(ρ||ρ̂j) where

KL(ρ||ρ̂j) = ρ log
ρ

ρ̂ j

+ (1 − ρ) log
1 − ρ

1 − ρ̂j

(12)

Through the application of KL divergence term, the cost function can be derived as follows.

JSAE = 1
2

N∑
i=1

||xj − ẑi||2 + λ

2
(||W ||2 + ||W ′||2

) + β

N∑
j=1

KLN(ρ||ρ̂j) (13)

where β denotes the weight of the sparsity regularization component. The cost function minimization
can result in the optimization of variables such as W , W ′, b and b′.

For determining the parameters involved in the SAE model, the CSO algorithm is applied. CSO
algorithm is a novel search approach stimulated by the behaviour of crows stealing and hiding food
[22]. It is non-greedy and could increase the generated solution. The principle of CSO algorithm
is given in the following: (1) with some possibility, the crows keep their food from being stolen by
randomly flying and aware of being tracked, (2) crows life in the form of flock, and (3) all the crows
could remember the location of their hiding place and steal food from another crow. The location of
all the crows represent a solution xt

i. In the iteration, crow i tracks a random crow j. When crow j isn’t
aware of being traced (that is., rj ≥ AP), crow i approaches the hiding place pbt

j of crow j; if the j crows
know that i crow is tracing it, crow j fools i crow by going to random place in the searching space to
keep its hiding places from being detected [23].{{xt+1

i = xt
i + r3.fl.(pbt

j − xt
i), rj ≥ AP

a random position, else
(14)
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Whereas rj and r3 represent arbitrary values with uniform distribution in [0, 1], fl indicates the length
of a crow flight, AP indicates the perceptual possibility of crow j, and pbt

j denotes the position in
which the existing crow j stores food, i.e., equal to the past optimum solution. CSO algorithm is
a population-based optimization method i.e., quite simple with two adaptable variables (perceived
probability AP and flight length fl), that sequentially make it attractive for engineering applications.
In CSO algorithm, the parameter of perceived probability is used directly for controlling the diversity
of the method. In comparison to other metaheuristics, CSO algorithm is easy to execute and has less
variables to alter. Furthermore, the individuals in the CSO algorithm have the probability of reaching
an overall random location, and therefore, it has strong capability of exploring unknown regions. But
the CSO algorithm has insufficient conditions to choose the terminus and the selection is arbitrarily
made among crows; as well, the flight length is a constant value. This characteristic of CSO algorithm
results in a weak capacity of exploitation of existing data in comparison to PSO leads to premature
convergence, lower searching accuracy, and higher chance of getting into the local optimal, particularly
for multi-dimension optimization problems.

4 Experimental Validation

This section investigates the experimental validation of the ADL-MDC technique using ISIC
dataset. The dataset comprises various images under distinct classes [24,25]. Fig. 2 shows the sample
test images. The dataset contains different classes of skin lesion (SL) such as Actinic keratosis (AK-
SL), Basal Cell Carcinoma (BCC-SL), Seborrheic Keratosis (SCC-SL), Melanoma (MEL-SL), Nevus
(NEV-SL), BKL-SL, and Vascular lesion (VASC-SL).

Figure 2: Samples images
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The confusion matrix obtained by the ADL-MDC technique on melanoma classification with
the training/testing data of 80:20 in Fig. 3. The figure reported that the ADL-MDC technique has
classified 122 images under AK-SL class, 122 images under BCC-SL class, 123 images under SCC-SL
class, 124 images under BKL-SL class, 125 images under MEL-SL class, 121 images under NEV-SL
class, and 122 images under VASC-SL class.

Figure 3: Confusion matrix of ADL-MDC technique (Training/Testing of 80:20)

A brief melanoma classification result analysis of the ADL-MDC technique with the training/test-
ing set of 80:20 is shown in Tab. 1 and Fig. 4. The results show that the ADL-MDC technique has
classified all the images effectively. For instance, with AK-SL class, the ADL-MDC technique has
obtained PREN, RECL, SPECY , ACCY , and FSCORE of 93.85%, 92.42%, 99.13%, 98.30%, and 93.13%
respectively. In line with BCC-SL class, the ADL-MDC technique has attained PREN, RECL, SPECY ,
ACCY , and FSCORE of 91.73%, 92.42%, 98.81%, 98.01%, and 92.08% respectively. Along with that, with
SCC-SL class, the ADL-MDC technique has offered PREN, RECL, SPECY , ACCY , and FSCORE of
93.89%, 93.18%, 99.13%, 98.39%, and 93.54% respectively.

