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Abstract: It is necessary to know the status of adhesion conditions between
wheel and rail for efficient accelerating and decelerating of railroad vehicle.
The proper estimation of adhesion conditions and their real-time implemen-
tation is considered a challenge for scholars. In this paper, the development of
simulation model of extended Kalman filter (EKF) in MATLAB/Simulink is
presented to estimate various railway wheelset parameters in different contact
conditions of track. Due to concurrent in nature, the Xilinx~ System-on-Chip
Zynq Field Programmable Gate Array (FPGA) device is chosen to check the
onboard estimation of wheel-rail interaction parameters by using the National
Instruments (NI) myRIO" development board. The NI myRIO® development
board is flexible to deal with nonlinearities, uncertain changes, and fast-
changing dynamics in real-time occurring in wheel-rail contact conditions
during vehicle operation. The simulated dataset of the railway nonlinear
wheelset model is tested on FPGA-based EKF with different track conditions
and with accelerating and decelerating operations of the vehicle. The pro-
posed model-based estimation of railway wheelset parameters is synthesized
on FPGA and its simulation is carried out for functional verification on
FPGA. The obtained simulation results are aligned with the simulation results
obtained through MATLAB. To the best of our knowledge, this is the first
time study that presents the implementation of a model-based estimation of
railway wheelset parameters on FPGA and its functional verification. The
functional behavior of the FPGA-based estimator shows that these results are
the addition of current knowledge in the field of the railway.
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1 Introduction

From the sustainable development point of view in modern society, the mode of transport that
seems to be least harmful to the natural environment is railroad transport because it emits less carbon
dioxide, one of the causal agents of global warming as compared to its tonnage capacity than other
automobiles [1]. All around the world, a huge railway infrastructure is established and is being spread
more due to increased public demand for railway transport. But due to lack of system up-gradation and
knowledge of modern condition monitoring systems, the derailment events are being increased which
is a great concern. The dynamic performance of the entire rolling stock is controlled by the forces
generated between wheel and track [2], therefore the wheel-rail interaction area is a very important
part of rolling stock. Adhesion force is the transmitted tangential force between wheel and rail [3,4].

Therefore, it is necessary to estimate the contact forces and depending parameters. In [5,6], a
model-based method using EKF is offered to estimate the nonlinear forces between wheel and rail
interaction. However, the approach is not tested on all track conditions. In [7], data-driven technique
using particle swarm optimization (PSO) and kernel extreme learning machine (KELM) is presented
for identification of adhesion between wheel and track of heavy-haul locomotive. However, the
technique is only tested in normal adhesion condition, hence more research is required for estimation
of adhesion state in low adhesion conditions. Traction force is estimated in [8,9] by applying Kalman
filter to develop slip controller. However, the algorithm is not tested on all adhesion conditions. In
[10], adhesion conditions between wheels and rails are estimated by designing an observer for the
development of advanced braking control system. But the track irregularities and weather conditions
were not considered during the investigation. The comparison between theoretical and measured creep
curves is performed in [11] to estimate the impact on creep forces in wheel-rail interaction. However,
the creep curves for different types of contaminated rails not clear enough, so systematic work on the
influence of creep curves for all conditions is required. A lot of research is being carried out for the
estimation of wheel-track contact conditions mainly scholars use model-based techniques [12-15].

Many techniques are found during the literature review for accurate estimation of railway wheel-
rail contact conditions. But, no appropriate evidence is found for the implementation of estimation
scheme for wheelset parameter. In [16], the implementation of EKF on FPGA for state of charge (SOC)
estimation of a lithium-ion battery is presented. The sensor fusion for omnidirectional mechatronic
system using EKF is developed in [17] to estimate the position and orientation. The experimental
results are obtained on myRIO-1900 through LabVIEW. A system is developed in [18] to construct
variable-order fractional chaotic systems using LabVIEW for its implementation on the Xilinx FPGA
chip through myRI0-1900. But, EKF implementation on FPGA for wheel-rail contact conditions has
not been reported in the literature yet.

