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Abstract: The current investigations provide the solutions of the nonlinear
fractional order mathematical rape and its control model using the strength of
artificial neural networks (ANNs) along with the Levenberg-Marquardt back-
propagation approach (LMBA), i.e., artificial neural networks-Levenberg-
Marquardt backpropagation approach (ANNs-LMBA). The fractional order
investigations have been presented to find more realistic results of the mathe-
matical form of the rape and its control model. The differential mathematical
form of the nonlinear fractional order mathematical rape and its control
model has six classes: susceptible native girls, infected immature girls, sus-
ceptible knowledgeable girls, infected knowledgeable girls, susceptible rapist
population and infective rapist population. The rape and its control differ-
ential system using three different fractional order values is authenticated to
perform the correctness of ANNs-LMBA. The data is used to present the
rape and its control differential system is designated as 70% for training,
14% for authorization and 16% for testing. The obtained performances of
the ANNs-LMBA are compared with the dataset of the Adams-Bashforth-
Moulton scheme. To substantiate the consistency, aptitude, validity, exactness,
and capability of the LMBA neural networks, the obtained numerical values
are provided using the state transitions (STs), correlation, regression, mean
square error (MSE) and error histograms (EHs).

Keywords: Rape and its control differential system; neural networks; fractional
order; levenberg-marquardt backpropagation approach; reference solutions

1 Introduction

This study represents the naive susceptible population, which have not proper connection with
the sex activities. The knowledgeable susceptible populations represent the previous information of
sex. Nv shows the total susceptible girl’s population, which is separated into subclasses of susceptible
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naive Sn, infected knowledgeable Ik, susceptible knowledgeable Sk and infected naive In. Therefore,
the total naive girl’s population is Nv = In + Sn + Ik + Sk. The factor NR represents the whole rapist
population and is categorized into infective rapist IR and susceptible rapist SR, written as NR =
IR + SR. All vulnerable recruitment classes are supposed to the naive susceptible population with
immigration or/and birth at λv. The naive susceptible vulnerable girl’s population is enhanced by the
infected naive, which can be improved without knowledgeable at γ n. It is reduced by infection force Λv

and the natural death rate φv with the actual rapist contacts. The infection force through the rapists to
susceptible females is demonstrated as Λv = abIR

Nh
, here a is rapist’s contact rate and b is infection force

of vulnerable susceptible women, i.e.,
dSn(x)

dx
= λv − φnSn(x) + γnIn(x) − ΔvSn(x) − anSn(x) − μ1Sn(x).

The knowledgeable susceptible population of the vulnerable is produced by the naive healthier,
which educated through the rate βn and growing susceptible naïve, which become knowledgeable
without raped at αn rate. The infected knowledgeable individuals increased by improving the rate
γ k. It is decreased due to the force of infection Λv = abIR

Nv
along with the natural death rate φv, i.e.,

dSk

dx
= αnSn − φvSk + γkIk − ΔvSk + βnIn − μ3Sk. The vulnerable population through the infected naive

women is produced by using the vulnerable susceptible population based on the naive raped women.
The infected recovered naive can be decreased by using the population based on the maintains or
knowledgeable. The rate of natural death can be decreased at a rate φv along with the rape connected

to death δn, i.e.,
dIn

dx
= ΔnSn − (γn + βn + δn + φn)In − μ2In.

The infected knowledgeable vulnerable population girls are produced from the vulnerable sus-
ceptible population through the rapist based knowledgeable girls. That shows the infected/recovered

knowledgeable girls, rape related death δk and natural death at a rate φv, i.e.,
dIk

dx
= ΔvSk − (γk +

δk + φv)Ik − μ4Ik. The population of susceptible rapist is increased through the social difficulties,
which produce the sexual strength at λR. The contact ration of the knowledgeable, vulnerable, and

infected women decreased with the natural death φR along with the infection force i.e., ΛR = τkIk

NR

.

The dynamical form of this representation is given as
dSR

dx
= λR − φRSR − ΔRSR − μ5SR. The infective

rapist’s population is enhanced by the susceptible rapist ΛR and decreased by φR (natural rate of

death) is being caught δR, i.e.,
dIR

dx
= ΔRSR − (φR + δR)IR − μ6IR.

