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Abstract: Vehicle detection is still challenging for intelligent transportation
systems (ITS) to achieve satisfactory performance. The existing methods
based on one stage and two-stage have intrinsic weakness in obtaining high
vehicle detection performance. Due to advancements in detection technology,
deep learning-based methods for vehicle detection have become more pop-
ular because of their higher detection accuracy and speed than the existing
algorithms. This paper presents a robust vehicle detection technique based on
Improved You Look Only Once (RVD-YOLOv5) to enhance vehicle detection
accuracy. The proposed method works in three phases; in the first phase,
the K-means algorithm performs data clustering on datasets to generate the
classes of the objects. Subsequently, in the second phase, the YOLOv5 is
applied to create the bounding box, and the Non-Maximum Suppression
(NMS) technique is used to eliminate the overlapping of the bounding boxes
of the vehicle. Then, the loss function CIoU is employed to obtain the accurate
regression bounding box of the vehicle in the third phase. The simulation
results show that the proposed method achieves better results when compared
with other state-of-art techniques, namely Lightweight Dilated Convolutional
Neural Network (LD-CNN), Single Shot Detector (SSD), YOLOv3 and
YOLOv4 on the performance metric like precision, recall, mAP and F1-Score.
The simulation and analysis are carried out on PASCAL VOC 2007, 2012 and
MS COCO 2017 datasets to obtain better performance for vehicle detection.
Finally, the RVD-YOLOv5 obtains the results with an mAP of 98.6% and
Precision, Recall, and F1-Score are 98%, 96.2% and 97.09%, respectively.
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1 Introduction

Object detection is a technique based on computer vision that detects the semantic objects
instances class of objects [1]. Kim et al. [2] defined object detection as “object detection combining the
multi-labelled classification and bounding box regression”, where assigning class level and drawing
the bounding box for each object refers to image classification and object localization. The rapid
growth in vehicles on the road has significantly attracted researchers’ attention to traffic safety issues.
Therefore, vehicle detection has become an inevitable component of traffic surveillance. Machine
learning and deep learning technologies have been used to propose a variety of vehicle detection
algorithms. [3]. The methods of vehicle detection are broadly categorized into three types: feature-
based, conventional machine learning-based and deep learning-based detection methods. The vehicle
detection by feature-based method involves the salient features of the front vehicle, but this method
is affected by the different angle views [4]. The feature description operator extracts the features of
vehicles by adapting the machine learning-based methods to perform the training of the samples in the
conventional machine learning-based method. This method relies upon the prior knowledge of vehicle
objects. However, the method based on machine learning is not appropriate for detecting vehicles in
different environments [5–7].

Deep learning and computer vision technology have progressed in recent years. The deep
learning-based method extracts the features of vehicle objects to perform vehicle detection tasks
after classification. There are two types of deep learning-based vehicle detection methods: one-stage
detector-based methods and two-stage detector-based methods. The one-stage detector performs
localization and classification simultaneously for determining object location and identifying objects.
In the case of a two-stage detector, localization and classification are performed sequentially.
Therefore, a one-stage detector can detect the object faster than a two-stage detector [8–10]. This paper
proposed an improved vehicle detection algorithm, focusing on the one-stage detector based on the
deep learning method. The majority of vehicle detection algorithms have the issue of performance in
terms of vehicle detection accuracy. Although, the existing algorithms have improved the performance
with emerging deep learning technology. The addition of the one-stage detector-based YOLO (You
Look Only Once) series version has improved the performance in detection rate [11]. However, these
existing algorithms still have room for improvement in the detection rate and performance.

We proposed an efficient and effective vehicle detection based on deep learning to address the
shortcomings of the existing techniques described above. The proposed method uses the concepts
of data clustering on the datasets by the K-means method for the initial frame of the target and
optimization of a loss function. The proposed method uses the YOLOv5 model to generate the feature
maps and the bounding box of the vehicle. In the next stage, the overlapping of the bounding box is
eliminated by applying the NMS technique. At last, the CIoU (Complete Intersection over Union)
loss function is employed for further optimization of an accurate regression bounding box.