Therefore, in this paper, we extend the work reported in [19,20], by the implementation of the
extended Kalman filter algorithm on FPGA for estimation of different wheelset parameters by taking
all adhesion conditions and both vehicle operation modes of traction and braking. However, the
implementation of EKF on FPGA for the estimations needs several iterative matrix operations which
are very computationally expensive [21]. In meeting these requirements, the computer-based National
Instruments myRIO" development platform is selected. It uses some high-throughput arithmetic
functions, an Advanced extensible Interface (AXI-4 Stream interface), and handshaking protocol to
manage the computation effectively and efficiently [22]. The novelty of this work is to present the

e implementation of the extended Kalman filter based model estimator for railway wheelset
parameters estimation and its hardware synthesize in Xilinx System-on-Chip Zynq FPGA
device using NI myRIO" platform and computation of the chip-area utilization.
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e comparison of the MATLAB and FPGA simulation results for functional verification of
railway parameter estimations in dry, wet, greasy, and extremely slippery as well as switching of
track conditions from normal to very slippery conditions and vice versa.

The rest of the paper is organized as follows. The estimator design is described in Section 2, while
in Section 3 EKF implementation on FPGA is presented. In Section 4, FPGA results are shown and
the conclusion and future work is discussed in Section 5.

2 Estimator Design for Railway Wheelset Parameters

Many research scholars used model-based estimation techniques by applying simple Kalman filter
to estimate the parameters of railway wheelset [2,8,9,23,24]. But, a single Kalman filter, due to the
nonlinear behavior of railway dynamics, is not suitable for wheel-track interaction system. Therefore, a
model-based approach using EKF is used to estimate wheelset parameters. The EKF does linearization
in current mean and covariance by evaluating Jacobian matrices and their partial derivatives. The block
diagram of EKF with wheelset model is shown in Fig. 1.

Track lllf.lurhaure;' (/4 Measurements

A\ an Vet
Wheelset

EKF
Algorithm

Predicted measurements

Extended
Kalman
Filter Model

Predicted states

—
Estimated states

Figure 1: Block diagram of EKF and wheelset model

The EKF algorithm is developed by using the nonlinear wheelset model available in [20]. By using
lateral and yaw motion equations of railway wheelset, Eq. (1) is furnished for the development of EKF.
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The key purpose of this section is to design a novel scheme to identify the variations in wheel-track
interaction conditions, so yaw and lateral dynamics are enough to identify these variations. Hence,
longitudinal dynamics are ignored in Eq. (1).
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The first step of the EKF algorithm is time update or prediction and the second step is
measurement update or correct [25] as shown in Fig. 2.

Time Update (Predict)

asurement Update (Correct)

1. Compute the Kalman gain

1. Project the state ahead Ki = Py HI (HyPy HI+ ViRV )
Re=f(Rg-1, Uy, 0) 2. Update estimate with measurement z;
2. Project the error covariance ahead X =%+ Ke(z— h(zg ,0)
Pp = AxPraAL + WiQuaWy! 3. Update error covariance

Initial estimates l!r £y-y and Py

Py = (- KiHoPy

Figure 2: A complete picture of the operation of the extended Kalman filter

where f and £ are nonlinear functions concerning the states of process and measurement respectively,

and A4, = L |%,, w, k and H, =

EKF algorithm.

A

X, uy, k. Further, Tab. 1 gives detail about the terms used in the

Table 1: Terms used in the EKF algorithm

Description

Ky
m’y

Discretized a-priori estimated process
Discretized a-postriori estimated process
A-priori estimate error of process covariance
An estimate error of measurement covariance
Jacobian matrix of process matrix

Jacobian matrix of measurement matrix
Noise covariance of process matrix

Noise covariance of measurement matrix
Kalman gain

Measured output

To make the state matrix x of the EKF algorithm, the variables given in (2) e.g., velocity in lateral
direction (y), yaw rate (W), slip ratio (y), friction coefficient (1), and adhesion force (F,) are taken and
for measurement matrix m, the variables e.g., lateral acceleration and yaw rate are used [20].

x=[p ¥ y u E]'m=[p 9] )