There are various studies that have been proposed to solve the dynamical models. To mention few
of the studies are epidemic SIR models with equal death and birth rates have been proposed by the
analytic schemes [1], stochastic procedures have been proposed to solve the HIV differential model
[2], dynamical behavior and analytical solutions of nonlinear fractional differential systems arising
in chemical reaction [3], nonlinear model based on dengue fever [4], nonlinear Parabolic dynamical
wave equations [5], buckling of improved couples based functionally porous classified micro-plates
[6], a system based on the phase-field using the fracture spread in the poroelastic media [7], dynamical
studies of a fractional SITRS discrete system [8], dynamic study through the porous graded beam along
with the sinusoidal rate of deformation shear model [9], the behavior of tumor as well as immune cells
using the immunogenetic system based on the fractional kinds of the non-singular derivatives [10] and
many more [11–29].
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In this work, a fractional order mathematical rape and its control model is numerically discussed
by using the strength of artificial neural networks (ANNs) together with the Levenberg-Marquardt
backpropagation approach (LMBA), i.e., ANNs-LMBA.

The remaining parts of the paper are organized as: The design of fractional order model is
described in Section 2. The stochastic applications are reported in Section 3. The structure of
ANNs-LMBA is explained in Section 4. The simulations of the fractional order model are derived
in Section 5. Conclusions are discussed along with future research in the last Section.

2 Mathematical Construction of the Fractional Order Mathematical Rape and Its Control Model

In this section, the design of fractional order mathematical rape and its control model is provided.
The differential mathematical form of the nonlinear mathematical rape and its control model has
six classes: susceptible native girls, infected immature girls, susceptible knowledgeable girls, infected
knowledgeable girls, susceptible rapist population and infective rapist population. The mathematical
form of the nonlinear mathematical rape and its control model is given as [30]:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dSn(x)

dx
= λv − φnSn(x) + γnIn(x) − ΔvSn(x) − anSn(x) − μ1Sn(x), Sn(0) = l1,

dIn(x)

dx
= ΔnSn(x) − (γn + βn + δn + φn)In(x) − μ2In(x), In(0) = l2,

dSk(x)

dx
= αnSn(x) − φvSk(x) + γkIk(x) − ΔvSk(x) + βnIn(x) − μ3Sk(x), Sk(0) = l3,

dIk(x)

dx
= ΔvSk(x) − (γk + δk + φv)Ik(x) − μ4Ik(x), Ik(0) = l4,

dSR(x)

dx
= λR − φRSR(x) − ΔRSR(x) − μ5SR(x), SR(0) = l5,

dIR(x)

dx
= ΔRSR(x) − (φR + δR)IR(x) − μ6IR(x), IR(0) = l6.

(1)

The detail of each parameter of nonlinear mathematical rape and its control model is provided in
Tab. 1.

Table 1: Comprehensive detail of each parameter of the nonlinear mathematical rape and its control
model

Parameters Details

Sn(x) Susceptible native girls
In(x) Infected immature girls
Sk(x) Susceptible knowledgeable girls
Ik(x) Infected knowledgeable girls
SR(x) Susceptible rapist population
IR(x) Infective rapist population
φR Natural death in the population of rapist
λv Rate of recruitment into vulnerable population

(Continued)
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Table 1: Continued
Parameters Details

δR Rapist rate to be caught
φv Rate of natural death in vulnerable people
β vulnerable rate to becomes knowledgeable
γn, γk Infected rate becomes susceptible in knowledgeable and naive populations
Δn, Δk Susceptible rate becomes infected in knowledgeable and naïve populations
ΔR Susceptible rate to becomes infected in population the population of rapist
βn Infected rate to convert naive into susceptible
λR Rate of recruitment into rapist people
μp, p = 1, 2, 3 . . . 6 optimal control functions
lq, q = 1, 2, 3 . . . 6 ICs
x Time

