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Abstract: An increase in car ownership brings convenience to people’s life.
However, it also leads to frequent traffic accidents. Precisely forecasting sur-
rounding agents’ future trajectories could effectively decrease vehicle-vehicle
and vehicle-pedestrian collisions. Long-short-term memory (LSTM) network
is often used for vehicle trajectory prediction, but it has some shortages such as
gradient explosion and low efficiency. A trajectory prediction method based
on an improved Transformer network is proposed to forecast agents’ future
trajectories in a complex traffic environment. It realizes the transformation
from sequential step processing of LSTM to parallel processing of Trans-
former based on attention mechanism. To perform trajectory prediction more
efficiently, a probabilistic sparse self-attention mechanism is introduced to
reduce attention complexity by reducing the number of queried values in the
attention mechanism. Activate or not (ACON) activation function is adopted
to select whether to activate or not, hence improving model flexibility. The
proposed method is evaluated on the publicly available benchmarks next-
generation simulation (NGSIM) and ETH/UCY. The experimental results
indicate that the proposed method can accurately and efficiently predict
agents’ trajectories.

Keywords: Trajectory prediction; Transformer; attention mechanism; ACON
activation; intelligent perception

1 Introduction

Automated driving technology has become a research hot spot due to its wide applications
in intelligent transportation systems. As shown in Fig. 1, trajectory prediction [1] is essential for
autonomous driving to achieve safe driving except for vehicle detection [2]. The red and orange lines
represent the ego-vehicle’s future trajectory and its associations with surrounding vehicles. Studies on
historical movement rules and behavior patterns of surrounding vehicles and precise prediction of
their future trajectories can effectively boost driving safety and avoid vehicle collisions. For example,
the ego-vehicle will not turn right to avoid a potential collision if its forward vehicle turns right in the
near future.
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Figure 1: Driving scenario of an autonomous vehicle

With the developments of machine learning [3–5], researchers proposed two kinds of prediction
methods, including model-driven [6,7] and data-driven [8–10]. For the former, some researchers
used the Markov chain and Kalman filter [6,7] to perform trajectory prediction. Houenou et al.
[11] proposed combining the constant yaw acceleration motion model with trajectory prediction of
maneuver identification, which made up for the shortcomings of traditional prediction methods in
long-term prediction. Ji et al. [12] used an encoder-decoder structure and a hybrid density network
(MDN) layer for vehicle trajectory prediction. However, it is difficult for the model-driven prediction
method to model the complex, realistic environment since the complexity and high non-linearity of
agents’ motion.

With the rise of deep learning [13,14], many data-driven methods have been proposed in recent
years since trajectory prediction could be regarded as a sequence classification or a sequence gen-
eration task. LSTM network [15] is widely used for information mining and deep representation
when dealing with time-series data. Khosroshahi et al. [16] established a vehicle mobility classification
framework by using the LSTM model. Phillips et al. [17] used the LSTM model to predict the
trajectory direction of vehicles when they reached the intersection. Kim et al. [18] used the LSTM
model to learn the time behavior of vehicles and predict future trajectories from a large number of
trajectory data. Alahi et al. [19] proposed Social LSTM, which automatically learns the interaction
between trajectories simultaneously by introducing the ”Social” pooling layer. However, due to its
cyclic structure, the LSTM model has some shortages, such as gradient explosion, sensitivity to lost
data, and low prediction efficiency.

To solve the above problems, we propose to achieve trajectory prediction based on Transformer
networks, which have achieved state-of-the-art performance on multiple tasks like the Natural
Language Processing (NLP) [20–22]. Transformer networks utilize an attention mechanism [20], which
allows the networks to focus on a different part of the input column at each time step. Hence, it
could provide deeper reasoning about the correlation between input sequence data and situational
interaction.

