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Abstract: Medical image fusion is considered the best method for obtaining
one image with rich details for efficient medical diagnosis and therapy. Deep
learning provides a high performance for several medical image analysis
applications. This paper proposes a deep learning model for the medical
image fusion process. This model depends on Convolutional Neural Network
(CNN). The basic idea of the proposed model is to extract features from
both CT and MR images. Then, an additional process is executed on the
extracted features. After that, the fused feature map is reconstructed to obtain
the resulting fused image. Finally, the quality of the resulting fused image is
enhanced by various enhancement techniques such as Histogram Matching
(HM), Histogram Equalization (HE), fuzzy technique, fuzzy type �, and
Contrast Limited Histogram Equalization (CLAHE). The performance of
the proposed fusion-based CNN model is measured by various metrics of
the fusion and enhancement quality. Different realistic datasets of different
modalities and diseases are tested and implemented. Also, real datasets are
tested in the simulation analysis.
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1 Introduction

Medical imagining modalities are used to create images of body parts for diagnostic and thera-
peutic purposes within digital health systems. Each type of imaging modalities gives different details
about the different body regions to study or treat. There are many types of these techniques, such as
Computed Tomography (CT), Magnetic Resonance Imaging (MRI), X-ray, and Positron Emission
Tomography (PET) [1].

CT uses X- rays and computers to create an image with more details to aid specialists in detecting
several diseases and conditions. It is painless, rapid, and accurate. The CT images created during a CT
scan can be reformatted at many levels. It can produce 3-dimensional images. CT images provide more
details than X-rays, especially in soft tissues, and blood vessels. It was developed in 1970, and it is used
till now. A CT scan can detect the size, shape, and location of structures found deep in the body, such
as organs, tissues, or tumors [2].

MRI is a type of imagining technology that is used to generate cross-sectional images of the parts
of the human. It uses a magnetic field and computer to create images with high resolution that is
used to clarify the pathological changes of the human parts. It generates cross-sectional images of the
human parts. It produces three-dimensional anatomical images in several planes [3].

Image fusion is the process that is used to combine multiple images to get an image with rich
details. Medical image fusion techniques perform better in gathering several details from different
imaging technologies, which may aid in the correct diagnosis of several diseases. The aim of the image
fusion is to reduce the redundancy in the output while increasing relevant information to an application
or task [4].

Deep learning is a kind of machine learning techniques [5]. Deep learning is implemented in several
applications such as medical image analysis and achieves high performance. The CNN is a special type
of deep learning applied for classification. It is decomposed of an input layer, convolutional layer,
pooling layer, fully connected layer, and a classification layer. It comprises a feature extraction and
classification network [6–11].

This paper introduces a deep learning technique for the medical image fusion process. This
technique is based on CNN. The basic idea of the proposed technique is to extract features from CT
and MRI images. Then, an additional process is carried out on the extracted features. After that, the
fused feature map is reconstructed to obtain the fused image. Finally, the quality of the resulting fused
image is enhanced by various enhancement techniques such as HM, HE, fuzzy technique, fuzzy type �,
and CLAHE. The performance of the proposed approach is evaluated by using various fusion metrics.
The rest of this paper is arranged as follows. Section 2 clarifies the related work. Section 3 explains
the proposed model of medical image fusion. Section 4 illustrates the evaluation of image quality.
Simulation results and discussions are presented in Section 5. Finally, the conclusion is introduced in
Section 6.

2 Related Work

Rajalingam et al. [12] presented a technique for medical image fusion. This technique consists
of a Non-subsampled Contourlet Transform (NSCT) and Dual-Tree Complex Wavelet Transform
(DTCWT). This technique was applied to fuse PET and MRI for the fusion process. The dimensions
of the input image are 256 × 256. Two-level transformations were applied for the fusion process.

Liu et al. [13] proposed an attempt for medical image fusion depending on the image decom-
position model and Nonsubsampled Shearlet Transform (NSST). It is performed to decompose the
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reference image into texture components and approximation components. A maximum fusion rule
was performed to merge texture components to move salient gradient information to the fused image.
Finally, a component synthesis process is implemented to generate the resulting image.