The process variables used in (2) are continuous being driven from the nonlinear wheelset model,
however, the EKF algorithm is discrete, so by using the Forward Euler method, these continuous
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variables are discretized [26] as in Egs. (3) to (7) [20].
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The Jacobian matrix of process matrix x, = | v, | is
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And the Jacobian matrix of the measurement matrix m, = |:)$ ] is[19]
k
ohl(m), 0ohl(m), 0ohl(m), 0dhl(m), dhl(m),
H— Y, AV AV U, oF, )
k= oh2(m), 0h2(m), oh2(m), 0h2(m), dh2(m),
ay, W, 37s AU, aF,

The detail of the parameters used in the EKF design for wheelset parameter estimation is shown
in Tab. 2.
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Table 2: Variables used in EKF design for wheelset parameter estimation [20]

No.  Notation Description Value

1 y Slip ratio

2 I, Radius of wheel 0.5 meter
3 L, Track half gauge 0.75 meter
4 Ay Wheel conicity 0.15 rad
5 v Longitudinal velocity of vehicle

6 Y Motion in lateral direction meter

7 \ Rail irregularities in lateral direction meter

8 v Yaw angle radians

9 F, Adhesion force

10 I, Yaw moment of inertia of wheelset 700 kgm?
11 K, Yaw stiffness 5 x 10° N//rad
12 m,, Wheel weight with induction motor 1250 kg
13 T Forward Euler discretizing step size

14 U, Highest friction coefficient at no slip velocity

15 A Friction coefficient ratio at infinity slip velocity to u,

16 B Coefficient of exponential friction decrease

17 N Normal force

18 ka Reduction factor around adhesion

19 ks Reduction factor in a slip

20 a,b Half-axes of contact ellipse

21 c Coefficient of contact shear stiffness

The offered estimation approach illustrated in Fig. 1 is designed in Simulink for simulation [26].
MATLAB Function tool of Simulink version 9.1 is used to develop and verify the EKF algorithm
with 50 microseconds fixed step size. The initial velocity in forward direction is set at 5m/s and the
vehicle is operated in accelerating and decelerating modes. For exciting lateral dynamics, an input of
random track disturbance having +8 mm amplitude is applied to the model in lateral direction.

Simulations in five different adhesion conditions are carried out for 25 s in traction mode and for
25 s in braking mode of the vehicle. The EKF is found a valid estimation technique for all adhesion
conditions to estimate wheelset parameters in both operation modes of accelerating and decelerating.
During simulation, the strength of the algorithm is also tested in the switching of track conditions
from normal to very slippery and vice-versa. Therefore, the proposed model can now be implemented
on FPGA for condition monitoring of rolling stock.

3 FPGA Implementation of EKF

The main objective of this research is to create a novel model-based method to identify variations
in wheel-rail interaction conditions with real-time implementation on FPGA. The Block diagram of
the complete proposed model is shown in Fig. 3. As this research work comprising on simulation
through MATLAB and its implementation on FPGA. The first part of the proposed model is a railway
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wheelset modeled in MATLAB available in [20]. The second part is the EKF algorithm designed in
MATLAB and described in Section 2, while the last part of the proposed model is explained in this

section.
Traction
Motor
Axle Gear box

Traction torque

Ineretial
Sensors

A MATLAB-based

Extended Kalman
Filter Model
MATLAB-based Simulation I

FPGA-based
System
Development

|, Estimator Design y

Figure 3: Block diagram of the complete proposed model

The EKF designed for railway wheelset parameter estimation is implemented on myRIO Zynq
FPGA through LabVIEW [17,18]. The National Instruments myRIO" is a computer-based real-time
embedded evaluation board developed with a dual core Advanced RISC Machine (ARM) processor
and an Artix-7 FPGA chip incorporating onboard memory and have a Universal Serial Bus (USB)
port to connect host Personal Computer (PC) [22]. It requires LabVIEW software a system-design
platform and a development environment from National Instruments. The overall system partitioning
of myRIO and system portioning in FPGA device are illustrated in Fig. 4. The functional block
diagram of Fig. 5 shows the operation flow in myRIO. The dataset of the wheelset model extracted
from MATLAB is saved on Solid state drives (SSD) which is read by the Real time (RT) using File
Input/output (I/0). The dataset is parsed and streamed to FPGA using DMA-FIFO (AXI-4 Stream
interface).

