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Abstract: There has been an increase in attacks on mobile devices, such as
smartphones and tablets, due to their growing popularity. Mobile malware
is one of the most dangerous threats, causing both security breaches and
financial losses. Mobile malware is likely to continue to evolve and proliferate
to carry out a variety of cybercrimes on mobile devices. Mobile malware
specifically targets Android operating system as it has grown in popularity.
The rapid proliferation of Android malware apps poses a significant security
risk to users, making static and manual analysis of malicious files difficult.
Therefore, efficient identification and classification of Android malicious files
is crucial. Several Convolutional Neural Network (CNN) based methods have
been proposed in this regard; however, there is still room for performance
improvement. In this work, we propose a transfer learning and stacking
approach to efficiently detect the Android malware files by utilizing two well-
known machine learning models, ResNet-50 and Support Vector Machine
(SVM). The proposed model is trained on the DREBIN dataset by trans-
forming malicious APK files into grayscale images. Our model yields higher
performance measures than state-of-the-art works on the DREBIN dataset,
where the reported measures are accuracy, recall, precision, and F1 measures
of 97.8%, 95.8%, 95.7%, and 95.7%, respectively.

Keywords: Android malware; convolutional neural network; malware analysis;
malware classification; image classification; support vector machine

1 Introduction

Malware is defined as any program that has a malicious intent (malicious software). They are
designed to disrupt normal device operation, display unwanted advertising, steal sensitive data, or
remotely take control of the user’s device. Viruses, worms, Trojan horses, ransomware, rootkits, and
botnets are all types of malwares [1]. Malware systems have evolved to become more sophisticated over
the years. Malware uses polymorphic and metamorphic techniques to evade detection by conventional
malware detection techniques [2–5]. Extensive static analysis is required to detect newly developed
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malware that is too sophisticated to evade detection by emulators. Malware can also be propagated
through metamorphosis techniques such as multi-packing, registry modification, encryption, anti-
debugging, code transformation, virtual machines, and instruction permutation.

The evasion form of malware is intelligent, as it changes its infection routines to include an
initial step that carefully inspects the environment in which it runs, allowing it to select the most
appropriate time to execute the payload [4,6–9]. By utilizing reusable development modules and
automated development, new variants of malware can be created [10–12]. For the purpose of creating
new malware variants, malware developers frequently alter small sections of the original source code
[11,13,14]. As a result, it is a challenging task to distinguish between different variants of the same
family of malware [15,16]. Android apps that are malicious in nature, on the other hand, can infiltrate
smartphones and mine cryptocurrency without the user’s knowledge. Mobile malware is expected to
continue to grow and proliferate, allowing criminals to commit a wide range of cybercrimes on mobile
devices. There was a total of 35 million malware attacks, but according to the mobile threat report [17]
published by McAfee in the first quarter of 2020, there were approximately 800,000 new malware
attacks that were detected in the fourth quarter of 2019, surpassing the total number of malware
attacks. Recently, LeifAccess emerged as a detritus malware with capability of creating and posting
fake reviews on Google Play Store by exploiting the OAuth leveraging accessibility advantage. After
the installation, it operates in the background without displaying a shortcut or an icon. The emerging
of new malware families and increasing number of mobile malwares posed a serious threat to the
Android ecosystem’s security. Several studies shaded the light on combating the security concerns
faced Android ecosystem by conducing number of research related to the detection and classification
of Android malware samples [18,19]. Despite the progress that made in Android malware detection
and classification, a new challenge arisen related to the changes on malware malicious behavior over
time. Thus, it makes it challengeable task to the machine learning-based malware classifiers to avoid
performance deteriorations.

Static analysis and dynamic analysis are the techniques that are considered most important
for identifying malicious software. Malware can be identified through a combination of signature
and behavioral techniques. Static analysis can be done in situations where a piece of source code
is under suspicion without running the program. The source code must be disassembled to extract
features [20–22]. This technique is not resistant to obscure code and loading dynamic code [23–
26]. On the other hand, the dynamic analysis examines the characteristics and traces of suspect use
during the implementation [27–32]. Dynamic analysis is a promising technique, but it is time-and
resource-intensive [23,33]. Intelligent malware uses dynamic analysis with anti-emulation technology
[34–36]. In addition, it takes a lot of manual effort or human intervention to use static and dynamic
techniques on such files. This requires knowledge of the domain to analyze the application or to
reverse engineer it [37–41]. For Android malware family classification, the time required to create
features manually throughout the Android Application Package (APK) structure is significantly high
[4,6,42–45]. These safety mechanisms require high computer resources, and it is challenging to deploy
them in a restricted smartphone environment [34]. Android malware traces are being investigated using
Classes.dex, resources, manifests, and Android application certificate files [46,47].