1.1 Motivations

The following observations for vehicle detection in this study provide the motivations:

• Recent study has focused on vehicle detection i.e. to identify the vehicle for traffic flow
management, road planning, or estimation of air and noise pollution. Hence, our focus is to
extract the vehicles for highway surveillance control, management and urban traffic planning.

• When executing on a dataset while selecting a suitable parameter, several vehicle detection
techniques are still highly parameter sensitive. As a result, even minor changes in the parameter
will have a large impact on vehicle detection.

• Vehicle detection technologies that detect vehicles with high detection rates are limited.
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1.2 Contributions

A simple and effective vehicle detection technique (in three stages) has been proposed called RVD-
YOLOv5 to calculate precision, recall mAP and F1-Score to measure the performance of the proposed
algorithm.

• Stage 1: K-means clustering technique is used to perform the data clustering on MS COCO and
VOC PASCAL datasets for better outcome in vehicle detection.

• Stage 2: A YOLOv5 one-stage detector based on deep learning is used to extract the features
of vehicles by generating the bounding box corresponding to each vehicle. The NMS method
eliminates the overlapped bounding box of the vehicle to further improve the accuracy of
proposed RVD-YOLOv5 method.

• Stage 3: The CIoU loss function is employed to further obtain the accurate regression bounding
box of the vehicle.

The performance of our proposed method is demonstrated on different datasets and comparisons
with state-of-the-art vehicle detection algorithms such as LD-CNN [12], SSD [5], YOLOv3 [13],
YOLOv4 [14] and RVD-YOLOv5.

1.3 Roadmap

The remainder of the paper is organized as follows: Section 2 describes a survey of the literature
on several existing deep learning-based vehicle detection systems. Section 3 shows framework of
a proposed method for vehicle detection using clustering of datasets and optimization in the loss
function. Section 4 shows the results of simulation analysis and performance on MS COCO and VOC
PASCAL datasets. Finally, Section 5 discusses the conclusion and future work of our research paper.

2 Related Work

In this section, several vehicle detection algorithms based on deep learning have been discussed.
The R-CNN and YOLO series are two of the most used object detection algorithms nowadays. The
detection rate of the R-CNN series is better compared to the YOLO series in target detection when
more precision is required, although its detection speed is slower. As a result, these approaches are
not suited for real-time vehicle detection. The YOLO series is preferred over the R-CNN algorithm to
solve the speed problem, which employs regression to improve the performance by learning generalized
characteristics of the object. The YOLO algorithms [15–18] detect object position and classification
using a one-stage neural network. There are various state-of-the-art methods such as R-CNN, Fast
R-CNN, Faster R-CNN, LD-CNN, SSD and YOLO.

In object detection, vehicle detection is a commonly discussed problem. Various vehicle detection
algorithms have been proposed to detect vehicles as vehicle detection is crucial for traffic management.
Furthermore, vehicle detection has been used in a wide variety of applications. Based on deep
learning algorithms, vehicle detection techniques can be categorized into two-stage and one-stage.
With emerging deep learning and computer vision technology, many detection algorithms have been
proposed to detect vehicles based on two-stage and one-stage categories. The approaches based on
two-stage category detect vehicles by extracting the region of interest (ROI) and performing bounding
box regression and classification of Region of Interest (ROI) images. The method based on one-stage
performs localization and classification in the same stage by employing regression ideas for object
detection. The result of detection accuracy is high in two-stage based algorithms compared with one-
stage based algorithms. However, these algorithms have obtained low real-time performance [19–23].
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As a result, one-stage approaches are chosen over two-stage methods, despite having a somewhat
lower accuracy but a faster detection speed. The most popular deep learning-based method for the
detection of vehicles from the two-stage detector and one-stage detector are LD-CNN [12], SSD [5],
YOLOv3 [13] and YOLOv4 [14]. In Section 4, All of these methods are compared with our proposed
method, called RVD-YOLOv5. Using the MobileNet architecture to generate the base convolutional
layer in Faster R-CNN, Kim et al. [24] have presented an improved Faster R-CNN technique for fast
vehicle detection. In this method, the soft NMS algorithm replaced the NMS algorithm for solving
the issue of duplicate proposals. Shen et al. [12] developed the LD-CNNs model, which is based on
deep convolutional neural network detection. This model enhances detection accuracy while reducing
computing costs. One-stage techniques are the best models in object detection networks. These models
are incredible at predicting objects fast and accurate. The one-stage detector includes the YOLO series
and SSD [5]. Cao et al. [5] has developed a model, called SSD, the improved Single-shot multi-box
detector (SSD) was introduced for vehicle detection by including significant improvements in the basic
architecture of the SSD model during the weighted mask’s network training and advancement to the
loss function. This model adopted multitask loss function with positioning and confidence errors. The
following formula can express the loss function by Eq. (1).