LSTM could only process sequences sequentially due to its cyclic structure, whereas Transformer
networks [23,24] could process sequential input sequences in parallel through a multi-head attention
mechanism and make predictions from the input with missing data. However, Transformer networks
have a high space-time complexity since the self-attention mechanism is calculated as the dot product.
Such a high complexity will influence the prediction efficiency of the model [25,26]. Hence, a
probabilistic sparse attention mechanism is introduced to reduce attention complexity by reducing
the number of query values in the attention mechanism.



CMC, 2023, vol.74, no.2 3813

To sum up, the main contributions of this paper can be summarized as follows:

1. Considering that traditional forecasting methods do not make full use of historical information
and cannot handle large amounts of data in parallel, a Transformer network is used to realize
vehicle trajectory prediction in a better way.

2. To solve the problems of attention query sparsity and the high space-time complexity in
the self-attention mechanism, a probabilistic sparse self-attention mechanism is introduced
to selectively calculate the query-key value and reduce the space-time overhead of the self-
attention mechanism.

3. To solve the problem that traditional activation functions are sensitive to parameter initializa-
tion, learning rate, and neuron death, activate or not (ACON) activation function [27] is utilized
to determine whether the adjustment from adaptation was activated through two learnable
parameters. The experimental results indicate that the proposed method could predict future
trajectories precisely and efficiently.

2 Related Work
2.1 Transformer Network

Transformer networks have achieved excellent performance on multiple NLP tasks such as
machine translation [28], sentiment analysis [29,30], and text generation [31]. It completely discards the
recursion idea and the sequential nature of language sequence and only uses the powerful self-attention
mechanism to model time series data.

As shown in Fig. 2, the Transformer network adopts an Encoder-Decoder architecture [32,33],
composed of N stacked blocks. The Encoder contains the self-attention layer and the feed-forward
neural network. Sequence features are extracted from the attention layer and transmitted to the
decoder after processing. The decoder consists of three layers: a multi-head attention layer with a
mask, a multi-head attention layer, and a feed-forward neural network. The multi-head attention layer
with mask hides the output after the current time t. Hence, the prediction result of the output at the
current time t does not depend on the information after t.

2.2 Attention Mechanism

When the attention mechanism [34–36] generates the output at the current moment, it also
generates the attention range to represent the input sequence that the output should focus on at the
next moment. It allocates different weights to the sequence features, thus reducing the computing
power and the limitation of the optimization algorithm and increasing the accuracy of the trajectory
prediction processing. As shown in Fig. 3, the ability of the Transformer network to capture non-
linearity is primarily at the self-attention level.
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Figure 2: Structure diagram of transformer

Figure 3: Structure diagram of the attention mechanism

The input consists of a Q (Query) matrix of dimension dk, a K (Key) matrix, and a corresponding
V (Value) matrix of dimension dv. In each attention layer, Q and K calculate the degree of attention
S between vectors through S = Q•KT , and the normalized score Sn obtained by scaling through
Sn = S/

√
dk to optimize the training effect. Then, the Softmax() function is applied to convert Sn

to a probability distribution. Finally, the probability distribution is weighted by V . The process can be
unified into a single process:

Attention (Q, K, V) = soft max
(

QKT

√
dk

)
V (1)
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In order to improve the performance of the ordinary self-attention layer, the Transformer network
further improves the self-attention layer and extends it to the multi-head attention mechanism. The
single-headed self-attention layer has a constraint on the attention of a specific location. In contrast,
the multi-headed attention makes different sub-spaces pay attention to multiple specific locations,
which significantly expands the ability of the model attention mechanism. The specific process of the
attention mechanism of multiple heads with the number of heads H is as follows:

MultiHead (Q′, K ′, V ′) = Concat (head1, . . . ; ., headh) W o (2)

where Q′ is a join of {Qi}h
i=1, K ′ is a join of {Ki}h

i=1, V ′ is a join of {Vi}h
i=1, W o ∈ Rdmodel×dmodel is a linear

projection matrix.