Li et al. [14] presented a model for medical image fusion depending on low-rank sparse compo-
nent decomposition and dictionary learning. The source image was split into low-rank and sparse
components to eliminate the noise and keep the textural details.

Polinati et al. [15] introduced a model for medical image fusion by applying empirical wavelet
decomposition and Local Energy Maxima (LEM). This model is applied to integrate several imaging
modalities such as MR, PET, and SPECT. In addition, Empirical Wavelet Transform (EWT) and LEM
are applied to decrease the distortion of the images.

Chen et al. [16] presented a technique for medical image fusion depending on rolling guidance
filtering. Firstly, the rolling guidance filter was used to split the reference medical images into structural
and detail components. Finally, a sum modified Laplacian is used to extract the component details.
The fused structural and detail components are obtained.

Nair et al. [17] presented a technique for medical image fusion based on NSST. Firstly, the pre-
processing step was applied, such as Gaussian filtering, edge sharpening, and resizing. And then
optimal registration was performed. After that, the Denoised Optimum B-Spline Shearlet Image
Fusion (DOBSIF) was applied for image fusion. Finally, the segmentation process was implemented
to the fused image to detect the tumor part.

Faragallah et al. [18] introduced a method for medical image fusion. This method starts with image
registration and performing the histogram matching to decrease the artifacts of the fusion. After that,
the NSST is applied for the fusion process, and the Modified Central Force Optimization (MCFO) is
applied. Finally, the fused image quality is enhanced by an enhancement operation.

El-Shafai [19] introduced a medical image fusion and segmentation technique. This technique used
the fusion and segmentation methods. Several research studies have worked on medical image fusion
from several perspectives, as in [20–25].

3 Proposed Medical Image Deep Fusion-Based CNN Approach

The purpose of the fusion process is to obtain a certain image including sufficient information
in order to help doctors and technicians to diagnose the diseases accurately. This paper presents a
model for medical image fusion. This model performs CT and MRI image fusion. The first stage is
the registration stage. The importance of registration is to ensure that each pixel in both input images
is located in the same coordinates. The registration process is based on Gaussian filtering and key
points registering. The second stage is the fusion stage. The fusion stage is based on a deep learning
approach.

A sequence of the CNNs is applied to the input images in order to extract features from both
registered input images. The resulting features of the input CT and MRI images are added to fuse
them. After that, the fused feature map is reconstructed to obtain the fused image. Finally, the quality
of the resulting fused image is enhanced by various enhancement techniques such as HM, HE, fuzzy
technique, fuzzy type �, and CLAHE. An evaluation process is executed on the fused image to make
sure it contains high entropy compared to the input images. There are other evaluation metrics to
evaluate the fused image, and the enhanced image will be discussed and investigated in the simulation
results and discussion section. Fig. 1 shows the main steps of the proposed medical image fusion model.
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Figure 1: Steps of the proposed medical image fusion model

3.1 Registration Process

The feature vector is extracted from the image; firstly, the image is convolved with many Gaussian
kernels with several scales [26–28]:

L(i, j, σ) = G(i, j, σ) ∗ I(i, j) (1)

G(i, j, σ) is the Gaussian kernel with scale σ , and I(i, j) is the source image. The Gaussian kernel
is formulated as:

G(i, j, σ) = 1
2πσ 2

e−(i2+j2)/2σ2
(2)

The Laplacian operator is performed to the various scales. Simply, the Difference of Gaussian
(DoG) is applied as an alternative plan as clarified in Fig. 2 for the keypoints detection. The pixels
at similar coordinates are compared to choose the points of the features across scales. The maximum
points are chosen across the scales for extra feature extraction operations. Finally, the Laplacian is
eliminated for simplicity. So, the DoG is used instead of the LoG. Fig. 2 shows the steps of applying
the DoG process.

Figure 2: Steps of the DoG process
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After choosing the key point, the gradient magnitude and phase are defined at this key point:

m(i, j) = √
(L(i + 1, j) − L(i − 1, j))2 + (L(i, j + 1) − L(i, j − 1))2 (3)

θ(i, j) = tan−1

(
L(i, j + 1) − L(i, j − 1)

L(i + 1, j) − L(i − 1, j)

)
(4)

where L(i, j) is the gradient at (i, j). We choose a window of size 16 × 16 for every keypoint, as shown
in Fig. 3. For each sub-window, the histogram angle of gradients is detected with four bins, where each
bin is 45°. The feature vector of 128 points represents each feature point.

