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Abstract: This study aims to solve the nonlinear fractional-order mathemat-
ical model (FOMM) by using the normal and dysregulated bone remodeling
of the myeloma bone disease (MBD). For the more precise performance of the
model, fractional-order derivatives have been used to solve the disease model
numerically. The FOMM is preliminarily designed to focus on the critical
interactions between bone resorption or osteoclasts (OC) and bone formation
or osteoblasts (OB). The connections of OC and OB are represented by a
nonlinear differential system based on the cellular components, which depict
stable fluctuation in the usual bone case and unstable fluctuation through
the MBD. Untreated myeloma causes by increasing the OC and reducing the
osteoblasts, resulting in net bone waste the tumor growth. The solutions of
the FOMM will be provided by using the stochastic framework based on
the Levenberg-Marquardt backpropagation (LVMBP) neural networks (NN),
i.e., LVMBPNN. The mathematical performances of three variations of the
fractional-order derivative based on the nonlinear disease model using the
LVMPNN. The static structural performances are 82% for investigation and
9% for both learning and certification. The performances of the LVMBPNN
are authenticated by using the results of the Adams-Bashforth-Moulton
mechanism. To accomplish the capability, steadiness, accuracy, and ability of
the LVMBPNN, the performances of the error histograms (EHs), mean square
error (MSE), recurrence, and state transitions (STs) will be provided.
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1 Introduction

Remodeling is a procedure where the bone is constantly renewed across the skeleton. The bone
formation methodology is sparsely heterogeneous using the common and sync cycles that can occur
in various locations by using 5% to 25% based on the bone surface [1]. As a result, each skeleton part
undergoes regular remodeling over time. Various aspects of bone renovation have been studied by
using mathematical models. Michaelis-Menten investigated the dynamics based on the modelling of
the OC activity (system through which OC break the bone) [2] along with the physiological stress that
persuades the bone growth [3-6]. Many studies of bone metabolism based on the signal transduction
models have been presented using the OC and osteoblasts (OB) [7]. The behavior of OC and OB in a
cellular environment is recognized as a basic multicellular unit [8—12].

In this study, the numerical simulations of the myeloma bone disease have been discussed.
Myeloma is one of the forms of hematological cancer, distinguished by the growth and division of
the cancerous plasma cells. The evolution of the dangerous disease based on the osteolytic, bone pain,
psychopathology breaks, osteoporosis, hyperglycemia, and spinal stenosis, is among the most common
clinical symptoms of myeloma. Furthermore, the connection between the melanoma cells and the bone
marrow systemic immune cells has been performed through the myeloma survival and growth [13,14].

The investigations of these actions are significant due to both primary bone tumors and metastatic,
caused by the other types of cancer. In smooth extension procedures, prostate and breast cancers
are notably recognized [15]. In tumor-induced osteolytic lesions, a process is not wholly obtained
that promotes the OC bustle and changes the quantity of the OB [16,17]. However, the bone tissue
attitude has been extensively studied to understand the phenomenon. Several theories about functional
adaptation and many adaptive capacity models have been presented over the last few decades. The
proposed models can be classified into the phenomenologist or monolithic. The mechanism is modeled
by considering the initial and final states to focus on the mechanical variables, whereas deterministic
models attempt to incorporate biological and biochemical processes into the model [1§].

The biochemical procedures of the remodeling of bone can be emulated by using the compu-
tational and statistical systems, which are designed to allow the association with the healthy and
pathophysiological bone actions. A differential system that correspond to the communication of OB
and OC to simulate the consequences of paracrine and autocrine mechanisms. The dynamic response
of these cell populations was calculated; as a result to determine the changes in bone during the
remodeling cycles. A confined system for the tissue of healthy bone was first anticipated in [19], and
it was later expanded in [20] to comprise the tumorous impact of several myeloma diseases along with
the non-local approach with diffusion. Biological processes frequently exhibit anomalous spreading
or viscoelasticity using fractional differential equations [21,22]. As a result, by including a fractional-
order, existing models can be improved [23,24]. Numerous biological tissues have thus been sufficiently
explained, e.g., the human respiratory system [25] and the movement of sap in leaves [26]. Although not
trivial, it is vital to show a geometrical or physical perception of the resulting differential equations
[27]. Bone remodeling demonstrates anomalous dissemination in the case under consideration. On
the other hand, many underlying mechanisms, show fractional-order behavior that varies over time
or space [28,29]. Instead of myeloma, the referred models have been seen to understand the osteolytic
metastatic bone environment better.