ZynQ-FPGA (Artix-7)

myRIO
ZynQ-FPGA (Artix-7)

ARM Processor-RT

DMA-FIFO

High-speed data transfer EKF
Core
design

"‘*"’m‘ m Messurament
Block Block Update Blok

(a) (b)
Figure 4: (a) System partitioning of myRIO and (b) System partitioning in Zynq-FPGA device

EKF implementation in
LabVIEW FPGA as an IP

Wheelset Model using
Simulink kind blocks
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The FPGA has 04 main cores i.e., internal calculation, process Jacobian matrix, measurement
Jacobian matrix, and time/measurement update. To optimize resource utilization, each core uses
shared multiplication blocks using arbiter. After the synthesize of the proposed model as shown in
Fig. 5 the chip-area utilization on the Zynq FPGA device is given in Tab. 3.

Processing System FPGA (Artix -7)
{PS) (Linux-RT) Clock Driven Logic @ 40MHz
F FIF
- Internal — Jacobian 0 Jacobian
File 11O : Calc > —fll> —» PFrocess Matrix [—» > —» Measurement Matrix
(Wneel Model Rlcchations Core Core
Dataset) -
A DMA FIFO i l
AXI-4
Stream Bus Arbiter
EKF Initialization . Shared
v Arithmetic)
Nethwork
Stream —
nterface FIFO
T L Time Update
| Z <l = Core
TCPAP
PC Host

Rasults Display
& Log

Figure 5: Functional flow diagram of myRIO

Table 3: Resource utilization

Resource Available  Used Utilization (%)
Total slices 4400 4400 100

Slice registers 35200 16315 46.3

Slice LUTs 17600 15902 90.4

Block RAMs 60 43 71.7

DSP48s 80 33 41.2

The explanation of EKF implementation on FPGA through NI myRIO-1900 board is given in
Fig. 6.

4 FPGA Results

The functional behavior of FPGA implemented EKF is analyzed in different conditions (e.g., dry,
wet, greasy, extremely slippery). The most important wheelset parameters i.e., adhesion coefficient,
slip ratio, and yaw rate are investigated because the dynamics of entire railway vehicle depend on these
parameters. The FPGA model is also tested when the track condition is changed abruptly from dry
to extremely slippery conditions. The traction and braking operation modes of railroad vehicle are
used. The step size of the entire system is set at 50 microseconds, which means 1000000 samples in
50 s are implemented on FPGA Zynq device for each scenario. As the Xilinx Zynq chip frequency is
40 MHz, which is much more than the input changes frequency. Furthermore, the complete Simulink
model in Fig. 7 illustrates how track conditions change. In Simulink model, Polach parameters [20]
for each track conditions are changed through multi-port switches by controlling input feed from stair
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generator. Input 1 from stair generator is set for dry condition, inputs 2 for wet, 3 for greasy and 4 for
extremely slippery condition are set.

Extended Kalman filter
on Xilinx Zynq uses
fixed-pomt data type.

The entire implementation is done in
LabVIEW FPGA: A software add-on for LabVIEW FPGA uses high-level
LabVIEW that can be used to design synthesis tools (HLS) from Xilinx to
more efficiently and effectively FPGA- compile a bit file from LabVIEW
based systems through a highly FPGA Virtual Instrument (VI).
integrated development environment.

In LabVIEW FPGA, native LV-FPGA blocks and some high-throughput
arithmetic functions are used to perform the complex computation. [:Z“'".._,,."?..""*‘

Some portion of anthmetic l:omptmmon from VHDL is imported as IP. Because e
some arithmetic sections such as inverse tangent, and square root cannot be P
____implemented through native LabVIEW FPGA blocks. These IP cores have been Bri T
"] implemented in VHDL and are imported inside the LabVIEW FPGA section.

Handshaking protocol is used to synchronize —
multiple IP blocks. ———

The entire EKF is developed on a clock-driven core, which means on each ™
/,./—“"“’j clock cycle, the node returns some results of computation. —

To synchronize multiple nodes, a handshaking protocol is used between
nodes. The mput node provides a data vahd, trigger to the successive nodes —
and they in turn return the same to the previous loop. —————,

FPGA scoped FIFO is used to transfer data between multiple blocks. FPGA <
scoped FIFO is a LabVIEW related term, it means a FIFO buffer based on p——_
BRAM (or flip flops) 1s used to pass data between multiple algorithm blocks
inside the FPGA.