L (x, c, l, g) = 1
N

(Lconf (x, c) + αLloc (x, l, g)) (1)

where l stands for the detection box, g for the real box, c for the multi-class object’s confidence, and
N for the number of detected boxes after matching with the real box. Confidence loss is denoted by
Lconf , whereas position loss is denoted by Lloc. The weight coefficient of position loss and confidence
loss is denoted by α.

The position loss is derived using the smooth L1 loss between the detection and real boxes. The
following formula can be used to determine the position loss by using Eq. (2).

Lloc(x, l, g) =
N∑

i∈Pos

∑
m∈{cx,cy,w,h}

xk
ij.smoothL1(lm

i − ĝm
j ) (2)

Where Pos denotes the total number of positive samples, xk
ij denotes whether the ith detection box’s

predicted object category k corresponds to the jth actual box’s classification label., lm
i indicates the

coordinates of the ith detection box, while gm
j denotes the coordinates of the jth real box.

The confidence loss function is expressed as follows by Eqs. (3) and (4).

Lconf (x, c) = −
N∑

i∈Pos

xp
ij log

(
ĉp

i

) −
∑
i∈Neg

log(ĉ0
i ) (3)

ĉp
i = exp

(
cp

i

)
/
∑

p

exp(cp
i ) (4)

The ith detection box predicted the object category p. Where object category is represented by p,
xp

ij represents the matching of jth real real box with The ith detection box predicted the object category
p, ĉp

i denote the probability that the object category predicted by the ith detection box is p.

Zhao et al. [25] introduced a model that uses YOLOv3 [13] and a modified deep sort with a
Kalman filter to predict vehicle position and calculate Mahalanobis, cosine, and Euclidean distances.
Bag of Freebies [26] and Bag of Specials are two of YOLOv4’s [14] most important features. The
backbone of the network is CSPDarknet-53 [15], with the Spatial Attention Module (SAM) [15], Path
Aggregation Network (PAN) [27], and Cross-iteration Batch Normalisation (CBN) [28] being used.
SAM, PAN, and CBN were employed with minor adjustments, and mosaic augmentation was used
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for augmentation. CutMix [29], DropBlock regularisation [30], class level smoothing, completing IoU
(CIoU) loss [31], Self-Adversarial Training (SAT), and multiple anchors for single ground are some
of the improvements made without compromising inference time during training. It is comprised of
a CSB block with a focus layer, convolution, batch normalisation, SiLU [32], and a network of C3
blocks in the case of YOLOv5. The focus layer operates as a space-to-depth transformation. This
server lowers the cost of 2D convolution, lowers the spatial resolution, and increases the number of
channels. Zhang et al. [15] have used confidence’s balanced weight by selecting a loss function. The
mean square error calculates loss function in the training stage. In addition, the mean square error
helps in calculating the candidate box. Therefore, the square root is to be calculated to weaken the
weight of the boxes by setting the size, scale and target type for every box. The mean square error
formula can be expressed as the following by using Eq. (5).

MSE =
∑n

i=1

(
yi − yp

i

)2

n
(5)

The Eq. (6) represents the loss function as follows:

Loss = λcoord

S2∑
i=0

B∑
j=0

obj∏
i,j

[(
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)2 + (
(
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)2
)
]
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[(√
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√
ŵii
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]

+
S2∑
i=0

B∑
j=0

obj∏
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(
ci − ĉi

)2 + λnoobj

S2∑
i=0

B∑
j=0

obj∏
i,j

(
ci − ĉi

)2 + C (6)

Loss = [λcoord ∗ Coordinate prediction error + (Box confidence prediction error with target

+λnoobj ∗ Box confidence prediction error without target
) + Classification error