The effects of cancer growth are based on bone remodeling, which indicates specifically to check
the influence of tumor and paracrine signaling in bone resorption and OB cells. Autocrine signaling is
the reaction from OCs and OBs that regulates their formation. The factors produced by OCs that
control OB formation are referred to as paracrine signaling. The mathematical form of the bone
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remodeling is provided in the absence of cancer and further investigations [30—32]. In this nonlinear
system with no exact space proportions, a dependent form of the variable tracks the bone mass over
time. One spatial dimension is mentioned by interpreting the bone mass equation as one of the localized
trabecular masses (spongy bone found within the bone marrow) beneath a point on the bone’s surface.

The fractional-order derivatives of regular and myeloma bone disease models based on the bone
remodeling with tumor effects have been presented in this study by using the stochastic mathematical
performances of the Levenberg-Marquardt backpropagation (LVMBP) neural networks (NN), i.c.,
LVMBPNN.

The paper is systematized as follows: Section 2 demonstrates the configuration of the fractional
MDM mathematical form, Section 3 contains the information on the stochastic applications, Section
4 is explained the LVMBPNN method, and Section 5 contains the simulations procedures of the
fractional MDM model. Finally, Section 6 is presented based on the concluding remarks.

2 Fractional Order Mathematical Bone Remodeling System

In this section, the presence of the myeloma disrupts the regular rotations of the system of normal
bone. The tumor (cancer) parameters represent the usual cycles, cycles culminating, mostly damped
fluctuations that combine the nontrivial stable position. The unknown form of the independent
variables based on the tumor and bone remodeling model (TBRM) are C(¢), B(t), and T'(¢) is tumor
cell density. The MDM form of the mathematical system is given as [33]:

| [ gr) o)
dfzﬁt) — BCO+acB@) \ Lr)ow \ L C = ki,
gca
Ly T(1) ( ) T(t)) (0]
% — BB +a,C(" Lt /B Ly B, = ki,
dT (1) _ L, —

Co = ki, By = k,, and T, = k; are the initial conditions (ICs). Eq. (1) shows the Gompertz
tumor form with growth constant y, > 0 with greater tumor size L;. y, has been assumed to
be independent of osteoporosis. Models, biological tests, and simulations have been applied to find
the yr dependence. The tumor measures rgc, Fce, Fep, and rgg are all nonnegative in the system
(1). The presence of tumor changes (1) is as follows: autocrine advancement of OCs increases

( e (1 + ree T")) > 0, since gcc > 0); paracrine suppression of OCs decreases (H'L) < gcp, SINCE

(1)
Lt CB Ly

gcs > 0), paracrine advancement of OBs decreases (—gzc > —gzc (1 + rgc%:), since gz > 0); and

%) < g, since gz > 0). A major distinction

between the mathematical model and the extension of term %:, which connects the tumor density

and maximum length to the power laws for the OC/OB contacts (1).

autocrine promotion of OBs decreases (ggzz — 735

The numerical studies of the fractional MBD model based on the bone remodeling with the tumor
effects (1) have been provided in the current study by using the artificial intelligence (Al) together
with the configuration of LVMBPNN [34-41]. Furthermore, the fractional MBD model has been
designed to present the analysis of super slow evolvement and superfast progressions by substituting
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the ordinary integer order derivation in the set of Eq. (1) with fractional orders.