2.3 Activation Function

Activation function [37] introduces nonlinear characteristics into the network, which plays an
essential role in the neural network model to fit complex data distribution. Rectified linear unit (ReLU)
[38] is a commonly used simple activation function that could accelerate convergence and restrain
gradient vanishing problems. However, the sparse processing forced by ReLU may reduce the effective
capacity of the model, resulting in neuron death. ReLU’s curve and formula are shown in Fig. 4 as
follows:

Y
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0 42 6-2-4-6

2

4

6

Figure 4: ReLU’s curve and formula

Through a series of improvements, Google proposed an activation function called Swish [39],
proving to be more effective than ReLU on deep models. It has the characteristics of unsaturated,
smooth, and non-monotone. The formula is as follows:

f (x) = x · sigmoid
(
β̃x

)
(3)

where β̃ is a trainable parameter.

3 Proposed Method
3.1 Reference System

A stationary reference system is used in this work. The origin of the reference frame is fixed on the
predicted agent at time t. Take vehicle trajectory prediction as an example. As shown in Fig. 5, Y-axis
represents the movement direction of the highway, and X-axis is perpendicular to it. Therefore, the
model is independent of how the vehicle trajectory is obtained. It also makes the model independent
of the curvature of the road. The reference system of pedestrians is similar to that of vehicles.
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Figure 5: The stationary reference system for vehicle trajectory prediction

3.2 Pipeline of the Proposed Method

We aim to predict the future trajectories of different agents, including vehicles and pedestrians.
Specifically, their future trajectories are predicted based on their historical trajectories. Fig. 6 shows
the pipeline of the proposed method. After feeding the network with agents’ historical trajectories, it
mainly relies on the encoder-decoder structure to capture agents’ motion characteristics and predicts
their future trajectories.

Figure 6: Pipeline of the proposed method

The model is mainly composed of three parts: the data processing part, the feature extraction part,
and the trajectory prediction part. Descriptions of different parts are as follows:

Data Processing: For agent i, its historical trajectory is Vobs = {
xi

t

}Tobs

t=1
, and the ground truth is

Vgt = {
yi

t

}Tpred

t=Tobs+1
. As shown in Fig. 6, in order to enable the network to better process the input data,

the trajectory information is mapped to a high dimensional space by a linear transformation with
learnable weight W x and W y, as follows:

e(i,t)
obs = xi

tWx (4)

e(i,t)
gt = yi

tWy (5)
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In Eq. (4), xi
t represents the historical position, and e(i,t)

obs is its embedding obtained through a linear
transformation. In Eq. (5), yi

t represents the ground truth position, and e(i,t)
gt is its embedding.

To add timing information to the input embedding, the position embedding PE(t,d) is added into
the e(i,t)

obs and e(i,t)
gt , as follows:

ξ (i,t)
obs = PE(t,d) + e(i,t)

obs (6)

ξ (i,t)
gt = PE(t,d) + e(i,t)

tgt (7)

where PE(t,d) will be introduced in Section 3.C. ξ
(i,t)
obs and ξ (i,t)

gt represent the embedding of the historical
and ground truth trajectories with timing information. Finally, ξ

(i,t)
obs is fed into both the encoder and

the decoder.

Feature Extraction: After data processing, ξ (i,t)
obs is fed into the encoder and multiplied by three linear

transformations with learnable weights W Qenc, W Kenc, and W Venc, respectively. Then, three matrices,
including the query (Qenc), key (Kenc) and value (V enc), are calculated as follows:

Qenc = WQencξ
(i,t)
obs (8)

Kenc = WKencξ
(i,t)
obs (9)

Venc = WVencξ
(i,t)
obs (10)

Afterward, the sparse self-attention module calculates the first U dot product pairs with high
correlation, and then multiplier them with V enc to get the attention matrix Aenc as follows:

U = c∗ ln LQenc (11)

Q = {
Qenc

i}U

i=0
(12)

Aenc = soft max

(
QKenc

T

√
dk

)
Venc (13)

where c is the constant sampling factor and dk is the dimension of Ku, Q̄ is a sparse matrix with the
same size as Qdec, which only contains the first U queries. Section 3.4 will provide a detailed explanation
of Eq. (13).