]
The loss function aims to balance the coordinates (x, y, w, h), confidence, and error of classifica-

tion. During the training step, we simply want to establish a single correlation between the bounding
box and the target. hence, the IOU of the bounding box and the ground truth are determined [16].
YOLOv5 is the fifth generation of the YOLO target detection network. It is built on YOLOv3 and
YOLOv4 and is the result of ongoing integration and innovation. Second, YOLOv5 has obtained
significant detection results on PASCAL VOC and COCO datasets; thus, this paper employs the
YOLOv5 detection network to generate bounding box for objects [33]. According to the official, the
YOLOv5 comes in four different versions: YOLOv5s, YOLOv5m, YOLOv5l, and YOLOv5x. The
three versions of this model, YOLOv5m, YOLOv5l, and YOLOv5x, are the outcome of the YOLOv5s
model being developed further. The input, backbone, neck, and prediction elements of the YOLOv5
network are subdivided into four sections. The input component of the YOLOv5 performs data
improvement, the backbone employs the focus structure and CSP structure, the neck uses the Feature
Pyramid Networks (FPN) and Path Aggregation Network (PAN) structure, and the prediction section
uses the CIOU Loss and GIOU Loss functions in the target object detection.

3 Methodology

Our proposed vehicle detection framework is described in this section in Fig. 1. First, in Section
3.1, we introduced the K-means technique for data preparation. Then, in Section 3.2, we show
how to perform bounding box clustering. Then, in Section 3.3, YOLOv5 is used to perform a
feature concatenate to integrate high-level and low-level feature maps and how to create candidate
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anchor boxes on various feature maps. Then, Section 3.4 applied Non-Maximum Suppression (NMS)
technique to eliminate the overlapping of the bounding box in the detected image. Finally, Section 3.5
uses the CIoU loss function to further obtain the accurate regression bounding box of the vehicle. The
proposed framework using YOLOv5 for vehicle detection takes captured video or a set of input images
and detects the vehicle by generating a high-efficiency bounding box. The vehicle detection algorithm
steps are shown in Fig. 1.

Figure 1: Block diagram of proposed vehicle detection algorithm

The K-means clustering algorithm is used to perform the data clustering during the training
stage. After that, calculations for bounding box clustering and anchor boxes are obtained. Next, the
backbone network generates the extracted feature maps by using the focus structure, which is used to
perform convolution and slicing operations. The NMS technique is then used to eliminate bounding
box overlapping in the next stage.

3.1 K-Means Clustering

K-means Clustering groups the unlabelled dataset into different clusters using an Unsupervised
Learning Algorithm. The number of pre-defined clusters is denoted by K. The algorithm divides the
unlabelled dataset into K groups, with each dataset belonging to a single group with similar attributes.
The K-means algorithm is implemented by performing the three stages listed below until convergence
is achieved: Determine the coordinates of the centroid, compute the distance between each data feature
and the centroids, to get the closest centroid by grouping the data based on the nearest distance.

The Fig. 2 shows the data clustering before K-means and after K-means. The data coordinates
are distributed in the second and third steps using the centroid and nearest neighbours. The cluster
CLK(m) uses the data coordinates Cj is shown by Eq. (7) and (8).

|Cj − MK(m)| < |Cj − MC (m) |, Where ∀C = {1, 2, . . . K and C �= K} ∀C = {1, 2, . . . KandC �= K} (7)

Assume C = {C1, C2, . . . , CN} represents the datasets and number of clusters are represented by K.
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Figure 2: Clustering before K-means and after K-means

where Ml indicates the centroid of cluster CLl and the centroid of cluster is calculated by the following
formula:

Ml (m) = 1
nl

∑
C∈CLl

C, l = 1, 2, 3, . . . . . . . . . . . . , K (8)

Where nl represents the cluster features and l indicate the number of clusters, m is used for number
of iterations and N is used to represent the number of features.

The direct usage of an original priori box is not sufficient to increase vehicle detection accuracy.
As a result, the K-means clustering technique was employed to cluster the target frame of the labelled
dataset. The goal is to enhance the intersection ratio between the anchor and detection frames, so that
the optimal a priori frame could be chosen. The formula can be expressed using Eq. (9).:

d = 1 − IOU (9)

Where, the intersection ratio between the predicted frame and the true frame is represented by
IOU .