S P s vy
T — pecoracsn L U ) 6=,
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d;;fl) = BB +a,C0" Lr /B Lr ), B =k,
d T _ L, _
T yrT' (1) log (T(t)) . T, = ks.

This system,  shows the fractional kind of derivative based on the MBD model. Tab. | shows the
details of the parameter characterization based on the myeloma bone disease.

Table 1: Parameter characterization detail of the myeloma bone disease

Parameter Details

o, Ay Activation rate

Bs, Be Apoptosis rate

Zrp> 850> gccs 8cs Autocrine regulator

Feg> ¥pes Fecs Fop Tumorous autocrine and paracrine regulation
L, Metastases bone size

Vr Growth rate of metastases
B(1) OB

C() oC

T() Tumorous

ki, ks, ky 1Cs

3 Novel Stochastic Solvers Features

In this section, the existing section shows the stochastic operator performances for solving the
fractional order computational myeloma bone disease model with LVMBPNN. In the literature,
stochastic software solvers have been investigated to solve complicated, singular, and rigid systems
[42,43]. Recently, the simulation based on the food chain function [44], infection control model [45],
Lane-Emden systems [46], functional order approaches [47], and nonlinear dynamic HIV systems
[48-50].

This research aims to calculate the numerical performances using the stochastic LVMBPNN
for the fractional MBD based on the bone remodeling and the effects of the tumor. It has been
discovered that the time-fractional kinds of derivatives can be applied to define the conditions. The
remembrance is represented by the derivative order form, but the memory function is represented by
the derivative of fractional. Real-world applications are indicated by these fractional derivatives. Some
novel characteristics of the LVMBPNN for the mathematical fractional MBD model are reported as:
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e A novel design numerical solution and fractional derivatives of the MBD model with tumor are
presented.

e Stochastic measures have never been used to solve a fractional-order MBD model based on a
remodeling bone with tumor effects.

e The numerical studies using stochastic paradigms are presented successfully utilizing fractional
order MBD mathematical model,

e To solve the nonlinear fractional-order MBD mathematical model, Al with the design of
LMBS-NNS is presented.

e Three distinct fractional-order deviations based on the MBD model were numerically solved to
authorize the proposed approach’s dependability.

e The comparison of the proposed and Adams—Bashforth—-Moulton results demonstrates the
excellence of the stochastic solver-based LVMBPNN.

e The performance of the designed LVMBPNN in solving the fractional order MBD mathemat-
ical model is validated by the correlation, regression, STs, MSE, and EHs, results.

4 Proposed Procedures: ANN-LMBP Method

This section of the study describes the proposed LVMBPNN method for presenting numerical
bone remodeling model solutions. The proposed LVMBPNN system is introduced in two stages:
the significant performances of the ANN-LMBP method and operational plans for solving the
mathematical bone remodeling model using the LVMBPNN method.

Fig. 1 depicts the designed approach for solving the nonlinear fractional differential model, based
on the number of layer optimization procedures of the ANN-LMBP method. This study statics
performances are 82%, 9%, and 9% for training, certification, and checking for dealing with the
fractional order computer simulation based on myeloma bone disease.

5 Results and Discussions

Three distinct variabilities of fractional order differential equations of the computational myeloma
bone disease model using LVMBPNN are presented in this section. The mathematical representations
for each type are as follows:

Case 1: Ad opt the following fractional order (FO) bone disease related model with the suitable
values t = 0.5, y, = 0.22, L; = 0.14, B; = 0.25, Bc = 0.1, a5y = 0.22, ¢ = 0.12, rp5 = 0.1,
ree = 0.18, rpe = 0.2, rep = 0.19, g = 0.09, goc = 0.16, gz = 0.15, g = 0.17, k;, = 0.1,
k, =0.2and k; = 0.3.