Aenc is then fed into a feed-forward neural network (FFN), which is followed by the ACON
activation function for adaptive activation. Finally, the output of the encoder is defined as follows:

Oenc = ACON (FFN (Aenc)) (14)

Trajectory Prediction: Trajectory prediction is mainly achieved in the decoder, which predicts
future trajectories in an auto-regression manner. The decoder mainly consists of two inputs, the ground
truth trajectory embedding ξ (i,t)

gt , and the output of the encoder Oenc. ξ (i,t)
gt is fed into the decoder and

multiplied by three linear transformations with learnable weights W Qdec, W Kdec, and W Vdec, respectively.
Then, three matrices, including the query (Qdec), key (Kdec) and value (V dec), are defined as follows:

Qdec = WQdec
ξ (i,t)

gt (15)

Kdec = WKdec
ξ (i,t)

gt (16)
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Vdec = WVdec
ξ (i,t)

gt (17)

Afterward, the multi-head probabilistic sparse self-attention module takes three embeddings as
input and outputs the attention matrix Adec as follows:

Adec = soft max

(
QdecKdec

T

√
dk

)
Vdec (18)

where Q̄dec is a sparse matrix with the same size as Qdec, which only contains the first U queries. Notably,
an upper triangle mask is used to shield out future trajectory information since it may influence the
trajectory forecasting performance. Then, Adec is fed into the encoder-decoder multi-headed attention
module, where Qenc_dec = Adec, Kenc_dec = V enc_dec = Adec. The output of the decoder is defined as follows:

Aenc_dec = soft max
(

Qenc_decKenc_dec
T

√
dk

)
Venc_dec (19)

where dk is the dimension of Kenc_dec.

Finally, Aenc_dec is fed into an FFN, which is followed by a Softmax activation function, to generate
future trajectories Vpred = {

x̂i
t

}Tpred

t=Tobs+1
, as follows:

Vpred = Soft max (FFN (Aenc_dec)) (20)

3.3 Position Embedding

The Transformer network could not capture the sequential properties of sequences since it has no
loop structure like LSTM. Hence, a position embedding technology [40] is introduced when encoding
the input. In this work, the position embedding PE(t,d) used in Eqs. (6) and (7) is calculated based on
the sine-cosine rule, as follows:

PE(t,d) =
{

sin
(
t/10000d/dmodel

)
when d is even

cos
(
t/10000d/dmodel

)
when d is odd

(21)

where d represents the dimension of the agent’s position vector at time step t.

3.4 Probabilistic Sparse Self-attention Mechanism

In the traditional self-attention, each position of the trajectory needs to pay attention to all other
positions. However, the learned attention matrix is very sparse. Therefore, the computation complexity
could be reduced by incorporating structural bias to limit the number of query-key pairs that each
query attends. Under this restriction, we introduce sparse attention, in which only the similar Q-K
pairs are calculated. Then, the complexity of attention could be reduced by decreasing the number of
Q, which represents the query prototype.

In this work, several query prototypes are selected as the primary sources to calculate the
distribution of attention. The model either copies the distributions to the locations of the represented
queries or populates those locations with uniform distributions. Fig. 7 shows the flow chart to calculate
the query prototype.
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Figure 7: Flow chart of the query prototype

The query sparsity measurement is adopted, and the prototype is selected from the query. The
measurement method is the Kullback-Leibler divergence between the attention distribution of the
query and the discrete uniform distribution. We define the ith query’s sparsity measurement as:

M (qi, K) = ln
LK∑
j=1

e
qik

T
j√
d − 1

LK

LK∑
j=1

qikT
j√
d

(22)

The first term is the log-sum-exp (LSE) of qi over all keys, and the second term is their arithmetic
means. If the ith query obtains a larger M(qi, K), then its attention probability p is more diversified
and has a higher probability that contains the dominant dot product pairs in the head domain of the
long-tailed self-attention distribution.