The present work shows a nonlinear fractional order mathematical rape and its control model
(1) based on the artificial intelligence (AI) together with the ANNs-LMBA. The construction of the
fractional order mathematical rape and its control model is shown as:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d (ν)Sn(x)

dx(ν)
= λv − φnSn(x) + γnIn(x) − ΔvSn(x) − anSn(x) − μ1Sn(x), Sn(0) = l1,

d (ν)In(x)

dx(ν)
= ΔnSn(x) − (γn + βn + δn + φv)In(x) − μ2In(x), In(0) = l2,

d (ν)Sk(x)

dx(ν)
= αnSn(x) − φvSk(x) + γkIk(x) − ΔvSk(x) + βnIn(x) − μ3Sk(x), Sk(0) = l3,

d (ν)Ik(x)

dx(ν)
= ΔvSk(x) − (γk + δk + φv)Ik(x) − μ4Ik(x), Ik(0) = l4,

d (ν)SR(x)

dx(ν)
= λR − φRSR(x) − ΔRSR(x) − μ5SR(x), SR(0) = l5,

d (ν)IR(x)

dx(ν)
= ΔRSR(x) − (φR + δR)IR(x) − μ6IR(x), IR(0) = l6.

(2)

where ν shows the fraction order derivative of the mathematical rape and its control model.

3 Novel Features and Frameworks of the Stochastic Solvers

In this section, the solutions of the fractional kind of mathematical rape and its control model are
presented using the ANNs-LMBA. The stochastic computing performances through the ANNs based
on the local and global operators have been implemented to solve several nonlinear, stiff, complex,
and singular models [31–43]. Recently, these applications have been used to solve the Lane-Emden
nonlinear system [44], functional order system [45], singular form of the fractional order equations
[46–48], periodic differential system [49], delayed differential systems [50] and HIV infection based
mathematical models [51,52].

The motive of this study is to provide the fractional order investigations based on the mathematical
rape and its control model using the ANNs-LMBA. There are various applications related to the
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fractional order derivatives have been proposed based on the system conditions. Few of the fractional
derivative applications based on the real-world system applications are provided in these references
[53–55]. Furthermore, the stochastic procedures recently have been used to solve the fractional
order models, like infection-based fractional-order nonlinear prey-predator system [56], seventh order
singular system [57], fractional-order SIDARTHE COVID-19 pandemic differential model [58],
fractional order dynamical nonlinear susceptible infected and quarantine differential model [59],
immune-chemotherapeutic treatment for breast cancer [60], Bagley–Torvik mathematical model [61]
and fractional infectious disease model [62]. The novel features of the designed stochastic ANNs-
LMBA for the fractional order mathematical rape and its control model are designated as:

• A design of the mathematical nonlinear model is constructed based on the fractional order
mathematical rape and its control model.

• The stochastic procedures have not been implemented before for the fractional order mathe-
matical rape and its control model.

• The investigations using the stochastic numerical paradigms are effectively accessible using the
fractional order mathematical rape and its control model.

• The design of LMBA using the procedures of AI is accessible for the fractional order mathe-
matical rape and its control model.

• The different variants of the fractional order mathematical rape and its control model have been
proposed numerically to validate the consistency of the proposed ANNs-LMBA.

• The comparison of the obtained and reference (Adams-Bashforth-Moulton) solutions indicate
the brilliance of the proposed ANNs-LMBA.

• The accuracy and convergence of the proposed numerical ANNs-LMBA scheme is performed
through the performance of the absolute error (AE), which is accomplished in good order for
the fractional order mathematical rape and its control model.

• The STs, regression, MSE, correlation and regression performances support the constancy and
dependability of the proposed ANNs-LMBA scheme for the fractional order mathematical rape
and its control model.

4 Proposed Method: ANNs-LMBA

In this section, the proposed ANNs-LMBA structure for the fractional order mathematical rape
and its control model is presented. The methodology ANNs-LMBA is divided in two sections. First,
the critical performances of ANNs-LMBS operative are drawn. Whereas the implementation of
ANNs-LMBA is executed for the fractional order mathematical rape and its control model.