Figure 3: Key-point description

For the registration process, the MR image is considered as a source image in which the feature
vectors and the feature points are extracted. Also, for the CT image, the feature vectors and feature
points are extracted and compared with the MR image features. The process of matching depends on
the minimum distance.

3.2 Deep Learning-Based Image Fusion

The fusion process is implemented between CT and MR images to get an image that includes
more information than both input images. The fusion process is based on a deep learning process
depending on CNNs. For the input image, the convolutional layer includes filters that are applied in a
two-dimensional (2D) convolution operation. The number of resulting features is equal to the number
of filters. This concept is very well suitable for the MR image as we can notice the minor changes in the
image local activity levels. Fig. 4 clarifies an example of the process that occurs in the convolutional
layer.

This paper introduces an image fusion approach based on CNNs. CNN achieves the optimum
parameters of the model based on an optimization process for a loss function to expect an input as
near as possible to the desired target. The input images are registered in order to achieve an optimum
fused image with sufficient information rather than the input images. The fusion operation O(I) is
modeled with a feed-forward propagation FW(I), where F points to the network structure and W
points to the weights learned by the optimization process.

Traditional loss functions such as the square error (SE) cannot be performed efficiently for the
purpose of fusion optimization. So, O(I) is absent for this purpose. This paper adopts Fusion
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Structural Similarity Index Metric (FSSIM) as a loss function for the fusion optimization process
[29]. It evaluates the structural integrity loss in addition to the luminance consistency in many scales.

Figure 4: The process of convolutional neural network (CNN)

Fig. 5 shows an overall detailed model of the proposed medical image fusion-based CNN model
[29]. The series of convolutional layers (CNVs) are connected consecutively. The image pairs in a three-
dimension (3D) representation will be the input for this architecture. Where the fusion occurs in the
domain of the pixel itself, the ability of the feature learning is not included in this kind of CNNs
architecture. The proposed architecture consists of reconstruction layers, a fusion layer, and feature
extraction layers. Fig. 6 shows the stages of the image fusion model based on CNN.

Figure 5: The in-detail steps of the proposed image fusion model based on CNN
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Figure 6: Stages of image fusion model based on CNN (feature extraction, fusion, and reconstruction)

As illustrated in Fig. 6, the input images (Y1 and Y2) are forwarded to separate channels stage
C1 and C2 where C1 and C2 are the feature extraction. The C1 contains C11 and C12 that contain
5 × 5 filters for feature extraction at low levels such as edges and corners. C11, C12, C21, and C22
participate in the same weights, which are considered pre-fusion channels. This architecture has a
three-fold advantage: first, the same features for the input images are forced to learn the network. So,
the output feature maps of C1 and C2 are similar in the type of features. Hence, the fusion layer is
used to combine the respective feature maps in a simple manner. The resulting features are added with
optimum performance rather than other gathering feature operators. In feature addition, the same
types of features from the two images are fused together (see Fig. 7).

• FSSIM Loss Function

Figure 7: Visualization output of the learned filters with different numbers of iterations

This section proposes the process of computing loss without using a reference image. This process
is carried out by FSSIM image quality measure [29]. Assume that {yk} = {yk|k = 1, 2} denotes
the set of image patches extracted at a location of the pixel p from the pair of the input images and yf

denotes the extracted patch from the output of the CNN (fused image at same location p). The aim is a
computation of a score to determine the performance of the fusion obtained by patches of the input yk

and the fused image yf . The FSSIM function aims to measure the similarity between the input patches
yk and fused image patches yf . There are three aspects of similarity: Contrast (c), Luminance (l), and
Structure (s) are determined, and their product is used to calculate the overall index measured.