Based on the above discussions, the sparse self-attention [25] only allows each key to process U
dominant queries, and its formula is as follows:

A(Q, K, V) = Soft max(
Q̄KT

√
d

)V (23)

where Q̄ is a sparse matrix with the same size as q, which only contains the first U queries under the
sparse metric M(q, k). Controlled by a constant sampling factor c, we set u = c∗lnLQ, which makes
the Prob Sparse self-attention only need to calculate O(lnLQ) dot-product for each query-key lookup
and the layer memory usage maintains O(LK lnLQ).
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3.5 ACON Activation Function

Ma et al. [27] presented that Swish is a smooth approximation of ReLU. A new activation function
ACON, is proposed to determine whether to activate or not based on Swish adaptively. The most
extensive form is ACON-C, and the calculation is as follows:

f (x) = (p1 − p2) xσ [β (p1 − p2) x] + p2 · x (24)

where p1 and p2 are two learnable parameters, and β is a switching coefficient. Notably, ACON-C is
simple and does not add any computing overhead.

3.6 Loss Function

The loss function [41] is the critical factor in training a deep neural network. The L2 loss function
is adopted in this work to calculate the error between ground truth positions and predicted positions
of agents’ trajectories. The L2 loss is calculated as follows:

L
(
Vgt, Vpred

) =
√√√√ 1

Tpred

Tpred∑
t=1

(
yi

t − x̂i
t

)2
(25)

where yi
t and x̂i

t are positions in ground truth and predicted trajectories, respectively. Tpred represents
the predicted time steps.

4 Experimental Results
4.1 Datasets

The proposed method is evaluated on two publicly available benchmarks, namely next-generation
simulation (NGSIM) and ETH/UCY datasets. The former one contains vehicles’ trajectories, and the
latter one contains pedestrians’ trajectories. Their details are introduced as follows:

NGSIM: NGSIM [42,43] is a traffic dataset collected on American highways. It contains two
scenes, US-101 and I80. For each scene, all vehicles’ trajectories are recorded over 45 min and with
a sampling frequency of 10 Hz. It is divided into three 15-min segments under mild, moderate,
and congested traffic conditions, respectively. In this work, we split all the trajectories contained in
NGSIM, in which 70% are used for training, 20% are used for testing, and the left 10% are used for
validation. Each trajectory is split into an 8s segment, consisting of 3s historical trajectory and 5s
future trajectory (used as ground truth). We down-sample the original frequency of 10 to 5Hz. Hence,
15 historical positions and 25 ground truth positions are obtained in each trajectory.

ETH/UCY: This dataset includes a total of 5 videos (ETH, HOTEL, UNIV, ZARA1, and
ZARA2) from 4 different scenes (ZARA1 and ZARA2 from the same camera, but at different times)
[44]. Totally 1536 pedestrians are in the crowds with challenging social interactions. According to
the evaluation protocol, samples are taken from the data every 0.4 s to generate the trajectory. The
pedestrian position is converted from the original pixel positions to meters in real-world coordinates
using the homology matrix. We use the leave-one-out approach for fair comparisons, train on four
sets, and test on the remaining set. We observe each trajectory for 3.2 s (8 frames) and obtain the next
4.8 s (12 frames) of ground truth data.

4.2 Metrics

Average Displacement Error (ADE) and Final Displacement Error (FDE) are used as metrics for
evaluation. ADE is used to measure the average difference at each time step between the predicted
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trajectory and the ground truth. FDE is used to measure the distance between the final destinations
of the predicted trajectory and the ground truth.