[ ( T (t)) ( T(t))
0.5 0.15] 140.2 0.16] 14+0.18
ddgft) =—0.1C(t) + 0.12B(v) Lr o0 Ly , C,=0.1,
0.17
* T(t (3)
& B(1) 1401920 (oom L( ))
W = —0.25B(t) + 0.22C(¢) Ly B(?) ) B,=0.2,
d*T(1) 100



2420 CMC, 2023, vol.74, no.2

1. Model: Fractional order disease model

d'C(r)

=-B.C()+a B pefies

Stochastic compufing
frameworks

A proposed multi-layer a'B(r) )[ o
optimization ANN-LVMBP for = e
solving the of the bone =R =5 C0

remodeling dynamics for

normal and myeloma bone % = r,?(r)los[ ;‘f ]
disease model ©

Reference outputs
A dataset is provided through the stochastic ANN-
LVMBP for the bone remodeling dynamics for
normal and myeloma bone disease model

Achieved outcomes
Calculate the stochastic ANN-LVMBP for the
bone remodeling dynamics for normal and
myeloma bone disease model

3. Results with analysis

Approximate ANN-LVMBP along with STs, MSE, EHs, fitness and regressions for the bone remodeling
dynamics for normal and myeloma bone disease model

Figure 1: Workflow-based fractional myeloma bone disease model using the LVMBPNN method

Case 2: Implement the following FO bone disease related mathematical model with the suitable
values T = 0.6, yr = 0.22, L, = 0.14, B = 0.25, B = 0.1, a5 = 0.22, ¢ = 0.12, 155 = 0.1,
Fee = 0.18, Ipe = 0.2, Fep = 0.19, gBB - 0.09, gcc == 0.16, ch == 0.15, gCB == 0.17, kl == 0.1,
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k, =0.2and k; = 0.3.

( T(l)) ( T(l))
0.6 0.15] 140.2 0.16| 14+0.18
ddt((;(t) = —0.1C() + 0.12B(¢) Ly C() Ly , C,=0.1,
0.17
* 0) T(t 4)
& B(1) 1401910 (O. o L())
— e = —0.25B() +0.22C() L: ) B r). B,=02,
d*°T(1) 100
=022T)1 — . T. =023,
dtO.G 0 (t) Og (T(t)) 0 0 3

Case 3: Consider a FO mathematical model based on the myeloma bone disease by using these
valuest = 0.7,y =022, L; = 0.14, 5 = 0.25, B = 0.1, a3 = 0.22, ¢ = 0.12, 13 = 0.1,
ree = 0.18, rgc = 0.2, rep = 0.19, g = 0.09, g = 0.16, gpe = 0.15, g = 0.17, k; = 0.1,
k, =0.2and k; = 0.3.

[ ( T(t)) ( T(z))
0.7 0.15| 14+0.2 0.16] 140.18
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The numerical representations using the fractional mathematical bone disease model results are
discussed using the LVMBPNN method with seven neurons and data selection as 82%, 9% and 9% for
training, certification, and testing. The structure of the input, hidden, and output neurons are depicted
in Fig. 2.

Input

Figure 2: Designed LVMBPNN method for the myeloma bone disease

Figs. 3-5 depict the LVMBPNN-based fractional myeloma bone disease model. Figs. 3 and 4 show
the perfect EHs, curves, validations, and STs for the fractional-order derivative mathematical myeloma
bone model. The best fractional-order mathematical bone disease model (BDM) results were obtained
at epochs 46, 32, and 36, measured as 5.7193 x 107, 2.4386 x 10™”, and 1.1786 x 10~%, respectively.
The gradient performances for cases 1, 2, and 3 are 9.9654 x 10-%,9.73 x 107", and 9.2864 x 10~%. The
graphical methodologies indicate that the LVMBPNN method for solving the fractional MBD model
converges. Fig. 4 depicts the numerical outcomes and EHs for the fractional-order mathematical bone
disease using the LVMBPNN technique. The performances of the obtained and reference solutions
have been compared to assess the correctness of the scheme. The fractional-order mathematical MBD
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model training, testing, and validation results are plotted. The second section of Fig. 4 discusses the
EHs values, which are —2.1 x 107, —1.6 x 10, and —1.2 x 107® for cases 1-3. Fig. 5 depicts
the correlation techniques using the LVMBPNN method. The correlation for the fractional-order
MBD system is one using the LVMBPNN method. The accuracy of the LVMBPNN method for
the fractional-order mathematical model has been achieved through training, testing, and validation.
Tab. 2 displays the MSE for the fractional model based on the verification, complexity, training,
generations, and back propagation using the LVMBPNN method.
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Figure 3: MSE and STs performances for the fractional order system
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Table 2: MSE performances based LVMBPNN for the fractional myeloma bone disease model