l(yk, yf ) = 2μyk
μyf

+ C1

μ2
yk

+ μ2
yf

+ C1

(5)
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c(yk, yf ) = 2σyk
σyf

+ C2

σ 2
yk

+ σ 2
yf

+ C2

(6)

s(yk, yf ) = σykyf
+ C3

σyk
σyf

+ C3

(7)

FSSIM(yk, yf ) = [
l(yk, yf )

]α · [
c(yk, yf )

]β · [
s(yk, yf )

]γ

(8)

where μG, μI , σG, σI , and σGI are the local means, standard deviations, and cross-covariance for
the input image patch yk and the output image patch yf . C1, C2, and C3 are stabilization constants. If
the parameters α = β = γ = 1 (the default for exponents), and C3 = C2/2 (default selection of C3), the
simplified FSSIM index is obtained as follows:

FSSIM(yk, yf ) =
(
2μykμyf + C1

)
(2σykyk + C2)(

μ2yk + μ2yf + C1

) (
σ2yk + σ2yf + C2

) (9)

The obtained score at a certain pixel p is:

score(p) = SSIM(yk, yf ) (10)

Hence, the total loss is calculated as:

Loss = 1
N

∑
p∈P

score(p) (11)

where N be the number of the total pixels in an image and P be the group of all pixels in the input
image.

3.3 Image Enhancement

Image enhancement is a vital step for image preprocessing that it used to improve the image
quality. The image enhancement techniques are implemented to optimize the illumination and enhance
the features of the images. Different image enhancement techniques are applied in this paper to
adjust the image quality and preserve the image details. The enhancement techniques utilized are HE,
CLAHE, histogram matching, fuzzy enhancement, and fuzzy type �. HE is applied to adjust the
appearance of the image [30]. CLAHE is applied to medical images to increase the global contrast
[31,32]. Histogram matching is used to improve the poor images that are corrected according to
another image with good quality. Fuzzy technique and fuzzy type Type-II are applied to optimize
the image features [33–38].

4 Fusion Quality Evaluation Metrics

The detailed information is evaluated by the average gradient, entropy, edge intensity, quality
factor, standard deviation, local contrast, and PSNR. Visual inspection is considered one of the most
significant tools used for evaluation. The proposed model evaluation is calculated by using various
metrics.

5 Simulation Results and Comparative Study

The proposed model is evaluated by carrying out different simulation tests. The simulation
experiments are performed by Python programming language, the Keras with Tensor Flow backend
are involved in implementing the proposed CNN model, and the scikit-image library [27] for image
processing issues is also utilized. This model is carried out on NVIDIA GTX 1050 GPU.
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The proposed model has been applied to several image modalities [38], as illustrated in Fig. 8.
The Gaussian filtering method based on key-points registering is performed for the medical image
registration stage for all tested medical image datasets. Therefore, the resulting registered images
introduce a high matching between areas in the input images. This generates more details contained
in the fused image and increases the clarity of the image, as illustrated in Fig. 9.

Case 1 Case 2

Axial CT of the brain shows 
a left occipital cerebral 
hemorrhage on top of a 
vascular malformation.

Axial T2 weighted MR 
image of the brain of the 
same patient shows a left 

occipital cerebral 
hemorrhage on top of a 
vascular malformation. 

Axial T2 weighted MR 
image of the brain shows 

right cerebellar hemisphere 
hemorrhagic intra-axial 
space-occupying lesion. 

Axial CT of the brain of the 
same patient shows a right 

cerebellar hemisphere 
hemorrhagic intra-axial 
space-occupying lesion. 

Case 3 Case 4

Sagital MPR CT of the skull 
shows intact skull bones. 
The brain details are not 

visualized due to the image 
window presets.

Sagittal T1 weighted MR 
image of the brain of the 

same patient shows a frontal 
lobe cerebral hemorrhage 
which was not seen on CT 

image. 

Axial CT of the skull bones 
shows left temporal bone 

non-displaced fissure 
fracture. 

Axial T1 weighted MR 
image of the brain of the 
same patient shows the 

details of the intracranial 
structures. 

Case 5 Case 6

Axial T1 weighted MR 
image of the brain and 
paranasal sinuses show 

bilateral ethmoid sinusitis.