4.3 Experimental Details

The experimental environment used is the Ubuntu system and the PyTorch framework. The Adam
optimizer is used to train the network with a learning rate of 0.0004. The dropout value is set as 0.1.
Other hyper-parameters, including the training epochs, the layer numbers, the embedding size, and
the head numbers used in the Transformer network, are fine-tuned through cross-validations on the
ETH/UCY databases.

4.4 Hyper-Parameter Fine-tuning

Unlike LSTM-based trajectory prediction methods, the Transformer network has a large space-
time overhead. Hence, hyper-parameter fine-tuning is performed on the ETH/UCY database, which
contains much fewer trajectories than NGSIM. Specifically, we evaluate the proposed method on the
ETH/UCY when using different layer numbers, embedding sizes, head numbers, and different training
epochs (100, 300, 500). The initial values of the layer numbers, embedding sizes, and head numbers
are empirically set to 4, 128, and 8, respectively. We fix other hyper-parameters when we fine-tune a
certain hyper-parameter.

Tabs. 1–3 report the average ADE/FDE values on ETH/UCY using different hyper-parameters of
the Transformer network. It is obvious that the proposed method could achieve the best performance
on the ETH/UCY when setting the layer number to 4, the embedding size to 256, and the head number
to 8. Besides, we find that the training epochs (100, 300, 500) would not greatly influence the trajectory
prediction performance. However, a large training epoch will greatly increase the training time. Hence,
we set the training epoch to 100 for efficient training.

Table 1: Comparison of different layers

Number of layers ADE FDE

100 300 500 100 300 500

1 0.505 0.502 0.504 1.011 1.008 1.003
2 0.494 0.492 0.491 0.992 0.990 0.988
4 0.479 0.475 0.473 0.985 0.983 0.983
6 0.478 0.476 0.474 0.984 0.984 0.983

Table 2: Comparison of different embedding sizes

Embedding_size ADE FDE

100 300 500 100 300 500

32 0.495 0.491 0.490 0.998 0.995 0.992
64 0.481 0.488 0.487 0.990 0.990 0.989

(Continued)
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Table 2: Continued
Embedding_size ADE FDE

100 300 500 100 300 500

128 0.480 0.478 0.478 0.990 0.989 0.989
256 0.475 0.475 0.477 0.984 0.981 0.981
512 0.479 0.477 0.476 0.983 0.983 0.981

Table 3: Comparison of different HEADS

Number of heads ADE FDE

100 300 500 100 300 500

2 0.501 0.498 0.497 1.021 1.010 1.002
4 0.484 0.482 0.482 0.990 0.991 0.987
8 0.478 0.476 0.477 0.982 0.982 0.983
16 0.481 0.479 0.476 0.985 0.983 0.983

4.5 Ablation Study

The main contribution of this paper is to replace the traditional self-attention mechanism with the
probabilistic sparse self-attention mechanism, which significantly reduces the space-time complexity of
the model and improves efficiency. Besides, the ACON-C activation function is used to adjust whether
to activate or not adaptively. We perform a detailed ablation study on two benchmarks to exhibit the
effects of the proposed improvements. Specifically, we compare the trajectory prediction performance
between the probabilistic sparse self-attention and the traditional self-attention. We also compare
the performance between the ReLU and the ACON-C. As indicated by Tab. 4, better performance
is achieved by replacing the traditional ReLU and self-attention with ACON-C and the probabilistic
sparse self-attention, which reveals the effects of the proposed improvements.