Android malware detection has received a great deal of attention in the academic and commercial
communities due to the prevalence of attacks against the Android mobile operating system. There is,
however, a significant discrepancy between the amount of work that has been done and the number
of malicious applications that are published daily.
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Recent efforts have been made to reduce the number of malware attacks by testing deep learning
and optimization algorithms. The proposed work converts Android malware applications to malware
images. A CNN was developed to automatically extract the rich features of malware images using
a proven and widely accepted method for classifying images by the research community. As a
result, these characteristics were used to classify malicious applications according to their families.
This methodology recommends that binary data extracted from Android files be converted into
images. Analysts can see through malware binary images without executing them using visualization-
based techniques. The performance of feature representation can be accomplished by deep learning
algorithms without the need for any assumptions or configuration of parameters. In addition, deep
learning models can learn complex patterns and solve the dimensionality problem with little guidance.
The following is a list of the primary contributions:

1. We propose a stacked architecture consisting of ResNet-50 and non-linear Support Vector
Machine (SVM) for identification of malware Android APK converted to graylevel images.

2. We examine which elements of the malware sample are more useful for classifying Android
malware families using an expandable analysis for our stacked architecture classification
network. To retrieve high-quality information, non-intuitive features are also transformed into
fingerprint images.

3. The proposed model was tested and validated using the DREBIN dataset. There are 5560
applications in this dataset, belonging to 179 different malware families.

This paper is organized as follows. Section 2 reviews the methods used to detect Android malware.
Section 3 describes the use of the dataset for Android malware detection and Android package
conversion to images. The proposed approach is presented in Section 4. The detailed results are
presented and discussed in Sections 5 and 6 respectively. Finally, conclusions are drawn, and future
directions are discussed in Section 7.