Axial CT of the paranasal 
sinuses of the same patient 

shows bilateral ethmoid 
sinusitis with intact sinus 

bone boundaries. 

Axial T2 weighted MR 
image of the brain shows 

normal brain structure with 
bilateral ethmoid sinusitis. 

Non-visualized osseous 
structures. 

Axial CT image of the brain 
and sinus of the same 
patient shows bilateral 

ethmoid sinusitis with clear 
visualization of the osseous 

structures. 
Case 7 Case 8

Axial T1 weighted MR 
image of the brain with 

intravenous contrast shows a 
normal brain with clear 

visualization of the normal 
vascular structures.

Axial T1 weighted MR 
image of the brain of the 

same patient without 
intravenous contrast shows 
normal brain parenchyma 

with non-visualized vascular 
structures. 

Axial T1 weighted MR 
image of the brain with 

intravenous contrast shows a 
left front-parietal-temporal 

irregular marginally 
enhanced intra-axial space-

occupying lesion. 

Axial T2 weighted MR 
image of the brain of the 
same patient shows a left 
front-parietal-temporal 

irregular intra-axial space-
occupying lesion 

Case 9 Case 10

Axial T1 weighted MR 
image of the brain shows the 
normal structure of the grey 

and white matter.

Axial T2 weighted MR 
image of the brain of the 
same patient shows the 

normal structure of the grey 
and white matter. 

Sagittal T1 weighted MR 
image of the brain shows 

normal brain structures with 
hyperintense superior sagittal 

sinus denoting its 
thrombosis. 

Sagital MPR CT of the 
brain with bone subtraction 
after intravenous contrast 

shows non-opacified 
superior sagittal sinus 

denoting its thrombosis. 

Figure 8: The utilized medical datasets of several cases
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Figure 9: The simulation subjective results of the proposed fusion approach in the case of without and
with employing the registration process

Tab. 1 introduces the evaluation performance between the tested different medical image cases
for the proposed model. To test the proposed medical image deep fusion approach, the effectiveness
of the proposed approach is compared to the performance of the traditional PCA, DWT, Curvelet,
NSCT, Fuzzy, SWT-based fusion techniques [20–25]. For example, the results are shown in Tab. 2 for
simplicity of the tested medical images case 1.

Table 1: Objective outcomes of the proposed medical image fusion model for the tested registered
medical images are presented in Fig. 8

Case No. Quality metric

Avg. G Local C STD Edge I E PSNR (dB) Qab/f

1 0.0383 0.5946 0.0008 0.3848 7.4087 15.008 0.2713
2 0.0348 0.5525 0.0011 0.3477 7.0604 17.09 0.1567
3 0.0268 0.5220 0.0013 0.2689 6.3145 18.509 0.2110
4 0.0314 0.5396 0.0009 0.3150 6.8316 16.213 0.1237
5 0.0151 0.7828 0.0005 0.1631 6.1918 17.790 0.0924
6 0.0160 0.4516 0.0012 0.1580 4.9389 18.723 0.0930
7 0.0221 0.6691 0.0007 0.2304 6.3059 19.356 0.1719
8 0.0174 0.4955 0.0009 0.1826 4.7790 19.602 0.1703
9 0.0237 0.5992 0.0009 0.2493 5.6987 19.220 0.2258
10 0.0140 0.4122 0.0011 01507 4.6879 15.602 0.1786
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Table 2: Simulation comparison results for the registered medical images of case 1

Quality
metric

Fuzzy [20] SWT [21] NSCT [22] PCA [23] DWT [24] Curvelet
[25]

Deep
fusion
(pro-
posed)

Avg. G 0.0341 0.0683 9.8019 0.0382 0.0639 0.0902 0.0383
Local C 0.6057 0.7474 0.6711 0.6650 0.7443 1.1792 0.5946
E 7.7824 7.7436 7.5815 7.5646 7.7377 7.6022 7.4087
PSNR (dB) 61.03 60.84 21.55 60.39 60.67 59.30 63.13

Subjective
results

To further evaluate the proposed medical image deep fusion approach on real medical image
datasets, the proposed approach is evaluated by real data collected from Medical Imaging and
Interventional Radiology department (MIIR) at Menoufia University, National Liver Centre in Egypt.
This real data consists of medical images with different imaging (MR and CT) techniques, as illustrated
in Fig. 10. Tab. 3 shows the evaluation metrics of the proposed medical image deep fusion approach
for each case and the fused image of the tested real medical data presented in Fig. 10.

