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Abstract: Hyperspectral remote sensing/imaging spectroscopy is a novel
approach to reaching a spectrum from all the places of a huge array of spatial
places so that several spectral wavelengths are utilized for making coherent
images. Hyperspectral remote sensing contains acquisition of digital images
from several narrow, contiguous spectral bands throughout the visible, Ther-
mal Infrared (TIR), Near Infrared (NIR), and Mid-Infrared (MIR) regions
of the electromagnetic spectrum. In order to the application of agricultural
regions, remote sensing approaches are studied and executed to their benefit
of continuous and quantitative monitoring. Particularly, hyperspectral images
(HSI) are considered the precise for agriculture as they can offer chemical and
physical data on vegetation. With this motivation, this article presents a novel
Hurricane Optimization Algorithm with Deep Transfer Learning Driven
Crop Classification (HOADTL-CC) model on Hyperspectral Remote Sensing
Images. The presented HOADTL-CC model focuses on the identification and
categorization of crops on hyperspectral remote sensing images. To accom-
plish this, the presented HOADTL-CC model involves the design of HOA with
capsule network (CapsNet) model for generating a set of useful feature vectors.
Besides, Elman neural network (ENN) model is applied to allot proper class
labels into the input HSI. Finally, glowworm swarm optimization (GSO)
algorithm is exploited to fine tune the ENN parameters involved in this article.
The experimental result scrutiny of the HOADTL-CC method can be tested
with the help of benchmark dataset and the results are assessed under distinct
aspects. Extensive comparative studies stated the enhanced performance of
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the HOADTL-CC model over recent approaches with maximum accuracy of
99.51%.

Keywords: Hyperspectral images; remote sensing; deep learning; hurricane
optimization algorithm; crop classification; parameter tuning

1 Introduction

With the technological advancement in remote sensing image (RSI) acquisition mechanism
and the greater accessibility of rich spatial and spectral datasets through a collection of sensors,
hyperspectral imaging technique has become increasingly important. Particularly, Hyperspectral
Image (HSI) classification has become a great source for real-time application in fields such as forestry,
environment, mineral mapping, agriculture, and so on [1]. HSI classification (assigning all the pixels to
one specific class depending upon their spectral features) was a most active research topic in the HSI
and attracted considerable attention in the remote sensing fields [2]. In HSI classification task, there
are 2 major challenges one is the limited available training samples against the high dimensionalities of
hyperspectral data and another one is the large spatial variability of spectral signs. Initially, it is often
brought by several components including variations in environmental, illumination, temporal, and
atmospheric conditions [3]. Next, it results in ill posed problems for certain techniques and minimizes
the generalizing capability of classification.

Conventional technique obtains crop classification outcomes by using field investigation, statis-
tics, and measurement, which are money-consuming, time-taking, and labor-consuming [4]. Remote
sensing technique advanced by bounds and leaps, timeliness and resolution of RSI has been developed,
and hyperspectral remote sensing information is extensively applied [5,6]. In particular, hyperspectral
information plays a significant role in agricultural surveys and is utilized for agricultural yield
estimation, pest monitoring, crop condition monitoring, etc. In agriculture surveys, the fine classifying
of HIS provide the data on crop distribution [7]. Fine classifying of crop needs image with higher
spectral and spatial resolution. In recent times, as a significant part of machine learning, deep learning
(DL) has gained considerable attention as a result of its stronger abilities in feature extraction and
analysis [8]. By extracting features of the input dataset from the bottom to the top of the networks,
DL model forms the higher-level abstract feature appropriate for pattern categorization [9].

Out of several DL methods, a convolutional neural network (CNN) contains a comparatively
smaller amount of weights due to sharing weights and local connections [10]. A quantity of DL
structures was suggested and admired by neuro-science researchers. The CNN is regarded as an
unusual case of deep neural networks (DNN) which are advanced for processing images but also
utilized for other kinds of data such as audio [11]. It could scan multi-dimensional input piece-by-piece
with a convolutional window that means a neuron set having typical weights. The output respective
to single convolutional window was known as a feature map and was taken as a map of activities of
a provided feature over entire inputs [12]. The CNN serves as one such most famous architectures for
DLNN categorization in recent times.