2 Related Work

Researchers have performed visualization-based malware analyses [10,48–50]. The structure of
malware images is directly affected by visualization techniques [11,51–53]. In contrast to static and
dynamic approaches, visualization-based analyses allow for faster malware sample classification since
no disassembly or execution is needed. Thus, the task was to provide a method for classifying many
malware samples that was superior to that achieved with conventional technologies. In [54], APK
files were converted using Hue–Saturation–Lightness (HSL), Red–Green–Blue (RGB), grayscale, and
Cyan–Magenta–Yellow–Black (CMYK). To decide whether an application was benign or malicious,
three machine learning classifiers (decision trees, random forest, and k-nearest neighbors) were trained
on each image representation using Global Image Descriptors (GISTs). On the grey image, the random
forest classification had a high accuracy of 91 percent. A visualization tool was used to fine-grained
classify Portable Executable (PE) files [11]. The malware was disguised as an RGB image file. The
dataset included 7,087 malware samples from 15 families. By merging global and local malware
classification functions, the model was developed. The data and code portions of the file were processed
to create feature vectors for local attributes. The RGB image’s global characteristics were deleted. To
train the model, random tree, support vector, and k-nearest neighbor classifications were used to train
the model. According to the malware classification trial results, the random forest classification had
a 97.47% accuracy score. The approach did not function with non-PE files due to the complexity of
generating RGB-colored images and extracting valid local features for these malicious codes.
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In [55], only the coding for the APK files was considered. As a result, the DEX files were converted
into Java Achive (JAR) files using the dex2jar package. A Java Application Descriptor (JAD) tool was
used to translate other JAR files into Java files. Each APK file was supplemented with code from
different text files. The Word Frequency-Inverse Document Frequency (TF–IDF) technique was used
to differentiate keywords in the text records. The TF–IDF weight is a mathematical measure that
simplifies evaluating a word’s value in many text files. The cumulative number of words in a text
is multiplied by the number of times the word gets the normalized TF. The IDF decides the worth
of a word. The number of documents in the corpus is divided by the logarithm of the number of
documents in the corpus. This increases the scarcity of the words while reducing their frequency.
These files were grouped after the related words were extracted from the text files. The SimHash [56]
and the djb2 [57] algorithms were used to process the classes into images. A convolutional neural
network was used in the analysis, and it was graded with 92 percent accuracy. META-INF, resources,
and AndroidManifest. XML, among other APK file building blocks, was overlooked. Reference
[58] included a total of 12,000 malware images from 32 malware families. A vector sustainable
machine and the efficiency of customizers including Convolutional Neural Network (CNN) and
k-nearest neighbors, Local Binary Patterns [LBPs] and GIST). 93.92% of the chosen dataset had
high precision using the six-layer conversion-trained neural network model with LBP functionality.
Grayscale and Red–Green–Alpha (RGBA) graphics were used to represent the malware. The LBP-
trained CNN model’s productivity was investigated. According to the report, malware may cause
essential features of a color image to be lost. In essential malware detection, the decision on which
subset of features to include is difficult in machine learning. The design of the correct feature set
is required to produce an effective malware detection or analysis model. Reference [59] developed
C language visualization tools to investigate the internal configuration (anomalies or patterns) of
malware executable files. They mapped the.dex bytes to the image pixels to reveal a set of features for
malware classification. Legitimate Android developers use a variety of obfuscation tools to protect
their intellectual property. Malware authors exploit and abuse these tools and techniques to make
malware versions for Android more resistant. The authors used the visualization-based methodology
of [60] to fingerprint the obfuscation tools used in the Android application development period.
An image is used to display the malware binary. They used an image to quantify two types of
statistical properties, which were then combined to retrieve data from the application developer’s
obfuscation software. The accuracy rates for fingerprinting the obfuscation method and classifying
the obfuscated and original implementations, respectively, were calculated to be 73 percent and 86
percent, according to the researchers. While the review of the literature establishes that an APK file is
a sequence of bits and thus a binary image, there is no clear consensus among researchers on the type of
analysis and prominent APK parameters appropriate for malware classification. Traditional malware
classification methods rely on the extraction of dynamic and static features. These approaches typically
employ code analysis to address the problem of malware classification. Existing malware classification
techniques make use of both signature-based and feature-based classification. Unfortunately, these
systems have several drawbacks, including excessive resource usage, code obfuscation, and code
disassembly. Furthermore, researchers discovered that these methods require a lot of time and space.
The era of deep learning-infused visualization approaches is beginning in Android security. The
proposed methodology solves the multiclass malware classification problem by combining the power
of visualization and deep learning approaches. A deep learning architecture reduces the requirement
to gather features such as meta-data information, permissions, API calls, and other dynamic variables
to produce a high-quality malware classification model. Recent research in security and privacy has
demonstrated the value of solutions combining deep learning and visualization-based analysis [61,62].
For Windows malware, the majority of solutions [10,11,16] had high classification accuracy [10,16].
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As a result of only being able to conduct their experiments on Windows systems, the researchers had to
use PE files. Windows’s hardware architecture differs greatly from that of mobile devices based on the
lightweight Android operating system, which is why Windows is the most popular desktop operating
system. Consequently, it is not suitable to classify Android malware families using tools designed
for Windows platform applications. For Android malware detection, the reference [63] suggested
Integrating Neural Architecture and Visualization Technologies (SARVOTAM). The machine creates
fingerprint images from the malware’s non-intuitive features in order to collect high-quality data.
The study’s precision was 92.59% when using the DREBIN dataset. As reported in [64], 17 different
datasets are used to detect Android malware. It is challenging to perform benchmark tests due to the
lack of standard benchmark datasets. Thus, machine learning model performance may fluctuate on
some datasets. Furthermore, when obfuscation attacks are used, some static machine learning methods
fail to function properly. There is no guarantee that a classifier model based on different datasets is still
effective for new malicious applications. The authors of [65] created a model based on feature fusion.
In which features derived from deep levels of CNN layers were combined with handmade features
such as LBP, GIST and Gray Level Co-occurrence Matrix (GLCM) to create a feature fusion for the
classification of Android malware images. They achieved 93.24% accuracy using the malware image
combination of CR + AM using the feature fusion-SVM classifier.