3.2 Bounding Box Clustering

The methods based on the traditional vehicle detection algorithm generates the candidate pro-
posal using sliding windows. However, these methods are slower than deep learning-based methods as
they are time-consuming. Therefore, the candidate proposals are calculated using aspect ratio [0.5,1,2]
in less time than a sliding window in Faster R-CNN and SSD. The first problem is that the aspect ratio
is selected manually. The results are obtained to predict detections in the network based on the priors
for a dataset. The second difficulty is that the aspect ratios are created with datasets like PASCAL
VOC [15] and MS COCO [15–18]. Therefore, this approach is not very effective in detection of vehicles.
K-means algorithm is used to overcome these issues without selecting the aspect ratio manually. Hand-
picked anchor boxes are different from cluster centroids. The k-means algorithm can be denoted by
Eq. (10) as follows.

E =
K∑

i=1

∑
i∈Ci

||x − μi||2 (10)
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where x denotes the sample, μi denotes the average vector of Ci, and K denotes the clustering centre.
K-means is executed on the different values of vehicle size and aspect ratio. Let vehicle weight and
height K = 5 and aspect ratio to be K = 3. It improves the mAP on vehicle datasets. The K-means
technique is a standard clustering algorithm that minimises the distance between the sample and the
cluster centre to find the optimal K cluster centres [8]. this article employs the K-means technique to
obtain new anchor boxes by performing the re-clustering the dataset used in this paper. The anchor
boxes are obtained based on the size and shape to ground-truth bounding boxes during training. The
best-fit anchor boxes for the MS COCO and PASCAL dataset are used for vehicle detection using
the K-mean clustering approach with various K values to reduce the proposed method’s training time,
which improves the accuracy of the proposed method.

Algorithm 1: K-means Clustering Algorithm
Input: Dataset X = {X1, . . . . . . Xn}, K number of clusters
Output: Clustered dataset P = {Y1, . . . . . . Yn}
1. Initialization:
2. r←0
3. ρ←ϕ

4. ∀ μi, 1≤ i ≤ K, compute random μi

5. BEGIN:
6. for each point x ∈ X do
7. Y r

i = {
Xj : d

(
Xj, μi

) ≤ d
(
Xj, μh

)
for all h = 1, . . . . . . .K

}
// assign each sample Xj to cluster set

8. μ(r+1)

i = 1

|Y(r)
i |

∑
Xj∈Yi

Xj // update the cluster set

9. ρr = {
Y r

1 , . . . . . . Y r
K

}
10. if r ≥ Max or ρr = ρr−1 then
11. return ρr

12. end if
13. end for
14. End

3.3 Architecture of YOLOv5

The YOLOv5 network is the most recent addition to the YOLO architectural family. This network
model achieves high accuracy and a fast inference speed, with the fastest detection speed reaching 140
frames per second. The weight file size of YOLOv5 is 90% less than that of YOLOv4. As a result, after
deploying with embedded devices, the YOLOv5 model can be employed for real-time detection. As
a result, the yolov5 network’s advantages include its high detection accuracy, lightweight properties,
and fast detection speed.

The backbone network, neck network, and detect network are the three key components of the
YOLOv5 architecture. Instead of using Darknet, YOLOv5 uses PyTorch and the CSPDarknet53 as a
backbone. The backbone of the YOLOv5 model solves the repetitive gradient information. It is also
used to incorporate gradient changes into feature maps. As a result, model accuracy improves while
inference speed decreases. Finally, by reducing the parameters, the model’s size is reduced. It boosts
information flow by using a path aggregation network (PANet) as a neck. PANet employs the feature
pyramid network (FPN) to improve the propagation of low-level features. The image is first given to
CSPDarknet53 for feature extraction. The backbone network generates feature maps of different sizes
from the input image [34–39]. PANet’s neck network integrates feature maps from multiple levels with
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feature maps of various sizes to obtain more contextual information and reduce data loss. Finally, the
results are generated by the YOLO layer. Fig. 3 shows the architecture of the YOLOv5 model.