Case #1 Case #2

Axial post IV contrast arterial 
phase CT image shows a right 
lobe hepatic hemangioma with 
marginal nodular enhancement

Axial non-contrast CT 
image of the same patient 
shows a right lobe hepatic 

hypodense lesion. 

Axial post IV contrast 
arterial phase CT image 
shows a left lobe hepatic 

hemangioma with marginal 
nodular enhancement. 

Axial non-contrast CT 
image of the same patient 

shows a left lobe 
hypodense hepatic lesion. 

Case #3 Case #4

Axial post IV contrast arterial 
phase CT image shows a right 

lobe hepatic malignant 
infiltrative ill-defined 
malignant lesion with 

arterioportal shunt and ascites.

Axial non-contrast CT 
image of the same patient 

shows right hepatic lobe ill-
defined hypodense area. 
Peritoneal free ascites. 

Axial post IV contrast port 
venous phase CT image 
shows the cirrhotic liver. 
Splenomegaly. Ascites. 

Axial post IV contrast 
delayed phase CT image of 
the same patient shows the 

same findings. 

Case #5

Axial non-contrast CT image shows liver cirrhosis with no 
focal lesions.

Axial post IV contrast port venous phase CT image of the 
same patient shows the same data. 

Figure 10: Real medical data with different modalities
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Table 3: Simulation objective and subjective results of the proposed medical image fusion approach
for the real medical data of tested registered images presented in Fig. 10

Quality metric Case #1 Case #2 Case #3 Case #4 Case #5

Avg. G 0.0250 0.0307 0.0312 0.0266 0.0263
Local C 05362 0.9332 0.5692 0.4659 0.5391
STD 0.0008 0.0010 0.0009 0.0011 0.0008
Edge I 0.2525 0.3159 0.3139 0.2643 0.2653
E 5.9078 6.9669 6.2627 5.8927 5.7934
PSNR (dB) 19.1232 16.005 17.6633 18.7013 15.8803
Qab/f 0.2466 0.1785 0.2263 0.1897 0.1955

Visual results

The results reveal that the proposed model is efficient. Compared to other models, the proposed
model achieves high performance. Also, the proposed model is recommended and efficient for real
medical data.

Several enhancement techniques are applied to the resulting fused images to adjust the illumina-
tion of the medical images. The results show that the performance of the proposed model is enhanced.
The performed enhancement techniques are HE, HM, CLAHE, fuzzy technique, and fuzzy type �.
The results clarify that the CLAHE and fuzzy technique are the best for medical image enhancement.
But from the visual representation, the fuzzy technique is the best. Tabs. 4–15 show the evaluation
metrics of the edge intensity, average gradient, and contrast of the enhancement techniques. Tabs. 16–
20 show the evaluation metrics of the edge intensity, average gradient, and contrast of the enhancement
techniques of the real cases.

Table 4: Evaluation metrics of the utilized enhancement techniques

Evaluation
of image 1

Without
enhancement

Fuzzy CLAHE Fuzzy type
�

HE Histogram
matching

Average
gradient

9.786 19.183 17.8542 0.0180 0.0627 8.481

Edge
intensity

98.14 192.003 174.99 0.1755 0.6270 0.4839

Contrast 0.5947 0.8193 0.7594 0.2483 0.6894 85.2153

Visual repre-
sentation
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Table 5: Evaluation metrics of the utilized enhancement techniques