In this study, we utilized the transfer learning ability of a complex architecture, ResNet-50, in com-
bination with a non-linear SVM, to identify malicious files. ResNet-50 is a 50-layer architecture that
can learn complex patterns in data more easily than other CNN-based architectures. Furthermore, the
softmax layer was replaced with a non-linear SVM, which serves as a supplement to the identification
task. The proposed stacked architecture is trained and tested on the DEBRIN datasets consisting of
malicious Android APKs after converting them to gray-level images. Different combinations were used
to test the model’s performance, and results associated with different groups were reported.

3 Materials and Methods
3.1 Dataset

The DREBIN dataset was utilized to evaluate our experiments. The dataset contains a total of
5,560 files representing 179 different malware families (See Fig. 1). The DREBIN dataset has been
utilized as the benchmark for malware research in most publications. GingerMaster [23], GoldDream
[24], and Aslan [25] were among the malware families in the dataset. Each file and folder are contained
within an APK’s ZIP archive. These files are combined to create an application. Instead of focusing
on the malware itself, the study’s main goal was to test the proposed malware identification method.

3.2 Malware Android Package Conversion to Images

The fundamental files that are taken into consideration for visualization in an APK are the classes,
dex, resources, manifest, and certificates. In this research, malware images are created by making use
of the aforementioned four categories of malicious APK files. The binary data is first transformed into
8-bit vectors, and then the resulting vectors are used to create grayscale images. A malware sub-string
is initially composed of a series of many sub-strings, each of which is 8 bits in length and is referred
to as a pixel. In the next stage, the 8-bit substring is converted into a decimal number that can take
on values between 0 and 255. In addition, each of the malware substrings was first converted into a
one-dimensional vector, and then transformed into a two-dimensional matrix with a width that was
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specified. The grayscale image is presented here as a matrix that has two dimensions. The procedure
for converting APK files to grayscale images is illustrated in Fig. 2.

Figure 1: Top 20 malware families in DREBIN dataset

Figure 2: Conversion process of Android APK to 2D gray level image

The dimensions of the APK files that are shown in Table 1 served as the basis for determining the
width of the images. As a direct consequence of this, the size of the file also influences the height. Inputs
need to have the same shape for CNN-based models to work properly. So, rather than attempting to
find the optimal size for an APK file through trial and error, we make use of the dimensions suggested
by [63]. The primary goal in selecting the sizes was to retain as much information as required while
still maintaining a compact format. This work follows the procedure suggested empirically by [16,63]
to eliminate the need for the method of finding the correct sizes through trial and error. Grayscale
images can be used to represent an entire application package (APK). The images of the DREBIN
Android malware were created by combining fifteen different file structures, each of which contained
at least one image belonging to a different family of malware. This was done to create the images of
the DREBIN Android malware. Fig. 3 presents the images that were made from the files after they
were processed. These files included resources (RS), Android Manifest (AM), Classes.dex (CL), and
certificate (CR). In this study, different combinations of these images have been tested, as shown in
Table 2.
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Table 1: Fixed image width by file size

File size Width

<50 KB 64
50–100 KB 128
100–200 KB 256
200–500 KB 512
500–1,000 KB 1,024

Figure 3: Illustration of some of the malware images using the files section of Android manifest (AM),
classes.dex (CL), and Certificate (CR)

Table 2: Different combinations and their corresponding instances are included in our experiment