This article presents a novel Hurricane Optimization Algorithm with Deep Transfer Learning
Driven Crop Classification (HOADTL-CC) model on Hyperspectral RSIs. The presented HOADTL-
CC model uses HOA with capsule network (CapsNet) model for generating useful feature vectors
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set. Moreover, Elman neural network (ENN) model is applied to allot proper class labels into the
input HSI. Lastly, glowworm swarm optimization (GSO) algorithm is exploited to fine tune the ENN
parameters involved in this paper. The experimental result examination of the HOADTL-CC approach
can be tested with the use of a benchmark dataset.

2 Literature Review

Bhosle et al. [13] examine an estimation of CNN for crop classifier utilizing the Indian Pines
standard dataset attained in the AVIRIS sensor and the research region dataset reached in the EO-
1hyperion sensor. An optimization CNN was adapted by training the method on distinct parameters.
It is related to 2 classifier techniques such as DNN and Convolutional Auto-encoder (AE). The author
[14] utilizes a new 3D deep CNN (DCNN) technique which directly integrates the hyperspectral infor-
mation. Besides, the authors examine the learned method for producing physiologically meaningful
clarifications. The authors concentrate on an economically vital disease, charcoal rot that is a soil borne
fungal disease which affected the yield of soybean crops worldwide. In [15], the morphological profiles,
GLCM texture, and endmember abundance features were leveraged for exploiting the spatial data of
HSI. Afterward, several spatial data were fused with original spectral data for generating classifier
outcomes by utilizing the DNN with conditional random field (DNN+CRF) approach. Especially,
the DNN is a deep detection method that is extracting depth features and mine the potential data.
As a discriminant method, the CRF assumes both spatial as well as contextual data for reducing the
misclassified noises while holding the object boundary.

In [16], the authors provide a distinct viewpoint on solving the hyperspectral pixel-level classifier
tasks. The recent approaches employ difficult methods for this task, however, the efficacy of these
approaches is frequently ignored. According to this observation, the authors present an effectual small
method for spectral-spatial classifier on HSIs dependent upon a single gated recurrent unit (GRU).
During this method, an essential GRU is learned spectral correlation in an entire spectrum input, and
spatial data are fused as the primary hidden state of GRU. Han et al. [17] present minimum redundancy
and maximum relevance (mRMR) FS approach for directly choosing important raw bands in HSIs.
Besides, a DNN was offered for classifying the hyperspectral information with decreased dimensional
that contains CNN than a fully connected network (FCN). In [18], a quick and non-destructive
approach utilizing HSI coupled with DL classifier has been executed to the quality estimate of
unblanched kernel from Canarium indicum classified by peroxide value (PV). The group of 2300 sub-
images of 289 C. indicum instances was utilized for training a CNN for estimating quality level.

3 The Proposed Model

In this study, a new HOADTL-CC approach was advanced for the identification and catego-
rization of crops on the hyperspectral RSIs. The proposed HOADTL-CC model incorporates a
series of processes namely CapsNet feature extractor, HOA based hyperparameter optimizer, ENN
classification, and GSO based parameter optimization. Here, the GSO algorithm is exploited to fine
tune the ENN parameters involved in this study. Fig. 1 depicts the block diagram of HOADTL-CC
approach.
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Figure 1: Block diagram of HOADTL-CC approach

3.1 Feature Extraction

In this study, the CapsNet model is used to generate a set of useful feature vectors. A CapsNet is
a new form of CNN which aims at providing data regarding the presence or spatial relationships of
features (scales, locations, orientations, brightness, and so on.) in an image [19]. The basis of network
depends on the addition of concept named “capsules”. A capsule is a set of neurons that include
probability of certain object presence and useful value related to instantiation parameters including
pose, rotation, slope, posture, direction, position, scale, and thickness. Different from CNN modules
such as convolution and pooling that cause data loss, capsules can able to hold further details.