Figure 3: Architecture of YOLOv5

3.4 Non-Maximum Suppression (NMS) Technique

Multiple target objects may be present in an image, and the objects may be of various shapes
and sizes. As a result, the target objects may be perfectly captured with a single bounding box. In
a single input image, the YOLOv5 generates multiple overlapping bounding boxes (B_Box). As a
result, YOLOv5 needs to generate a single bounding box for object of input image. Therefore, it is
necessary to eliminate the overlapping bounding boxes. The Non-Maximum Suppression technique
(NMS) eliminates the overlapping bounding boxes, selecting a single B_Box out of several overlapping
B_Boxes to identify the objects in an image.

The NMS technique eliminates duplicate identifications and selects the best match for the final
identification. Algorithm 2 demonstrates the NMS method. Furthermore, to solve the erroneous
computation of non-overlapping B_Boxes, YOLOv5 choose GIoU loss as the B_Boxes regression loss
function, which is defined by Eq. (11).

IGIOU = 1 − IoU +
∣∣CB − PB ∪ BGT

∣∣
CB

(11)

Where BGT denotes the ground-truth box, PB shows the prediction of the box, CB denotes the
smallest box covering PB and BGT and IoU = PB∩BGT

PB∪BGT .
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Algorithm 2: Non-Maximum Suppression (NMS) Technique
Input: BBox={b1, b2 . . . . . . bn}, where BBox represents the preliminary bounding boxes

Cscore = {s1, s2 . . . . . . sn}, where Cscore represents the array of confidence score
Output: DBox= set of final detected bounding box after applying NMS algorithm
1. Initialization:
2. DBox← { }
3. While DBox �= ∅

4. K ← ArgMax CScore
5. D_Box ← D_Box ∪ b_K
6. BBox ← BBox − bK

7. Cscore← Cscore-sK

8. BEGIN:
8. For bi∈ BBox do
9. if IoU(bK , bi) ≥ Thold Then
10. BBox ← BBox − bi

11. Cscore← Cscore-si

12. End

3.5 Optimized Loss Function

The YOLOv5 loss function can be expressed by Eqs. (11)–(13) to generate bounding box and these
are also used to calculate the GIOU_Loss. the optimization of the overlapping cannot be achieved if
there is phenomenon between the detection box and the real box. Positive and negative samples are
employed by two category and cross-entropy loss functions to determine confidence and category loss.

Loss = GIOU_Loss + LossConf + LossClass (12)

GIOULoss = 1 − GIOU = 1 − (IOU − |Q|
C

) (13)

Where C denotes the smallest bounding box rectangle between the detected and prior frames, and
Q denotes the difference between the union of two boxes and the smallest bounding box rectangle.
Which is defined by Eqs. (14) and (15).

LossConf =
S2∑
i=0

B∑
j=0

Iobj
ij

[
Ĉj

i log Cj
i + (1 − Ĉj

i) log(1 − Ĉj
i)
]

− λnoobj

S2∑
i=0

B∑
j=0

Inoobj
ij

[
Ĉj

ilogCj
i +

(
1 − Ĉj

i

)
log

(
1 − Ĉj

i

)]
(14)

Lossclass =
S2∑
i=0

Iobj
ij

∑
c∈classes

[
P̂j

ilogPj
i + (1 − P̂j

i)log(1 − P̂j
i)
]

(15)

Where Iobj
ij and Inoobj

ij denote the target of the the jth detection frame in the ith grid, λnoobj indicates
the positioning error loss weight, Cj

i and Pj
i considered values for training, and Ĉj

i and P̂j
i represent

the values for prediction. The modified loss function of Eqs. (16)–(18) was chosen to solve the above
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discussed issues. The CIOU_LOSS loss function is used in the modified algorithm’s bounding box to
strengthen the aspect ratio limitation mechanism.

CIOU_LOSS = 1 − (IOU − ρ2 (b, bgt)

c2
− αv) (16)

where ρ() denotes the Euclidean distance, c indicates enclosed rectangles length and α denotes the
weight coefficient.

v = 4
π 2

(
arctan

wgt

hgt
− arctan

wp

hp

)2

(17)

Where, α = v
(1−IOU)+v

where v is a parameter that measures the aspect ratio’s constancy.