Figure 6: Flowchart explaining EKF implementation on FPGA through NI myRIO

4.1 Dry Condition Implementing Results

The dry track condition or the normal adhesion condition of wheel-rail contact is analyzed in
25 s of traction mode and 25 s of braking mode of the vehicle. In the simulation model of the railway
wheelset, the exerted torque and linear velocity of the vehicle are given in Fig. 8.

The functional verification of adhesion coefficient of FPGA-based EKF is done as shown in
Fig. 9. FPGA-based EKF response follows the adhesion coefficient of the wheelset model, but the
error on sharp transition is comparatively high. However, the root mean square (RMS) of error
(0.0401) is small as compared to the RMS of estimated adhesion coefficient (0.3613), which becomes
about 11%. FPGA-based EKF estimates the slip ratio, but little error is shown in Fig. 10. Again, the
RMS of error (6.4204e-04) is small as compared to the RMS of estimated actual slip ratio (0.0057),
which is nearly 11%. The main reason of high errors is possibly due to high rate of velocity. In Fig. 11
yaw rate is estimated successfully by FPGA based estimator, but oscillations are generated because of
variation in tractive torque and random rail disturbance in the lateral direction.
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Figure 8: Tractive torque (top) and changing linear velocity (bottom) in normal condition of wheel-
track contact
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Figure 9: Dry condition adhesion coefficient of FPGA-based EKF in comparison with the adhesion
coefficient of wheelset model
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Figure 10: Dry condition slip ratio of FPGA-based EKF in comparison with the slip ratio of wheelset
model



3362 CMC, 2023, vol.74, no.2

0.09 T T T T T T T I 1
—— Estimated yaw rate
i === Wheelset yaw rate
0.06 - |I I Yaw rate Error o
|
i
o-os — i | -
¢ [
p. 1
g 411!
(1] ;
3
$
-0.03 -
-0.06 | | .
|
.0.09 | I | | | 1 | 1
o 5 10 15 20 25 30 35 40 45 50

Time (Seconds)

Figure 11: Dry condition yaw rate of FPGA-based EKF in comparison with the yaw ratio of wheelset
model

4.2 Wet Condition Implementing Results

Due to dew or light rain on the railway track, the contaminated track becomes wet which decreases
adhesion coefficient below that of a dry track [27]. Wet condition estimating parameters of FPGA-
based EKF in comparison with simulated wheelset parameters are shown in Fig. 12. The FPGA-based
response is found robust in both vehicle operation modes of traction and braking.

4.3 Greasy Condition Implementing Results

Oils on railway tracks due to any reason in minute quantity are found a complex mixture of
contaminants and become the reason for adhesion level reduction [28]. The FPGA-based estimator
also estimates the adhesion coefficient, slip ratio, and yaw rate in oily track condition for both traction
and braking modes as shown in Fig. 13.

4.4 Extremely Slippery Condition Implementing Results

Extremely low adhesion levels between the wheel and rail may be found due to all or some weather
conditions, local environmental and industrial conditions (e.g., leaf contamination, snow, rain, oil
spills, industrial pollution). In extremely slippery condition, the FPGA-based estimator is also fit for
the estimation of adhesion coefficient, slip ratio, and yaw rate as illustrated in Fig. 14.
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Figure 12: Wet condition adhesion coefficient (top), slip ratio (middle), and yaw rate (bottom) of
FPGA-based EKF in comparison with the simulation parameters of the wheelset model
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Figure 13: (Continued)
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Figure 13: Greasy condition adhesion coefficient (top), slip ratio (middle) and yaw rate (bottom) of
FPGA-based EKF in comparison with the simulation parameters of wheelset model
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Figure 14: Extremely slippery condition adhesion coefficient (top), slip ratio (middle) and yaw rate
(bottom) of FPGA-based EKF in comparison with the simulation parameters of wheelset model