Table 4: Ablation experiments on the ETH database

Probabilistic Sparse Self-attention Self-Attention ACON-C ReLU ADE/FAD
√ √ 0.922/1.874√ √ 0.833/1.782√ √ 0.989/2.061√ √ 0.962/1.894

4.6 Quantitative Evaluations

In this work, an improved Transformer network is proposed to perform trajectory for both
vehicles and pedestrians. Firstly, we evaluate the influence of prediction spans on vehicle trajectory
prediction. Tab. 5 presents the quantitative results on NGSIM dataset by ADE/FDE over 5s prediction



CMC, 2023, vol.74, no.2 3823

spans. We use the LSTM-based trajectory prediction method for comparison. As shown in the table,
the LSTM-based method performs well in a short period (2s). However, its performance gradually
deteriorates with the increase of the predicted sequence length. Such results indicate that the LSTM
sequential processing structure performs poorly in modeling complex and large amounts of data and
has limited ability to process long sequences. Unlike LSTM, the Transformer network could learn
from all moments in parallel, thus improve efficiency and scalability.

Table 5: Quantitative results on NGSIM dataset by using LSTM and the proposed method are
reported by ADE/FDE over 5s prediction spans (low is preferred and is bold)

Models Prediction span/s

2s 3s 4s 5s

LSTM 1.74/3.72 3.86/7.89 5.45/13.02 8.57/21.27
Ours 1.81/3.83 3.20/7.35 4.68/11.42 6.67/16.39

To further demonstrate the effects of the proposed method, we make a quantitative analysis by
comparing the proposed method with several state-of-the-art methods, including the LSTM-based
method, Social-LSTM [19], SGAN [45], and Sophie [46]. Social-LSTM presents the social pooling
layer to capture social interactions. SGAN introduces an adversarial training manner to generate
future trajectories. Sophie proposes social and physical attention modules to improve the predicted
trajectories. For NGSIM, we compare the trajectory prediction performance by generating the future
trajectories within the 5s prediction span. As shown in Tab. 6, although Sophie has a better effect
on I80 moderately dense scenario, the proposed method achieves better performance on other scenes
compared with other methods. Besides, the proposed method achieves the lowest average ADE/FDE.

Table 6: Comparisons between the proposed method and selected SOTA methods on NGSIM
benchmarks. We report the ADE/FDE within 5 s prediction span (low is preferred and is bold)

Dataset LSTM Social-LSTM SGAN Sophie Ours

I80-1 8.89/21.06 9.06/21.56 8.28/20.24 7.26/18.66 6.89/15.78
I80-2 8.26/19.84 8.54/19.29 7.78/18.28 5.76/14.24 6.21/15.01
I80-3 7.66/19.01 7.61/18.71 7.01/17.31 5.61/13.71 5.60/13.58
US101-1 9.86/25.02 10.21/25.16 9.56/24.11 8.86/22.16 7.76/18.95
US101-2 8.62/21.58 8.82/22.61 8.89/22.63 7.82/20.61 7.35/18.12
US101-3 8.13/21.08 8.23/20.88 8.02/20.14 7.02/18.40 6.21/16.88
Avg 8.57/21.27 8.75/21.37 8.26/20.45 7.06/17.96 6.67/16.39

For comparisons on ETH/UCY as shown in Tab. 7, it is evident that the proposed method is
superior to other methods, especially in the term of average ADE/FDE. Compared with SGAN, our
method achieves better trajectory prediction performance on all five scenes. Compared with Sophie,
our method achieves better trajectory prediction performance on Hotel, Univ, and Zara2 scenes.
Such a superiority reveals the effects of the improved Transformer network in capturing the temporal
association of the trajectory data.



3824 CMC, 2023, vol.74, no.2

Table 7: Comparisons between the proposed method and selected SOTA methods on ETH/UCY
benchmarks. We report the ADE/FDE within 4.8 s prediction span (low is preferred and is bold)