Focal_Loss =
{−α (1 − p)

′γ logP′ y = 0
(1 − α) p′γ log(1 − p′) y = 1 (18)

3.6 Performance Metrics

The accuracy of the proposed method is estimated by different parameters of the performance
metrics for vehicle detection. The true positive (TP) represents the number of detected vehicles, while
the false positive (FP) indicates the number of detected non-vehicles. The average precision (AP) is
estimated as the sum of all precision by calculating the TP and FP. The accuracy of each category
represents the detection performance of the algorithm by Eq. (19).

Precisionvehicle = TP
FP + TP

(19)

Where the average precision is represented by Precisionvehicle. the true positives (TP) represents the
category of vehicle, and the false positives (FP) is the category of non-vehicle.

Precision as a performance metric may be inadequate because most datasets are severely unbal-
anced. Even though many performance evaluation criteria have been presented, they all revolve around
average precision. The F Score, also known as the F1-Score or the F measure, is a standard metric for
determining the percentage of objects truly identified as a result. The F1-Score is defined by Eq. (20)
as follows:

F1 = 2 × Precision × Recall
Precision + Recall

(20)

Precision and recall are both considered in this score. With a value of 1, the F1-Score achieves the
maximum value, i.e. complete precision and recall.

4 Results and Discussion

The goal of this simulation is to determine the efficiency of the RVD-YOLOv5 algorithm proposed
in this work. A number of iterations have been performed on the MS COCO and VOC PASCAL
datasets to ensure that RVD-YOLOv5 is suitable for real-time performance. The simulations are
carried out in Python programming, and the performance environment consists of a machine with an
Intel(R) Core (TM) i7-4770 processor, 6 GB of RAM, and Windows 10 installed. Taking performance
metrics into account, we compare the performance of our proposed RVD-YOLOv5. The first step of
the process is to perform clustering on our datasets. The precision, average precision (AP), recall,
mean average precision (mAP) and F1-Score of RVD-YOLOv5 are compared with various existing
algorithms in the second part.
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4.1 Data Set Description

The MS COCO 2017 dataset and PASCAL 2007, 2012 used to train our proposed method, called
RVD-YOLOv5 is, to carry out the performance analysis. The proposed method, RVD-YOLOv5, is
firstly trained on PASCAL VOC 2007, 2012. The data is being clustered on the basis of only required
classes, and data of not required classes are removed. The image size 416 × 416 is used as an input
in the network. The size of the batch is taken 64, and the 8 is the size of a mini-batch. This dataset
contains the total number of trained images is 16,551, and the total number of test images is 4952.

4.2 Results

The performance metric is used to analyse the performance of the proposed RVD-YOLOv5
method based on different sets of parameters. The different sets of parameters considered for
measuring the performance of the proposed method are precision, recall, mAP and F1-Score. The
work is carried out in three stages: the first stage performs data clustering on the datasets for improving
the detection accuracy rate. In the second stage, the YOLOv5 detects vehicles by generating the
bounding box corresponding to each vehicle. Then, the NMS method is applied to eliminate the
overlapping of the bounding box. Finally, the loss function is enhanced to further improve the accuracy
of the bounding box of the vehicle. The obtained results are compared with the existing methods
of vehicle detection discussed in the literature section to analyse the performance of the proposed
method, called RVD-YOLOv5. The outcome of this method is shown in Figs. 4 and 5 for the detection
of vehicles. The PASCAL VOC 2007, 2012 and MS COCO 2017 datasets are used to analyse the
RVD-YOLOv5. The comparative results are shown in Tabs. 1 and 2. The performance metric of
object detection includes various performance measure parameters such as precision, recall, mean
average precision (mAP) and F1-Score [28]. The existing models such as LD-CNN, SSD, YOLOv3
and YOLOv4 had mAP values of 86.91 per cent, 91.76 percent, 87.88 percent and 96.54 percent,
respectively. The proposed method, RVD-YOLOv5, obtained an mAP value of 98.6% based on the
calculation of mean average precision. There has been an increase of around 2.06% in mean average
precision for this proposed system. Tab. 1 shows a comparison of the performance metrics of RVD-
YOLOv5 for the MS COCO dataset, while Tab. 2 shows a comparison of performance on the VOC
PASCAL 2012 dataset. The average precision (AP) is calculated for the RVD-YOLOv5 shown in
Tab. 3. The results of Tab. 4 show that our proposed RVD-YOLOv5 is significantly faster than the
LD-CNN, SSD, YOLOv3 and YOLOv4 algorithms. Figs. 5a and 5b represent the comparison of
the performance metric on MS COCO and VOC PASCAL 2012 datasets. Figs. 6a and 6b show the
comparative performance of RVD-YOLOv5 with the existing methods discussed in Section 2.