Evaluation
of image 2

Without
enhancement

Fuzzy CLAHE Fuzzy type
�

HE HM

Average
gradient

8.864 17.73 16.981 0.0331 0.0623 5.7382

Edge
intensity

88.651 177.073 160.96 0.3144 0.61003 57.39

Contrast 0.5525 0.7281 .7549 0.3375 0.61503 0.3741

Visual repre-
sentation

Table 6: Evaluation metrics of the utilized enhancement techniques

Evaluation
of image 3

Without
enhancement

Fuzzy
technique

CLAHE Fuzzy type 2 HE HM

Average
gradient

6.839 14.423 12.0966 0.0154 0.0478 4.629

Edge
intensity

68.577 1.4576 1.1583 0.1391 0.4600 46.416

Contrast 0.5220 0.72880 0.6707 0.2422 0.6070 0.3641

Visual repre-
sentation

Table 7: Evaluation metrics of the utilized enhancement techniques

Evaluation
of image 4

Without
enhancement

Fuzzy
technique

CLAHE Fuzzy type 2 HE HM

Average
gradient

8.0152 16.196 15.491 0.020 0.0624 5.977

Edge
intensity

80.312 161,1 150.97 0.1958 0.609 59.890

Contrast 0.5395 0.741 0.7217 0.277 0.646 0.39

Visual repre-
sentation
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Table 8: Evaluation metrics of the utilized enhancement techniques

Evaluation
of image 5

Without
enhancement

Fuzzy
technique

CLAHE Fuzzy type
�

HE HM

Average
gradient

3.841 4.1646 7.22 0.03130 0.0332 4.824

Edge
intensity

41.598 45.453 76.44 6.038 0.3483 52.246

Contrast 0.782 0.9661 0.631 0.3375 0.491 0.320

Visual repre-
sentation

Table 9: Evaluation metrics of the utilized enhancement techniques

Evaluation
of image 6

Without
enhancement

Fuzzy
technique

CLAHE Fuzzy type
�

HE HM

Average
gradient

4.0705 8.372 8.1217 0.0093 0.0260 2.6502

Edge
intensity

40.287 81.6880 78.792 0.2346 0.2560 26.23

Contrast 0.4515 0.6400 0.575 0.0971 0.3550 0.18580

Visual repre-
sentation

Table 10: Evaluation metrics of the utilized enhancement techniques

Evaluation
of image 7

Without
enhancement

Fuzzy
technique

CLAHE Fuzzy type 2 HE HM

Average
gradient

5.633 7.157 11.139 0.03198 0.04888 5.492

Edge
intensity

58.76 75.0175 112.23 0.3287 0.488 57.283

Contrast 0.669 0.852 0.7111 0.4488 0.5875 0.3190

Visual repre-
sentation
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Table 11: Evaluation metrics of the utilized enhancement techniques

Evaluation
of image 8

Without
enhancement

Fuzzy
technique

CLAHE Fuzzy type
�

HE HM

Average
gradient

4.4299 6.5948 7.1383 0.0204 0.0309 3.3147

Edge
intensity

46.564 69.2781 73.168 0.2127 0.3064 34.8427

Contrast 0.495 0.656 0.565 0.3166 0.4145 0.2070

Visual repre-
sentation

Table 12: Evaluation metrics of the utilized enhancement techniques

Evaluation
of image 9

Without
enhancement

Fuzzy
technique

CLAHE Fuzzy type
�

HE HM

Average
gradient

6.051 9.6013 9.199 0.0251 0.0357 4.5974

Edge
intensity

63.566 100.5 94.540 0.263 0.3614 48.2917

Contrast 0.5992 0.7827 0.6274 0.3711 0.492 0.280

Visual repre-
sentation

Table 13: Evaluation metrics of the utilized enhancement techniques

Evaluation
of image 10

Without
enhancement

Fuzzy
technique

CLAHE Fuzzy type
�

HE HM

Average
gradient

3.5820 5.690 5.641 0.0147 0.0211 2.3695

Edge
intensity

38.432 60.659 58.507 0.1594 0.2099 25.423

Contrast 0.412 0.41224 0.481 0.2973 0.3212 0.1826

Visual repre-
sentation
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Table 14: Evaluation metrics of the utilized enhancement techniques