Combination CR AM RS CL CR+
AM

CR+
RS

CR+
CL

AM+
RS

AM+
CL

RS+
CL

CR+
AM+
RS

CR+
AM+
CL

CR+
RS+
CL

AM+
RS+
CL

CR+
AM+
RS +CL

No. of
instances

1826 4659 4659 4660 4659 4659 4660 4659 4660 4660 4659 4660 4660 4660 4660

4 Proposed Model

Transfer learning uses the previous pre-trained model with some or no modification for another
problem. A machine uses the knowledge gained from a previous task to enhance its generalization
ability for a subsequent task. This way, it enables us to build a more robust architecture in the most
cost-effective way instead of training and fine-tuning from scratch. Various models can be used for
transfer learning, such as AlexNet, GooLeNet, and VGG. They stacked many convolutional layers,
leading to difficulty optimizing the networks, vanishing gradient problems, and degradation problems.
For Android malware detection, various CNN models are used, which require end-to-end training. In
this work, the pre-trained ResNet-50 model is utilized instead of end-to-end training. This reduces the
execution time and improves the classification results. ResNet-50 is a widely accepted architecture that
is beneficial for solving complicated tasks and improving detection performance. It tries to solve the
optimization, vanishing gradient, and degradation problems found in other networks by incorporating
the data fed to previous layers into the following layers [66]. In this work, we incorporated the previous
preprocessing method described in [63], where the malware’s non-intuitive features were converted to
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fingerprint images in order to extract useful information. For identification, the ResNet-50 is fine-
tuned where the softmax layer is replaced with the SVM model with a Gaussian kernel. The ResNet-50
architecture consists of five stages, each consisting of a convolution block and an identity block, as
illustrated in Fig. 4.

Figure 4: ResNet-50 architecture having 5 stages consists of Convolution blocks and ID blocks

Each convolution block consists of 3 connected convolution, batch normalization and ReLU units
as shown in Fig. 5.

Figure 5: Convolution blocks of ResNet-50 consists of three convolution, batch norm and ReLU units

Nevertheless, the identity block is reduced to two units, as depicted in Fig. 6. The softmax
layer is replaced with an SVM integrated with a Gaussian kernel. This architecture has over 23
million trainable parameters. Various numbers of layers in the back-end of the model have been
tested and evaluated, and it has been concluded that employing a smaller number of layers reduces
the classification measures. Nonetheless, the increment in the number of layers has no significant
effect on performance and only increases the time to train and execute the model. Furthermore,
the classification performance of the proposed model is better than all other state-of-the-art models.
However, a major limitation is the complexity of the model during training, which increases the
Multiply-Accumulate (MAC) and Floating Point Operations (FLOPs).

Figure 6: Identity blocks of ResNet-50 consists of two convolution, batch norm and ReLU units

As is illustrated in Table 3, the architecture of the proposed model consists of the following
elements: The first layer contains a convolution with a kernel size of 7 × 7 and 64 kernels with a stride
of size 2. Next, conv2 is a 1 × 1 convolution, 64 kernels following 3 × 3, 64 kernels, and a 1 × 1, 256
kernels. These three layers are repeated three times for a total of nine layers. In the conv3 convolution
block, there are 1 × 1, 128 kernels. Next is a kernel of 3 × 3, 128 kernels following 1 × 1, 512 kernel
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convolutions, repeated four times for 12 layers. Similarly, the next convolution block, conv5, consists
of 1 × 1, 256 kernels following 3 × 3, 256 kernels, leading up to 1 × 1, 1,024 kernels. This process was
repeated six times for a total of 18 layers. In the last convolution block, there were 1 × 1, 512 kernels
followed by 3 × 3, 512 kernels and 1 × 1, 2,048 kernels. This was repeated three times for a total of
nine layers in this block. The last layer, which consists of 1,000 nodes with softmax entropy, is replaced
with nonlinear kernels to identify malicious images. The simulations were run on a system with 20 GB
of RAM and an Intel® CoreTM i3 processor, as well as an NVIDIA GeForce GTX 1080ti graphics
processing unit with a frame buffer of 11 GB.

Table 3: Architecture of the proposed stacked model consisting front-end of ResNet-50 and SVM

Layer name Output size Layers statistics

conv1 112 × 112 7 × 7, stride = 2
pooling - 3 × 3 max pool, stride = 2
conv2 56 × 56 1 × 1, 64

3 × 3, 64 × 3
1 × 1, 256

conv3 28 × 28 1 × 1, 128
3 × 3, 128 × 4
1 × 1, 512

conv4 14 × 14 1 × 1, 256
3 × 3, 256 × 6
1 × 1, 1024

conv5 7 × 7 1 × 1, 512
3 × 3, 512 × 3
1 × 1, 2048

1 × 1 average pool, the output is fed to SVM for identification

FLOPS ≈4 × 109

5 Experimental Results

To demonstrate the detection performance of the proposed model, the confusion matrix is
generated, as illustrated in Table 4. Furthermore, we computed precision, recall, accuracy, and F1
measures from the information presented in Table 5.