4.5 Switching from Normal to Extremely Slippery Conditions and Vice Versa

FPGA-based EKF response follows the adhesion coefficient of the wheelset model, but the error
in starting and ending is comparatively high. Higher error is due to complex scenario i.e., vehicle is
operated in operation modes of traction and braking and adhesion condition changes after every 6.25 s
from better (dry) condition to worst (extremely slippery) condition as shown in Fig. 15. However, the
RMS of error (0.0346) is not high as compared to RMS of estimated adhesion coefficient (0.1885),
which becomes about 18%. In the complex scenario, slip ratio and yaw rate of FPGA-based EKF give
an excellent performance as shown in Fig. 16.
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Figure 15: All track conditions adhesion coefficient of FPGA-based EKF in comparison with the
adhesion coefficient of wheelset model
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Figure 16: (Continued)
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Figure 16: All track conditions slip ratio (top) and yaw rate (bottom) of FPGA-based EKF in
comparison with the slip ratio and yaw rate of wheelset model

As shown in Figs. 9 to 16 the FPGA-based EKF is an effective estimation approach to estimate
wheelset parameters in operation modes of accelerating and decelerating.

To statistically evaluate the functional behavior of the FPGA-based estimator, the RMSs of
estimating error and FPGA-based estimator are calculated with percentage. The RMS calculation
with percentage for the estimation of all track conditions is given in Tab. 4.

Table 4: RMS Percentage of estimating error

Track Adhesion coefficient Slip ratio Yaw rate (rad/sec)
condition
FPGA ERROR ERROR  FPGA ERROR ERROR  FPGA ERROR ERROR
RMS RMS RMS RMS RMS RMS RMS RMS RMS
(%AGE) (“AGE) (“%AGE)
Dry 0.3613 0.0401 11.09 0.0057 6.4204¢-04 11.26 0.0061 6.8146¢-05 1.123
Wet 0.2637 0.006 2.284 0.0272 6.6920e-04 2.462 6.5462¢-04 2.3712e-05 3.622
Greasy 0.1699 0.0073 4.297 0.0292 6.6963e-04 2.296 4.6208e-04 2.2914e-05 4.958
Extremely 0.0847 0.0053 6.23 0.0343 6.7020e-04 1.954 2.9909¢-04 2.2486e-05 7.518
Slippery
Track 0.1885 0.0346 18.35 0.048 6.6382¢-04 1.383 0.0038 4.9813e-05 1.306
Transition

It can be seen that the percentages of error RMS validate the efficiency of the estimator.
Therefore, implementation and functionally verification of extended Kalman filter on FPGA is a novel
contribution to railway and these results are a value-addition to the current knowledge available in the
literature.

5 Conclusion and Future Work

In this paper, an estimator based on EKF is designed in Simulink to estimate nonlinear wheelset
parameters. Then it is implemented on FPGA Xilinx Zynq chip built-in on computer-based national
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instrument board myRIO by using LabVIEW software. The functional verification of the FPGA-
based estimator is done by analyzing different wheelset parameters effectively in all adhesion condi-
tions. The FPGA estimator not only demonstrated robust results at the constant velocity of railroad
vehicle on a dry track but equally showed excellent results in operation modes of accelerating and
decelerating in wet, oily, and very slippery track conditions. The strength of EKF developed in FPGA is
also tested in the switching of track conditions from normal to very slippery conditions and vice-versa
during vehicle operation. The FPGA-based extended Kalman filter is also evaluated and validated
statistically by calculating the RMSs of estimating error and the response of FPGA synthesized
estimator. These results confirm that the nonlinear wheelset parameters estimator is realizable onboard
with state-of-the-art system-on-chip small devices. To the best of our knowledge, implementation of the
extended Kalman filter based estimator and its functional verification on FPGA is the very first time
reported. These results are a new addition to the existing knowledge of railway condition monitoring
systems approaches.

However, FPGA chip resource utilization is considerably high. Point to the future is to possibly do
modifications in existing design to improve the performance in terms of reducing the estimating error
and resource utilization. More work is required to obtain the optimum solution for Area-Performance-
Power analysis of FPGA devices by adding constraint or selecting developing an Application Specific
Integrated Chip.
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