Fig. 2 depicts the structure of CapsNet method. The novelty in CapsNets is the “routing by
agreement” concept that can be replaced by pooling. Based on these concepts, output is transferred to
each parent capsule in the next layer, but the coupling coefficient is not the same. All the capsules try
to evaluate the output of parental capsule, and if this estimate matches the original output of parental
capsule, the coupling coefficients among the two capsules rise. Consider ui as the output of ith capsules,
their prediction for jth parental capsules are evaluated by

ûj|i = Wijui (1)
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In Eq. (1), ûj|i refers to the predictive vector of the output of j-th capsules at a high level calculated
using i-th capsules, and Wij denotes the weighting matrix that should be learned in the backward pass.
According to the degree of confirmation among the capsules and the parental capsules, cij coupling
coefficient is evaluated by the subsequent softmax function

cij = exp
(
bij

)
�k exp

(
bij

) (2)

In Eq. (2), bij represents the log likelihood that capsule i needs to be combined with jth capsules
and set to zero. Therefore, the input vector to parental capsule j is calculated by using the Eq. (3)

sj =
∑

i
aj · ûj|i (3)

At last, the no-linear squashing function is utilized for preventing the output vector of capsule
from above one and form the last output of every capsule as follows

θj = ‖sj||2

1 + ‖sj‖2

sj

‖sj‖ (4)

The new framework accomplishes considerably better, current performance accuracy with
MNIST dataset.

Figure 2: Structure of CapsNet

To summarize the capsule network process, the capsule determines the feature parameter in certain
objects. In the object identification process, capsule determines the absence or presence of an object
and considers the corresponding parameter, where the object feature is organized. This implies the
method identifies the object once the feature identified by capsule is existing in the correct sequence.
The working process of the capsule is given below:

• Initially, capsule proceeds with the matrix multiplication of input vector with weight matrix that
characterize the spatial relationship of lower-level feature with higher-level feature;

• Capsule decides the parental capsules. This can be accomplished by the dynamic routing algo-
rithm. For instance, the system tries to identify an image of a house from diverse perspectives.
Capsule extracts the data regarding the walls and roof, but this doesn’t mean any roof can be
a house. As a result, the capsule analyzes the reliable part in the image. To decide whether the
object is a house (or else), prediction is made by using roofs and walls. Such predictions are
later transferred to the high-level capsules. Once the prediction is right, the object is allocated
as a house;

• Afterward the parent capsule decision, the process proceeds by summing each vector eventually
squashed to 0 and 1 while preserving the direction. Squashing can be done by norm calculation
as the probability of presence and cosine distance as a degree of agreement.
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3.2 HOA Based Parameter Tuning

To adjust the hyperparameters [20–22] indulged in the CapsNet model, the HOA was utilized.
The HOA follows the communication of the natural forces of hurricanes and wind parcels initiate
there, making them for moving nearby the distinct regions of hurricane [23]. The HOA work with
primary population collected by wind parcels arbitrarily distributed from the hurricane, this permits
the technique for starting with their exploration as well as exploitation procedures from the solution
spaces. A primary population of wind parcels gets the infrastructure demonstrated in Eq. (5):

Pt =

⎡
⎢⎢⎢⎣

pt
11 pt

12 · · · pt
1Nv

pt
21 pt

22 · · · pt
2Nv

...
...

. . .
...

pt
Ni1

pt
Ni2

· · · pt
Ni ,Nv

⎤
⎥⎥⎥⎦ (5)

whereas Pt refers the wind parcels population from the iteration t, if t = 0 the primary population
of individuals is attained. Ni signifies the amount of wind parcels (individuals) and Nv denotes the
amount of variables or the dimensional of solution spaces, conversely, the amount of parameters of a
single phase transformer.

For creating the primary population of individuals it can be utilized in Eq. (6) that creates a matrix
of arbitrary numbers in the upper as well as lower limits which comprises feasible solution to problem
in this case.

P0 = yminones (Ni, Nv) + (
ymax − ymin

)
rand (Ni, Nv) (6)

whereas ones (Ni, Nv) ∈ R
Ni×Nv implies the all-ones matrix. rand (Ni, Nv) ∈ R

Ni×Nv indicates the all-
random numbers matrix in [0, 1] created in a normal distribution. At last, ymin ∈ R

dim×1yymax ∈ R
Nv×1

were vectors which signify the upper as well as lower limits of solution spaces. Because of the
communication of wind parcels with natural force of hurricanes, it can be displaced from its primary
point to distinct point of solution spaces. This movement is demonstrated mathematically in 2 distinct
approaches because of rotation offered by hurricane winds as demonstrated in Eqs. (7) and (8).