Accuracy is computed by dividing the total number of true positives (TP) and true negatives (TN)
by the total number of predictions, i.e., all entries in the confusion matrix. Recall, which is also known
as the true positive rate (TPR), is calculated by dividing the total number of TP by the sum of TP
and TN. It shows the number of instances correctly classified by the model. Similarly, precision (PR)
is another measure that considers the number of instances that were considered malicious, but they
were non-malicious, also known as false positives (FP). All these quantitative measures are shown in
Table 6, which demonstrates a 97% accuracy, while the other measures are at 95%. The performance
of the proposed model is higher on malware families such as certificates and Android manifests. This
represents that the model learned and perceived the actual behaviors of these files.
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Table 5: Performance measures obtained via the combination of AM and CR files

Measures Results (%)

Accuracy 97%
Precision 95.7%
Recall 95.8%
F1 95.7%

Table 6: Individual recall, precision and F1 score of each class

Type Recall Precision F1

FakeInstaller 98.36 99.34 98.85
DroidKungFu 94.55 96.74 95.63
Plankton 98.54 97.13 97.83
Opfake 100 98.54 99.26
GinMaster 95.54 95.54 95.54
BaseBridge 95.41 95.41 95.41
Iconosys 100 96.15 98.04
Kmin 100 100 100
FakeDoc 100 100 100
Geinimi 100 100 100
Adrd 90 93.1 91.53
DroidDream 92.59 96.15 94.34
ExploitLinuxLotoor 86.96 83.33 85.11
Goldream 100 100 100
MobileTx 86.96 83.33 85.11
FakeRun 95 90.48 92.68
SendPay 100 100 100
Gappusin 89.47 89.47 89.47
Imlog 92.86 100 96.3
SMSreg 100 100 100

However, the performance is lower on ExploitLinuxLootor, MobileTx, Gappusin, and Bade-
Bridge due to fewer samples relative to other malware types. Furthermore, the performance is the
lowest of the DroidDream, MobileTx, Gappusin, and ExploitLinuxLooter malware families. These
malware families exhibit a significantly lower number of samples in the training dataset, and it seems
to affect rooted Android devices. There is a high certainty that these types alter their signatures
after getting root access to the device. This statement can be analyzed in the future, which opens
a new dimension of research to evaluate existing algorithms on rooted and non-rooted devices. It
can also be seen from the results that DroidDream, Imlog, and DroidKungFu have a lower recall
rate. However, their precision is high. Such contrasting results illustrate that the nature of these files
learned by the model is different from other families. In Fig. 7, we show the number of instances
of each class misclassified by the proposed model. During training, the classification models try to



4008 CMC, 2023, vol.74, no.2

extract discriminative features. If the input data contains a lot of information and relevant features, the
classification task of the model becomes more accurate. As shown in this study, various combinations
of the images were used in classification to increase the accuracy. We have seen that the combination
of CR and AM has produced the maximum classification results. As a result, time and effort can
be saved in inspecting the entire APK structure for Android malware classification. Misclassification
occurs as a result of similarity between images of different classes. In order to resolve this issue in
future work, we need to propose a common framework based on frequency transformation, which
could be distinguished in similar images.

Figure 7: Recall, precision and F1 score of top 20 malware families in DREBIN dataset for the
proposed model

6 Discussion

In our line of work, the proposed model performed admirably for approximately 100 epochs. The
simulation results were recorded for the DREBIN dataset after converting malicious Android apps
into fingerprint images and utilizing AM and CR images. These results were recorded after using AM
and CR images. Our model’s performance was evaluated in comparison to that of several other models
considered to be state-of-the-art, and the results showed that our model’s performance was superior.
As can be seen in Fig. 8, the evaluation is compared for a number of different possible combinations
of the image types. Table 7 shows the highest level of accuracy achieved using the combination of AM
and CR.