Fig. 1 shows the multi-layer procedures of optimization through the numerical stochastic ANNs-
LMBA. The statistical ANNs-LMBA solvers are indicated using the command ‘nftool’ in Matlab with
the assortment of data as 70% for training, 14% for authorization and 16% for testing.
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Figure 1: Workflow of ANNs-LMBA for the fractional order mathematical rape and its control model

5 Numerical Result Performances Using the Proposed Scheme

In this section, the mathematical rape and its control model along with three different variants
is presented. The proposed scheme ANNs-LMBA is applied to find the numerical solutions of the
mathematical rape and its control model, mathematically signified as:

Case 1: Consider a fractional order rape and its control model using the ν = 0.5, λv = 0.1,
βn = 0.1, δn = 0.2, φv = 0.2, φn = 0.2, Δv = 0.3, μ1 = 0.1, an = 0.1, Δn = 0.2, μ2 = 0.2, αn = 0.1,
δR = 0.1, γk = 0.2, δk = 0.3, μ3 = 0.3, μ4 = 0.4, λR = 0.3, φR = 0.2, ΔR = 0.1, μ5 = 0.5, l4 = 0.4,
ΔR = 0.2, l2 = 0.2, l1 = 0.1, l3 = 0.3, l6 = 0.6 and l5 = 0.5 is shown as:
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d (0.5)Sn(x)

dx(0.5)
= 0.1 − 0.7Sn(x) + 0.05In(x), Sn(0) = 0.1,

d (0.5)In(x)

dx(0.5)
= 0.2Sn(x) − 0.75In(x), In(0) = 0.2,

d (0.5)Sk(x)

dx(0.5)
= 0.1Sn(x) − 0.6Sk(x) + 0.2Ik(x) + 0.1In(x), Sk(0) = 0.3,

d (0.5)Ik(x)

dx(0.5)
= 0.3Sk(x) − 1.1Ik(x), Ik(0) = 0.4,

d (0.5)SR(x)

dx(0.5)
= 0.3 − 0.8SR(x), SR(0) = 0.5,

d (0.5)IR(x)

dx(0.5)
= 0.2SR(x) − 0.9IR(x), IR(0) = 0.6.

(3)

Case 2: Consider a fractional order mathematical rape and its control model using the ν = 0.7,
λv = 0.1, βn = 0.1, δn = 0.2, φv = 0.2, φn = 0.2, Δv = 0.3, μ1 = 0.1, an = 0.1, Δn = 0.2, μ2 = 0.2,
αn = 0.1, δR = 0.1, γk = 0.2, δk = 0.3, μ3 = 0.3, μ4 = 0.4, λR = 0.3, φR = 0.2, ΔR = 0.1, μ5 = 0.5,
l4 = 0.4, ΔR = 0.2, l2 = 0.2, l1 = 0.1, l3 = 0.3, l6 = 0.6 and l5 = 0.5 is shown as:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d (0.7)Sn(x)

dx(0.7)
= 0.1 − 0.7Sn(x) + 0.05In(x), Sn(0) = 0.1,

d (0.7)In(x)

dx(0.7)
= 0.2Sn(x) − 0.75In(x), In(0) = 0.2,

d (0.7)Sk(x)

dx(0.7)
= 0.1Sn(x) − 0.6Sk(x) + 0.2Ik(x) + 0.1In(x), Sk(0) = 0.3,

d (0.7)Ik(x)

dx(0.7)
= 0.3Sk(x) − 1.1Ik(x), Ik(0) = 0.4,

d (0.7)SR(x)

dx(0.7)
= 0.3 − 0.8SR(x), SR(0) = 0.5,

d (0.7)IR(x)

dx(0.7)
= 0.2SR(x) − 0.9IR(x), IR(0) = 0.6.

(4)

Case 3: Consider a fractional order mathematical rape and its control model using the ν = 0.9,
λv = 0.1, βn = 0.1, δn = 0.2, φv = 0.2, φn = 0.2, Δv = 0.3, μ1 = 0.1, an = 0.1, Δn = 0.2, μ2 = 0.2,
αn = 0.1, δR = 0.1, γk = 0.2, δk = 0.3, μ3 = 0.3, μ4 = 0.4, λR = 0.3, φR = 0.2, ΔR = 0.1, μ5 = 0.5,
l4 = 0.4, ΔR = 0.2, l2 = 0.2, l1 = 0.1, l3 = 0.3, l6 = 0.6 and l5 = 0.5 is shown as:
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d (0.9)Sn(x)

dx(0.9)
= 0.1 − 0.7Sn(x) + 0.05In(x), Sn(0) = 0.1,

d (0.9)In(x)