Pt+1
i =

{
rt

isin
(
φ0

i + φt
i

) + Pt
HE r1 < 0.5

rt
icos

(
φ0

i + φt
i

) + Pt
HE r1 ≥ 0.5

(7)

rt
i = R0exp

(
r2φ

t
i

)
(8)

In which Pt+1
i signifies the novel place of wind parcels i if the evolution condition of the technique

was executed, being i = 1, 2, . . . , Ni.

The parameter r1 are an arbitrary variable amongst zero and one that ensures the equity of
commuting among the sine and cosine trigonometric functions referred to in Eq. (7). φ0

i implies the
primary angular co-ordinate of wind parcels i that gets arbitrary values amongst [0, 2π ]. Pt

HE denotes
the hurricane eye from the iteration t. rt

i and φt
i signifies the radial and angular coordinates from polar

representation correspondingly. In Eq. (8) if t = 0, φt
i is an all-zeros vector, where rt

i is obtain the value
of R0. Being R0 the radius of hurricane eye that gets the value of 1 × 10−5. Eventually, r2 demonstrates
the arbitrary number amongst zero and one. While the wind parcel Pt+1

i requires the velocity for starting
move and keep in the movement, it can be assumed that change rate from the angular displacement
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(angular velocity) summed to their angular co-ordinate φt
i , as depicted in Eq. (9).

φt+1
i =

⎧⎨
⎩

φt
i + w rt

i ≤ Rmax

φt
i + w

(
Rmax

rt
i

)r3

rt
i > Rmax

(9)

whereas, w represents the angular velocity that is considered constant with value of
π

10
and Rmax is the

radius whereas the maximal wind velocity was established that is obtained as 0.2. Lastly, r3 signifies the
arbitrary value amongst zero and one. For making the solutions possible, novel places of wind parcels
produced by communication of hurricane forces, take that in the limit of solution spaces.

In this sense, the upper as well as lower limits were confirmed for all the individuals restricted
from the group of novel places Pt+1, as displayed in Eq. (10).

Pt+1
i =

{
Pt+1

i ymin ≤ Pt+1
i ≤ ymax

ymin + rand
(
ymax − ymin

)
otherwise

(10)

whereas rand offers arbitrary numbers with normal distribution amongst zero and one. Some indi-
viduals in the group of candidate solutions Pt+1 is chosen as the novel hurricane eye if, and only if,
the value of their objective function was superior to the present hurricane eye Pt

HE. This upgrade was
determined in Eq. (11).

Pt+1
HE =

{
Pt+1

i If F
(
Pt+1

i

)
< F

(
Pt

HE

)
Pt

HE otherwise
(11)

whereas F (·) implies the objective function.

3.3 Optimal ENN Based Classification

Once the feature vectors are derived, the next stage is the classification process using the ENN
model. Elman proposed an ENN was the standard local recursion delay FFNN [24]. The ENN adds
a context layer as internal feedback according to BPNN and also it could store state data. Especially,
ENN stores the output values of hidden state at t time in the context layers, the input of hidden state at
T +1 time includes the input of the hidden state at T +1 time, and the output of hidden layer at t time.
Consequently, ENN is very suitable for determining time series predictive method. The mathematical
expression of ENN is given below:⎧⎪⎪⎨
⎪⎪⎩

x (k) = f
(
w3xc (k) + w1u (k − 1)

)
xc (k) = αxc (k − 1) + x (k − 1)

y (k) = g
(
w2x (k)

) (12)

In Eq. (12), u refers to the input value, the k represents at k-th iteration steps. w1, w2 and w3 denotes
the connection weight of input to the hidden layers, the hidden to output layers, and context to hidden
layers, correspondingly. b1, b2 and b3 indicates the threshold of the hidden, output, and context layers,
correspondingly. α refers to self-connected feedback gain factor. The activation function of hidden
state utilized the sigmoid function and the linear function was utilized as activation function for the
output layer. y (k) indicates the target output.