Both the observations and the results of the simulations indicate that both files contain the
maximum amount of relevant information about different types of malicious software, which results
in satisfactory classification performance. In addition to measures of classification, Table 8 provides a
time-based comparison for each combination that was utilized in the research, as well as the number of
images that were processed per second and belonged to the appropriate class. Consequently, once the
model has been trained with high-quality classification metrics, it can be utilized for testing in a wide
variety of different applications. Table 8 shows the average processing time required to process a single
image, which is comparable to that of earlier studies [63]. Therefore, once the model is integrated and
utilized in software systems, its execution performance will be identical to that of the state-of-the-art
method.
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Figure 8: Accuracy score of each combination of the images considered in simulations

Table 7: Accuracy of the proposed model compared with other state-of-the-art works for various
combinations of images [63]. The highest accuracy for each model is shown in bold

S/No. Image combination (%) CNN CNN-RF CNN-SVM VGG-16 Proposed (%)

1 CR 83.5 83.4 82.9 78.2 86.8
2 AM 89.7 84.8 90.1 85.7 95.4
3 RS 86.8 84.5 88.5 82.1 93.6
4 CL 89.4 87.5 90.5 87.2 93.4
5 CR + AM 91.4 87.5 92.5 90.5 97.0
6 CR + RS 87.1 85.8 89.4 88.9 91.0
7 CR + CL 89.3 88.4 90.2 89.3 92.7
8 AM + RS 88.2 84.9 89.4 86.7 91.3
9 AM + CL 89.3 88.6 90.8 84.4 94.5
10 RS + CL 88.4 87.5 90.9 84.3 95.2
11 CR + AM + RS 89.4 85.5 90.7 87.6 94.6
12 CR + AM + CL 89.3 88.8 90.5 86.8 95.5
13 CR + RS + CL 89.5 88.1 90.9 84.5 94.6
14 AM + RS + CL 88.5 87.9 90.7 89.2 93.6
15 CR + AM + RS + CL 89.3 87.8 90.7 84.3 94.5
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Table 8: A comparison of execution time and images processed per second by the proposed model

S/No. Combination Execution time (s) Images processed/second

1 CR 241.2 7.57
2 AM 763.8 6.1
3 RS 887.4 5.25
4 CL 1103.1 4.22
5 CR + AM 890.2 5.23
6 CR + RS 1004.4 4.64
7 CR + CL 1109.7 4.2
8 AM + RS 870.5 5.35
9 AM + CL 1130.4 4.12
10 RS + CL 1093.3 4.26
11 CR + AM + RS 924.7 5.04
12 CR + AM + CL 1139.4 4.09
13 CR + RS + CL 1233.5 3.78
14 AM + RS + CL 1207.9 3.86
15 CR + AM + RS + CL 1513.7 3.08

7 Conclusion

In this study, we proposed a classification model for Android malware that uses ResNet-50 and
SVM. The ResNet-50 was used because it has transferable learning abilities. The first step was to use
substrings from many binary malware files in the DREBIN dataset to generate vectors in the 8-bit
range. The next step is to convert these vectors into grayscale images. The ResNet-50 model’s softmax
layer for classification is replaced by a support vector machine (SVM), which uses a non-linear kernel
to improve detection performance. In addition, various combinations of the images were used to fine-
tune the model in search of the files that had the greatest impact on the model. From simulation
results, it can be concluded that the certificate and Android manifest (CR + AM) are the most suitable
features for identifying and classifying malware, as they contain sufficient information. Using the CR
and AM images, we reported the highest accuracy, recall, precision, and F1 measures. When using the
DREBIN dataset, the highest level of accuracy achieved was 97%. In the future, we intend to extend
the evaluation to include malware on additional platforms to evaluate the effectiveness of our model.
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Appendix

List of abbreviations used throughout the paper.

Abbreviation Meaning

SVM Support Vector Machine
APK Android Application Package
HSL Hue–Saturation–Lightness
RGB Red–Green–Blue
CMYK Cyan–Magenta–Yellow–Black
GIST Global Image Descriptor
PE Portable Executable
JAR Java Archive
JAD Java Application Descriptor
TF–IDF Word Frequency-Inverse Document Frequency
CNN Convolutional Neural Network
LBP Local Binary Pattern
RGBA Grayscale and Red–Green–Alpha
SARVOTAM Suggested Integrating Neural Architecture and Visualization

Technologies
GLCM Gray Level Co-occurrence Matrix
CL Classes.dex
AM Android Manifest
CR Certificate
RS Resources
MAC Multiply-Accumulate
FLOP Floating Point Operation
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