Evaluation
of image 11

Without
enhancement

Fuzzy
technique

CLAHE Fuzzy type
�

HE HM

Average
gradient

8.8294 15.1733 14.643 0.0324 0.0429 6.3136

Edge
intensity

91.4537 157.2546 148.07 0.3257 0.4390 65.395

Contrast 0.5681 0.7409 0.7164 0.3298 0.5287 0.3476

Visual repre-
sentation

Table 15: Evaluation metrics of the utilized enhancement techniques

Evaluation
of image 12

Without
enhancement

Fuzzy
technique

CLAHE Fuzzy type
�

HE HM

Average
gradient

5.3099 7.211 8.224 0.0274 0.0279 4.6070

Edge
intensity

55.357 74.923 83.696 0.2861 0.4502 48.029

Contrast 0.783 0.9252 0.663 0.585 0.2798 0.307

Visual repre-
sentation

Table 16: Evaluation metrics of the utilized enhancement techniques of the real cases

Evaluation
of image 1

Without
enhancement

Fuzzy
technique

CLAHE Fuzzy type
�

HE HM

Average
gradient

5.128 6.7494 9.870 0.074 0.045 9.548

Edge
intensity

55.7424 73.421 106.28 0.609 0.4856 23.235

Contrast 0.5117 0.6670 0.59211 0.2398 0.5242 0.4762

Visual repre-
sentation
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Table 17: Evaluation metrics of the utilized enhancement techniques of the real cases

Evaluation
of image 2

Without
enhancement

Fuzzy
technique

CLAHE Fuzzy type 2 HE HM

Average
gradient

6.172 9.8629 10.585 0.0640 0.035 10.3520

Edge
intensity

67.22 107.3 114.5 0.522 0.388 45.66

Contrast 0.464 0.631 0.5903 0.5435 0.4651 0.504

Visual repre-
sentation

Table 18: Evaluation metrics of the utilized enhancement techniques of the real cases

Evaluation
of image 3

Without
enhancement

Fuzzy
technique

CLAHE Fuzzy type
�

HE HM

Average
gradient

6.353 8.899 11.156 0.077 0.0446 4.7304

Edge
intensity

68.384 96.23 118.736 0.55522 0.473 51.4352

Contrast 0.5567 0.7297 0.611 0.4847 0.5227 0.28111

Visual repre-
sentation

Table 19: Evaluation metrics of the utilized enhancement techniques of the real cases

Evaluation
of image 4

Without
enhancement

Fuzzy
technique

CLAHE Fuzzy type
�

HE HM

Average
gradient

5.539 8.8843 11.09 0.0672 0.0428 3.221

Edge
intensity

59.675 95.9030 118.457 0.4754 0.4569 35.054

Contrast 0.4303 0.5747 0.6047 0.526234 0.4432 0.194

Visual repre-
sentation
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Table 20: Evaluation metrics of the utilized enhancement techniques of the real cases

Evaluation
of image 5

Without
enhancement

Fuzzy
technique

CLAHE Fuzzy type
�

HE HM

Average
gradient

5.283 7.2899 9.81618 0.06813 0.0431 4.064

Edge
intensity

57.098 78.816 105.44 0.5297 0.4633 44.32

Contrast 0.511 0.692 0.5914 0.3140 0.499 0.246

Visual repre-
sentation

After applying different enhancement techniques in the fused images, the results ensure that
the fuzzy and CLAHE are the best of used enhancement techniques. This is because the visual
representation of the images that result from the fuzzy technique is more obvious than the images
that result from CLAHE. Also, after applying different enhancement techniques in the resulting fused
images of the real cases, the results show that CLAHE and fuzzy are the best used enhancement
techniques.

6 Conclusions

This paper presented an efficient medical image fusion model based on a deep CNN framework
for different multi-modality medical images of standard and real medical data. The proposed model
depends on extracting the different features from CT and MR images. Then, an additional process is
executed on the extracted features. After that, the fused feature map is reconstructed to get the resulting
fused image. Finally, the quality of the resulting fused image is enhanced by various enhancement
techniques such as HM, HE, fuzzy technique, fuzzy type �, and CLAHE. Various metrics of the
fusion quality measure the performance of the proposed fusion-based CNN model. So, the proposed
medical image fusion approach has been evaluated by using several quality measures to demonstrate
its validity and effectiveness compared to traditional fusion techniques. The proposed medical image
deep fusion model has achieved high fusion performance. Several enhancement techniques are applied
to the standard and real medical fused images to enhance the image features.
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