dx(0.9)
= 0.2Sn(x) − 0.75In(x), In(0) = 0.2,

d (0.9)Sk(x)

dx(0.9)
= 0.1Sn(x) − 0.6Sk(x) + 0.2Ik(x) + 0.1In(x), Sk(0) = 0.3,

d (0.9)Ik(x)

dx(0.9)
= 0.3Sk(x) − 1.1Ik(x), Ik(0) = 0.4,

d (0.9)SR(x)

dx(0.9)
= 0.3 − 0.8SR(x), SR(0) = 0.5,

d (0.9)IR(x)

dx(0.9)
= 0.2SR(x) − 0.9IR(x), IR(0) = 0.6.

(5)

The numerical simulations of the fractional order mathematical rape and its control model is
obtained through the stochastic ANNs-LMBA with 15 numbers of neurons with the data selection
are designated as 70% for training, 14% for authorization and 16% for testing. The output, input and
hidden neuron’sconstruction is presented in Fig. 2.

Figure 2: Proposed ANNs-LMBA for the fractional order mathematical rape and its control model

The graphical plots are demonstrated in Figs. 3–5 for the fractional order mathematical rape and
its control model by applying the ANNs-LMBS procedures. To authenticate the best presentations and
STs, Figs. 3 and 4 have been drawn. The values of the MSE and EHs using the training, authentication
and best curves have been illustrated in Fig. 4 by applying the ANNs-LMBS procedures. The achieved
best performances of the fractional order mathematical rape and its control model have been provided
at epochs 49, 53 and 19 calculated as 1.4859 × 10−09, 4.9799 × 10−09 and 9.2361 ×10−09. The
performances of the gradient values are depicted in Fig. 3 for the fractional order mathematical
rape and its control model by applying the ANNs-LMBS procedures. The gradient measures have
been performed around 9.6853× 10−08, 9.4888 × 10−08 and 2.866 × 10−06 for 1st, 2nd and 3rd case.
These graphical plots show the convergence of the designed ANNs-LMBA for the fractional order
mathematical rape and its control model. The first portion of Figs. 4 indicates the fitting curves
performances for the fractional order mathematical rape and its control model. These illustrations
indicate the comparative presentations of the obtained and reference solutions. The second part of the
Fig. 4 represents the values the EHs. The values perform the values around 9.57 ×10−07, 7.83 × 10−06

and 5.55 × 10−06 for 1st, 2nd and 3rd case of the fractional order mathematical rape and its control model.
The correlations are plotted to authenticate the regression presented in Fig. 5 of the fractional order
mathematical rape and its control model. It is easy to understand that the correlation illustrations
are calculated as 1 using the fractional order mathematical rape and its control system. The testing,
authentication and training depictions signify the accuracy of the stochastic ANNs-LMBA for the
fractional order mathematical rape and its control model. The MSE convergence using the training,
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complexity, verification, iterations, and testing is drawn in Tab. 2 for the fractional order mathematical
rape and its control model using the ANNs-LMBA.

Figure 3: EHs and MSE for the fractional order mathematical rape and its control
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Figure 4: Valuations and EHs for the fractional order mathematical rape and its control system
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Figure 5: Regression for the fractional order mathematical rape and its control model
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Table 2: ANNs-LMBA procedure for the fractional order mathematical rape and its control model

Case MSE Gradient Performances Iterations Mu Time
Training Testing Authentication

1 4.95 × 10−10 1.87 × 10−09 1.48 × 10−09 9.69 × 10−08 4.96 × 10−10 49 1 × 10−10 3 s
2 1.53 × 10−10 1.57 × 10−10 4.97 × 10−09 9.49 × 10−08 1.54 × 10−10 53 1× 10−11 3 s
3 5.96 × 10−09 4.16 × 10−08 9.23 × 10−09 2.87 × 10−06 5.97 × 10−09 25 1 × 10−11 3 s