For effectual adjustment of the ENN parameters, the GSO algorithm has been exploited. Here, a
set of glowworms is distributed and initialized in a random manner from the solution space [25]. The
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intensity of emitted light was associated with the luciferin count, i.e., strongly associated with it, while
the glowworm was situated from the movement and had a dynamic decision range ri

d (t) constraint
using a spherical sensor range rs(0 < ri

d <= ri
s). At first, the glowworm encompasses an equal number

of luciferins, l0. According to the similarity of luciferin value, the i glowworm chooses their neighboring
one j with pij possibility and shift from the direction of decision range rs(0 < ri

d <= ri
s), while the

location of the glowworm i is characterized as xi (xi ∈ Rm, i = 1, 2, . . . , n).

A luciferin update phase is impacted using the function value in the glowworm position:

li (t + 1) = (1 − ρ) li (t) + γ J (xi (x + 1)) (13)

In Eq. (13), li (t) indicates the luciferin level interconnected with a glowworm i at time t, ρ denotes
the luciferin decay constant 0 < ρ < 1, γ indicates the luciferin constant, and J (xi (t)) indicates the
value of major function at agent i-th location at time t.

Also, in the process included in the GSO approach, glowworm is fascinated using the neighbor that
glows brightly. Therefore, the results during the movement stage, the glowworms use the probabilistic
method for moving toward the neighbor that has a maximal luciferin intensity. Especially for every i
glowworms, the moving possibility over a neighborhod glowworm is denoted by:

pij (t) = lj (t) − lj (t)
�k∈Ni(t)lk(t)−li(t)

(14)

In Eq. (14), j ∈ Ni (t), Ni (t) = {j:dij (t) < ri
d (t) , li (t) , li (t) < lj (t)} embodies the set of

neighboring glowworms i at time t, dij (t) refers to the Euclidean distance among the i and j glowworms
at time t, ri

d (t) indicates the parameter neighboring range associated with i glowworm at t time. The
parameter controlled by a radial sensor ranges from (0 < ri

d < rs).

xi (t + 1) = xi (t) + s
[

xj (t) − xi (t)
||xj (t) − xi (t)||

]
(15)

In Eq. (15), s(> 0) indicates the step size, and || || denotes the Euclidean norm operator.
Furthermore, xi (t) ∈ Rm denotes the position of i glowworm at t time from m dimension real space
Rm. Then, consider r0 represent the initialized neighborhood range of each glowworm (i.e., ri

d (0) = r0,
∀i):

ri
d (t + 1) = min

{
rs, max

{
0, ri

d (t) + β (nr − |Ni (t)|)
}}

(16)

In Eq. (16) β refers to a constant, and nt determines a variable employed for controlling the degree.

The GSO system develops a fitness function (FF) for achieving superior classifier efficiency. It
defines a positive integer for representing the best efficiency of candidate solutions. During this case,
the minimized classifier error rate was supposed that FF is providing in Eq. (17).

fitness (xi) = Classifier Error Rate (xi) = number of misclassified samples
Total number of samples

∗ 100 (17)

4 Result and Discussion

In this section, the experimental validation of the suggested method was carried out against
dataset-1 [26] (WHU-Hi-LongKou). It comprised total of 9,000 samples with 9 class labels, holding
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1000 samples under every class as shown in Tab. 1. Fig. 3 depict the sample HSIs from various classes
involved in dataset 1.

Table 1: Dataset-1 details

Classes No. Description No. of images

1 Corn 1000
2 Cotton 1000
3 Sesame 1000
4 Broad-leaf soybean 1000
5 Narrow-leaf soybean 1000
6 Rice 1000
7 Water 1000
8 Roads and houses 1000
9 Mixed weed 1000

Figure 3: Sample images on dataset-1

Fig. 4 showcases the confusion matrix offered by the HOADTL-CC model on dataset-1. The
figure implied that the HOADTL-CC model has proficiently recognized 985 samples into class 1, 983
samples into class 2, 963 samples into class 3, 990 samples into class 4, 991 samples into class 5, 979
samples into class 6, 979 samples into class 7, 946 samples into class 8, and 986 samples into class 9.
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Figure 4: Confusion matrices of HOADTL-CC approach on dataset-1