Figure 4: (Continued)
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Figure 4: Vehicle detection using RVD-YOLOv5

Figure 5: Performance of RVD-YOLOv5 on MS COCO and PASCAL datasets

Table 1: Performance metrics of RVD-YOLOv5 for MS COCO dataset

Class Targets Precision (%) Recall(%) mAP 0.5 (%) mAP 0.5:0.95 (%)

All 116 98.10 98.75 98.34 81.30
1 116 98.70 96.72 97.68 89.20
2 116 97.35 97.50 98.25 87.30
3 116 98.15 99.45 99.50 80.10
4 116 98.50 95.60 99.30 82.60
5 116 96.25 96.50 99.50 88.30
6 116 98.60 99.50 99.15 79.20
7 116 97.60 98.35 99.60 77.70
8 116 96.30 97.75 98.30 75.60



3574 CMC, 2023, vol.74, no.2

Table 2: Performance metrics of RVD-YOLOv5 for VOC PASCAL dataset

Class Targets Precision (%) Recall(%) mAP 0.5 (%) mAP 0.5:0.95 (%)

All 116 80.60 98.10 99.30 80.60
1 116 98.70 96.65 99.30 88.20
2 116 97.10 97.22 98.60 86.70
3 116 97.80 98.70 99.50 77.10
4 116 98.10 95.65 99.30 80.60
5 116 99.65 98.72 99.50 88.60
6 116 98.70 96.45 99.10 81.10
7 116 98.50 99.35 99.50 87.50
8 116 98.50 97.85 99.50 77.50

Table 3: Results of vehicle detection methods on the MS COCO datasets

Methods Average precision

Easy (%) Moderate (%) Hard (%)

LD-CNN 86.71 81.84 71.12
SSD 83.55 67.87 50.27
YOLOv3 87.22 71.28 64.67
YOLOv4 88.35 77.49 62.57
RVD-YOLOv5 95.76 94.55 86.23

Table 4: Comparative analysis of existing vehicle detection with proposed method on MC COCO
dataset

Methods Precision Recall mAP F1-score

LD-CNN 92.5% 83.10% 86.91% 87.54%
SSD 91.56% 90% 91.76% 90.77%
YOLOv3 88% 89% 87.88% 88.49%
YOLOv4 84% 93% 96.54% 88.27%
RVD-YOLOv5 98% 96.2% 98.6% 97.09%
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Figure 6: Comparative analysis of the proposed RVD-YOLOv5 with existing methods

5 Conclusion and Future Work

In the present exposition, a high precision method using K-means clustering and the YOLOv5
has been proposed for vehicle detection. The proposed method, RVD-YOLOv5, uses K-means for
data clustering on datasets. The YOLOv5 has been used for extracting the features maps and anchor
bounding box of vehicles. The bounding box overlapping is eliminated using the NMS technique. The
CIoU loss function is used for the estimation of the accurate regression bounding box of the vehicles.
The performance of the YOLOv5 after data clustering and improved loss function is compared on
the different datasets. The images from the datasets and captured videos are used to detect the vehicle
using the proposed algorithm in the simulations. The proposed algorithm using K-means for data
clustering on datasets trained on the MS COCO and VOC PASCAL datasets is more precise and
obtains high efficiency while detecting the target. The proposed method, RVD-YOLOv5, shows a
significant improvement as compared to LD-CNN, SSD, YOLOv3 and YOLOv4. Thus, the proposed
method achieves the results with an mAP of 98.6% and Precision, Recall, and F1-Score are 98%, 96.2%
and 97.09%, respectively.

This paper mainly discusses real-time vehicle detection with high precision. As a future work, the
real-time vehicle detection can be integrated for vehicle tracking and counting.
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