The result comparisons illustration along with AE have been drawn in Figs. 6–7. The numerical
performances are derived to authenticate the fractional order mathematical rape and its control model
using the stochastic ANNs-LMBA procedures. The obtained and reference numerical results have been
plotted in Fig. 6 that shows the overlapping of the solutions. These exactly overlapping of the solution
authenticates the correctness of the ANNs-LMBS for the fractional order mathematical rape and its
control model. The AE for the susceptible native girls Sn(x), infected immature girls In(x), susceptible
knowledgeable girls Sk(x), infected knowledgeable girls Ik(x), susceptible rapist population SR(x) and
infective rapist population IR(x) for the fractional order mathematical rape and its control model are
provided in Fig. 7. The susceptible native girls Sn(x) calculated as 10−06 to 10−08, 10−06 to 10−10 and
10−04 to 10−07 for 1st, 2nd and 3rd case of the fractional order mathematical rape and its control model.
The infected immature girls In(x) class values are calculated as 10−04 to 10−07, 10−04 to 10−08 and 10−04

to 10−06 for 1st, 2nd and 3rd case of the fractional order mathematical rape and its control model. The
susceptible knowledgeable girls Sk(x) category values are calculated as 10−05 to 10−06, 10−05 to 10−07 and
10−04 to 10−06 for 1st, 2nd and 3rd case of the fractional order mathematical rape and its control model.
The infected knowledgeable girls Ik(x) category values are calculated as 10−05 to 10−06, 10−05 to 10−07 and
10−04 to 10−05 for 1st, 2nd and 3rd case of the fractional order mathematical rape and its control model.
The susceptible rapist population SR(x) values are calculated as 10−04 to 10−06, 10−05 to 10−07 and 10−04 to
10−06 for 1st, 2nd and 3rd case of the fractional order mathematical rape and its control model. Likewise,
the infective rapist population IR(x) values are calculated as 10−05 to 10−06, 10−05 to 10−07 and 10−04 to
10−05 for 1st, 2nd and 3rd case of the fractional order mathematical rape and its control model. These
best AE indicate the precision of the ANNs-LMBA for the fractional order mathematical rape and its
control model.

Figure 6: (Continued)
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Figure 6: Result for the fractional order mathematical rape and its control model

Figure 7: (Continued)
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Figure 7: AE for the fractional order mathematical rape and its control model

6 Conclusion

In this study, a nonlinear fractional order mathematical rape and its control model are numerical
simulated using the strength of ANNs along with the LMBA. The fractional order investigations have
been provided to obtain more realistic results of the mathematical form of the rape and its control
model. The fractional order mathematical rape and its control model are classified into six dynamics,
susceptible native girls Sn(x), infected immature girls In(x), susceptible knowledgeable girls Sk(x),
infected knowledgeable girls Ik(x), susceptible rapist population SR(x) and infective rapist population
IR(x). The numerical routines for the fractional order mathematical rape and its control model have
never been applied nor evaluated before through the stochastic ANNs-LMBS. Three different variants
of the fractional order mathematical rape and its control model have been numerically solved to check
the correctness of the proposed ANNs-LMBA. The data is used to present the rape and its control
differential system is designated as 70% for training, 14% for authorization and 16% for testing. Fifteen
neurons throughout the study have been used to solve the dynamical system. The dataset is proposed
by the Adams-Bashforth-Moulton to check the comparison of results. The correctness is observed
through the AE, which have been performed in best measures as 10−05 to 10−07 for each class of the
fractional order mathematical rape and its control model. The dependability and capability of the
proposed ANNs-LMBA is observed using the numerical performances through STs, MSE correlation,
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regression, and EHs. The precision of the ANNs-LMBA is observed via matching of results and AE
values. The scheme performance is testified based on the constancy and reliability of proposed ANNs-
LMBA.

Future Research Directions

In future, the designed ANNs-LMBA can be implemented to solve the fractional kind of derivatives
[63–67] and sonic processes [68].
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[66] E. İlhan and İ.O. Kıymaz, “A generalization of truncated M-fractional derivative and applications to
fractional differential equations,” Applied Mathematics and Nonlinear Sciences, vol. 5, no. 1, pp. 171–188,
2020.

[67] A. Yokuş and S. Gülbahar, “Numerical solutions with linearization techniques of the fractional Harry
Dym equation,” Applied Mathematics and Nonlinear Sciences, vol. 4, no. 1, pp. 35–42, 2019.
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