A brief crop classifier outcome of the presented HOADTL-CC model on dataset-1 is demon-
strated in Tab. 2 and Fig. 5. The results indicated that the presented HOADTL-CC model has shown
effectual results under every class label. For instance, the HOADTL-CC model has recognized images
under corn class with accuy of 99.50%, recal of 98.50%, specy of 99.62%, and Fscore of 97.77%.
Meanwhile, the HOADTL-CC technique has recognized images under rice class with accuy of 99.69%,
recal of 97.90%, specy of 99.91%, and Fscore of 98.59%. Eventually, the HOADTL-CC approach has
recognized images under mixed weed class with accuy of 99.76%, recal of 98.60%, specy of 99.90%, and
Fscore of 98.90%.

Table 2: Result analysis of HOADTL-CC method with distinct class labels and measures on dataset-1

Class labels Accuracy Recall Specificity F-score

Corn 99.50 98.50 99.62 97.77
Cotton 98.82 98.30 98.89 94.88
Sesame 99.51 96.30 99.91 97.77
Broad-leaf soybean 99.76 99.00 99.85 98.90
Narrow-leaf soybean 99.66 99.10 99.72 98.46
Rice 99.69 97.90 99.91 98.59
Water 99.60 97.90 99.81 98.19
Roads and houses 99.31 94.60 99.90 96.83
Mixed weed 99.76 98.60 99.90 98.90

Average 99.51 97.80 99.73 97.81
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Figure 5: Average analysis of HOADTL-CC method with distinct class labels on dataset-1

The training accuracy (TA) and validation accuracy (VA) gained by the HOADTL-CC method on
dataset-1 is established in Fig. 6. The experimental outcome revealed that the HOADTL-CC approach
has acquired maximum values of TA and VA. In specific, the VA is performed that higher than TA.

Figure 6: TA and VA analysis of HOADTL-CC algorithm on dataset-1

The training loss (TL) and validation loss (VL) obtained by the HOADTL-CC system on dataset-1
are recognized in Fig. 7. The experimental outcome represented that the HOADTL-CC methodology
has accomplished least values of TL and VL. In specific, the VL appeared to be lower than TL.



3178 CMC, 2023, vol.74, no.2

Figure 7: TL and VL analysis of HOADTL-CC algorithm on dataset-1

A brief precision-recall examination of the HOADTL-CC model under dataset-1 is portrayed in
Fig. 8. By observing the figure, it is noticed that the HOADTL-CC model has accomplished maximum
precision-recall performance under all classes.

Figure 8: Precision-recall curve analysis of HOADTL-CC algorithm on dataset-1
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To ensure the enhanced performance of the HOADTL-CC model, a comparative analysis with
existing methods [27] on dataset-1 is made in Tab. 3 and Fig. 9. The figure demonstrated that the
SVM, FNEA-OO, and SVRFMC models have obtained lower accuy of 96.18%, 97.57%, and 97.99%
respectively. Besides, the CNN and CNN-CRF models have attained closer accuy values of 98.38% and
98.94% respectively. However, the HOADTL-CC model has shown effectual performance over other
models with maximum accuy of 99.51%.

Table 3: Comparative analysis of HOADTL-CC approach with recent methodologies on dataset-1

Methods Accuracy (%)

SVM model 96.18
FNEA-OO model 97.57
SVRFMC model 97.99
CNN model 98.38
CNN-CRF model 98.94
HOADTL-CC 99.51

Figure 9: Comparative analysis of HOADTL-CC approach on dataset-1

5 Conclusion

In this study, a new HOADTL-CC model was advanced for the identification and categorization
of crops on the hyperspectral RSIs. The proposed HOADTL-CC model includes a series of processes
namely CapsNet feature extractor, HOA based hyperparameter optimizer, ENN classification, and
GSO based parameter optimization. Here, the GSO algorithm is exploited to fine tune the ENN
parameters involved in this study. The experimental result scrutiny of the HOADTL-CC method
was tested with the help of a benchmark dataset and the results are assessed under distinct aspects.
The extensive comparative studies stated the enhanced performance of the HOADTL-CC model
over recent approaches. Thus, the presented HOADTL-CC model can be exploited as an effectual
tool to classify crops. In future, ensemble of DL based fusion methods can be applied to boost the
classification results.
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