Table 1: Classification results of ADL-MDC technique (Training/Testing of 80:20)

Training/Testing (80:20)

Classes Precision Recall Specificity Accuracy F-Score

AK-SL 93.85 92.42 99.13 98.30 93.13
BCC-SL 91.73 92.42 98.81 98.01 92.08
SCC-SL 93.89 93.18 99.13 98.39 93.54
BKL-SL 93.94 93.94 99.13 98.48 93.94
MEL-SL 95.42 94.70 99.35 98.77 95.06
NEV-SL 95.28 91.67 99.35 98.39 93.44

(Continued)
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Table 1: Continued
Training/Testing (80:20)

Classes Precision Recall Specificity Accuracy F-Score

DER-SL 90.51 93.94 98.59 98.01 92.19
VASC-SL 90.37 92.42 98.59 97.82 91.39
Average 93.12 93.09 99.01 98.27 93.10

Figure 4: Melanoma classification results of ADL-MDC technique (Training/Testing of 80:20)

In Fig. 5, the ROC analysis of the ADL-MDC technique takes place on the training/testing data of
80:20. The figure exhibited that the ADL-MDC technique has the ability to attain improved melanoma
classification performance with the maximum ROC of 99.6372.

The confusion matrix achieved by the ADL-MDC technique on melanoma classification with the
training/testing data of 70:30 in Fig. 6. The figure portrayed the ADL-MDC technique has categorized
177 images into AK-SL class, 179 images into BCC-SL class, 183 images into SCC-SL class, 190 images
into BKL-SL class, 185 images into MEL-SL class, 187 images into NEV-SL class, 178 images into
DER-SL class, and 122 images into VASC-SL class.

Tab. 2 and Fig. 7 give a comprehensive melanoma classification result of the ADL-MDC tech-
nique on the training/testing set of 70:30 is shown in. The results exposed that the ADL-MDC
technique has categorized all the images efficiently. For instance, with AK-SL class, the ADL-MDC
technique has resulted to PREN, RECL, SPECY , ACCY , and FSCORE of 93.16%, 89.39%, 99.06%,
97.85%, and 91.24% respectively. Meanwhile, under BCC-SL class, the ADL-MDC technique has
gained PREN, RECL, SPECY , ACCY , and FSCORE of 94.71%, 90.40%, 99.28%, 98. 71%, and 92.51%
respectively. Eventually, with SCC-SL class, the ADL-MDC technique has accomplished PREN,
RECL, SPECY , ACCY , and FSCORE of 93.85%, 92.42%, 99.13%, 98.30%, and 93.13% respectively.
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Figure 5: ROC curve of ADL-MDC technique (Training/Testing of 80:20)

Figure 6: Confusion matrix of ADL-MDC technique (Training/Testing of 70:30)
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Table 2: Classification results of ADL-MDC technique (Training/Testing of 70:30)

Training/Testing (70:30)

Classes Precision Recall Specificity Accuracy F-Score

AK-SL 93.16 89.39 99.06 97.85 91.24
BCC-SL 94.71 90.40 99.28 98.17 92.51
SCC-SL 93.85 92.42 99.13 98.30 93.13
BKL-SL 93.14 95.96 98.99 98.61 94.53
MEL-SL 90.69 93.43 98.63 97.98 92.04
NEV-SL 86.57 94.44 97.91 97.47 90.34
DER-SL 89.00 89.90 98.41 97.35 89.45
VASC-SL 97.85 91.92 99.71 98.74 94.79
Average 92.37 92.23 98.89 98.06 92.25

Figure 7: Melanoma classification results of ADL-MDC technique (Training/Testing of 70:30)

In Fig. 8, the ROC analysis of the ADL-MDC technique is carried out on the training/testing
data of 70:30. The figure displayed that the ADL-MDC technique has the capability of accomplishing
enhanced melanoma classification performance with the higher ROC of 99.5718.