Case MSE Performance Gradient Mu Epoch Time

[Training] [Verification] [Testing]
I 3931 x 107® 5.719 x 107® 1.12 x 107 393 x 107 3.97 x 10® 1 x 107" 46 2 Sec

3.993 x 107 2438 x 107" 1.52 x107” 3.99x 107” 9.73 x 107 1 x 107732 1 Sec
3 1.053 x 107” 1.178 x 107" 9.79 x 10 1.05x 10™® 929 x 10™® 1 x 107" 36 2 Sec

The correctness of the proposed ANN-LMBP method for the fractional-order MBD model is
observed in Figs. 6 and 7 based on the comparison of the result and AE performances. The calculated
form of the numerical solutions has been drawn to solve the nonlinear model using the LVMBPNN.
The matching of the calculated and reference results has been illustrated in Fig. 6. These plots present
the precision of the LVMBPNN for the fractional myeloma bone disease model. The performances
of the AE to solve the fractional MBD model using the stochastic paradigms are plotted in Fig. 7.
The AE is provided based on the OCs C(¢), OBs B(¢) and tumor T'(¢). It is observed that the cases of
OCs C(¢) lie around 10~* to 107%, 10 to 10~ and 10~* to 10-% for cases 1, 2, and 3. The AE for
the OBs B(?) lies around 10~* to 107%, 10-% to 10~ and 10~* to 10~ for cases 1, 2 and 3. The AE for
the tumor case 7(¢) found 10~* to 10-%7, 10-* to 10, and 10~* to 10" for cases 1, 2 and 3. These
best AE values represent the exactness of the proposed ANN-LMBP method for the fractional-order
mathematical MBD model.
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Figure 6: (Continued)
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6 Conclusion

The numerical representations of the bone remodeling-based MBD mathematical model are
presented in this work. The goal of this study is to get a fractional-order study that focuses on the
dynamics of bone remodeling based MBD mathematical models in order to get more accurate system
performances. This study also included an integer nonlinear mathematical MBD system with a tumor
effect. Based on fractional-order bone remodeling, the MBD mathematical system is divided into three
dynamics: OCs (bone resorption), OBs (bone formation), and tumors. The stochastic performances of
the MBD mathematical model based on fractional-order bone remodeling have not been introduced
or calculated using the stochastic paradigms based on the LVMBPNN. For the fractional order MBD
mathematical system, three variants with different values of the fractional order have been provided.
The data applied to show the fractional-order MDB mathematical model results were divided as 82%
for training and 9% for both testing and certification. The numerical performances of the fractional
MBD system were presented using seven numbers of neurons. The statistical solutions of the fractional
MBD system were compared to the results of the Adams—Bashforth—-Moulton. The correctness of the
schemes is performed based on the AE, which is calculated as 10 to 10~ for each case of the model.
The obtained results were performed using the LVMBPNN to reduce the MSE. The regression, STs,
correlation, MSE, and EHs, were applied to validate the competence of LVMBPNN along with the
numerical representations. The reference and obtained result’s matching demonstrate the precision of
the LMBS-NNs. The scheme’s presentation is authenticated using the uniformity and dependability
of the proposed LVMBPNN.

The LVMBPNN can be used in future work to present numerical measures of the fractional order
systems, lonngren-wave, fluid mechanics systems, omics studies, and data security models [51-62].
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