Dataset LSTM Social-LSTM SGAN Sophie Ours

ETH 1.09/2.41 1.09/2.35 0.87/1.62 0.70/1.43 0.85/1.67
Hotel 0.86/1.91 0.79/1.76 0.67/1.37 0.76/1.67 0.32/0.68
Univ 0.61/1.31 0.67/1.40 0.76/1.52 0.54/1.24 0.51/1.08
Zara1 0.41/0.88 0.47/1.00 0.35/0.68 0.30/0.63 0.38/0.86
Zara2 0.52/1.11 0.56/1.17 0.42/0.84 0.38/0.78 0.30/0.62
Avg 0.70/1.52 0.72/1.54 0.61/1.21 0.54/1.15 0.47/0.98

4.7 Qualitative Analysis

We perform the qualitative analysis to demonstrate the effects of the proposed method. Figs. 8a
and 8b exhibit the trajectory prediction performance using the proposed method and an LSTM-based
method on the NGSIM and ETH, respectively. The red line represents the historical trajectory, the blue
line represents the ground truth trajectory, the green line represents the trajectory predicted by the
proposed method, and the yellow line represents the trajectory predicted by the LSTM-based method.
The over-fitting phenomenon exists in the LSTM-based method. As shown in the 4th sub-figure of
Fig. 8b, even if the vehicle travels in a straight line, its prediction tends to bend in one direction.
Besides, as shown in the 4th sub-figure of Fig. 8a, when a vehicle suddenly makes a big turn, the
model cannot predict the future trajectory based on the historical trajectory of the vehicle position.
Therefore, environmental factors need to be added in order to have a more accurate prediction of
emergencies.

(a) Trajectory prediction performance on the NGSIM dataset

(b) Trajectory prediction performance on the ETH dataset

Figure 8: Trajectory prediction performance by using the proposed method and an LSTM-based
method, respectively. The red line represents the historical trajectory, the blue line represents the
ground truth trajectory, the green line represents the trajectory predicted by the proposed method,
and the yellow line represents the trajectory predicted by the LSTM-based method
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In this work, Gaussian noise is added to the model to simulate some uncertain factors. After that,
vehicles’ predicted trajectories are more polymorphic than before. As shown in Fig. 9a, more traffic
conditions can be simulated with the help of the added Gaussian noise. In Fig. 9b, we can observe that
the distributions of the generated trajectories conform to the two-dimensional Gaussian distribution.
Afterward, we compare the trajectory prediction performance of the proposed method on NGSIM
w/o Gaussian noise. As demonstrated in Fig. 10, after adding noise, it can be seen that the generated
multiple trajectories are better than those without noise. Such results indicate that the addition of noise
improves the model’s accuracy and makes the model diversified.

Figure 9: In the left figure, red rep resents the real trajectory of the vehicle, blue represents the trajectory
generated on the verification set without adding noise, and green represents the trajectory generated
after adding noise. The figure on the right is a two-dimensional Gaussian distribution scatter diagram
of the trajectory

(a) Trajectory prediction performance of the proposed method on NGSIM without Gaussian noise

(b) Trajectory prediction performance of the proposed method on NGSIM with Gaussian noise

Figure 10: Trajectory prediction performance of the proposed method on NGSIM w/o Gaussian noise.
The red line represents the historical trajectory, the blue line represents the ground truth trajectory,
and the yellow line represents the trajectory predicted by the proposed method
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5 Conclusion and Discussion

An improved Transformer network is proposed to perform trajectory prediction in this work. A
traditional Transformer network utilizes the multi-head attention mechanism to capture sequential
information in agents’ trajectories. It exhibits better performance than the LSTM-based trajectory
prediction methods. Further, a probabilistic sparse self-attention mechanism is introduced to solve
the problems of attention query sparsity and the high space-time complexity in the self-attention
mechanism. The ACON activation function is used to solve the problem that traditional activation
functions are sensitive to parameter initialization, learning rate, and neuron death. Evaluations
on publicly available NGSIM and ETH/UCY indicate that the proposed method is suitable to
forecast future trajectories of vehicles and pedestrians. Our future works mainly focus on recognizing
pedestrians’ crossing intentions [47] or vehicle re-identification [48] with the predicted trajectories.
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