The confusion matrix derived by the ADL-MDC technique on melanoma classification with
the training/testing data of 60:40 in Fig. 9. The figure stated that the ADL-MDC technique has
categorized 237 images under AK-SL class, 245 images under BCC-SL class, 243 images under SCC-
SL class, 243 images under BKL-SL class, 247 images under MEL-SL class, 241 images under NEV-SL
class, and 242 images under VASC-SL class.
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Figure 8: ROC curve of ADL-MDC technique (Training/Testing of 70:30)

Figure 9: Confusion matrix of ADL-MDC technique (Training/Testing of 60:40)

A detailed melanoma classification result analysis of the ADL-MDC technique with the train-
ing/testing set of 60:40 takes place in Tab. 3 and Fig. 10. The experimental values denoted that the
ADL-MDC technique has categorized the skin lesion images effectually. For instance, with AK-
SL class, the ADL-MDC technique has reached to PREN, RECL, SPECY , ACCY , and FSCORE of
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90.11%, 89.77%, 98.59%, 97.49%, and 89.94% respectively. In the meantime, under BCC-SL class,
the ADL-MDC technique has gained PREN, RECL, SPECY , ACCY , and FSCORE of 94.23%, 92.80%,
99.19%, 98.39%, and 93.51% respectively. At last, with SCC-SL class, the ADL-MDC technique has
accomplished PREN, RECL, SPECY , ACCY , and FSCORE of 91.35%, 92.05%, 98.76%, 97.92%, and
91.70% respectively.

Table 3: Classification results of ADL-MDC technique (Training/Testing of 60:40)

Training/Testing (60:40)

Classes Precision Recall Specificity Accuracy F-Score

AK-SL 90.11 89.77 98.59 97.49 89.94
BCC-SL 94.23 92.80 99.19 98.39 93.51
SCC-SL 91.35 92.05 98.76 97.92 91.70
BKL-SL 92.40 92.05 98.92 98.06 92.22
MEL-SL 90.15 93.56 98.54 97.92 91.82
NEV-SL 92.69 91.29 98.97 98.01 91.98
DER-SL 88.48 90.15 98.32 97.30 89.31
VASC-SL 94.16 91.67 99.19 98.25 92.90
Average 91.70 91.67 98.81 97.92 91.67

Figure 10: Melanoma classification results of ADL-MDC technique (Training/Testing of 60:40)

Fig. 11 exhibits the ROC analysis of the ADL-MDC technique on the training/testing data of
60:40. The results showcased that the ADL-MDC technique has the capacity of reaching better
melanoma classification performance with a maximum ROC of 99.8663.

Fig. 12 illustrates the PREN and RECL analysis of the ADL-MDC technique with recent meth-
ods [12]. The figure exhibited that the AlexNet and Xception models have obtained lower values
of PREN and RECL. Followed by, the AlexNet + DA, VGGNet16, VGGNet19, ResNet50, and
VGGNet19 + DA models have obtained moderately closer values of PREN and RECL. In line with, the
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Xception + DA, VGGNet16 + DA and ResNet50 + DA techniques have resulted in reasonable values
of PREN and RECL. However, the ADL-MDC technique has outperformed the other techniques with
the maximum PREN and RECL of 93.12% and 93.09% respectively.

Figure 11: ROC curve of ADL-MDC technique (Training/Testing of 60:40)

Figure 12: Comparative PREN and RECL analysis of ADL-MDC technique

Fig. 13 demonstrates the ACCY , and FSCORE analysis of the ADL-MDC technique with existing
techniques. The results reported that the AlexNet and Xception models have accomplished minimal
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values of ACCY , and FSCORE. Moreover, the AlexNet + DA, VGGNet16, VGGNet19, ResNet50,
VGGNet16 + DA, and VGGNet19 + DA models have gained reasonably increased values of ACCY ,
and FSCORE. Furthermore, the Xception + DA and ResNet50 + DA techniques have resulted in near
optimal values of ACCY , and FSCORE. However, the ADL-MDC technique has showcased improved
performance with the higher ACCY , and FSCORE of 98.27% and 93.09% respectively. From the above
mentioned tables and figures, it is evident that the ADL-MDC technique has reached maximum
melanoma classification performance compared to other techniques.

Figure 13: Comparative ACCY and FSCore analysis of ADL-MDC technique

5 Conclusion

In this study, a novel ADL-MDC technique has been derived for melanoma detection and classi-
fication using dermoscopic images. The ADL-MDC technique encompasses several stages including
pre-processing, K-means segmentation, CapsNet based feature extraction, Adagrad optimizer based
hyperparameter tuning, SAE based classification, and CSO based parameter optimization. The
exploitation of the Adagrad and CSO algorithm helps to properly accomplish improved performance.
A wide range of simulation analyses is carried out on benchmark datasets and the results are inspected
under several aspects. The simulation results reported the enhanced performance of the ADL-MDC
technique over the recent approaches. As a part of future extension, the classification performance of
the ADL-MDC technique can be improved by the design of DL based image segmentation techniques.
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