
This work is licensed under a Creative Commons Attribution 4.0 International License,
which permits unrestricted use, distribution, and reproduction in any medium, provided
the original work is properly cited.

echT PressScienceComputers, Materials & Continua
DOI: 10.32604/cmc.2023.033175

Article

Type-2 Neutrosophic Set and Their Applications in Medical Databases
Deadlock Resolution

Marwan H. Hassan1, Saad M. Darwish2,* and Saleh M. Elkaffas3

1Department of Advocacy and Public Speaking, Imam Al-Adham University College, Anbar, 55431, Iraq
2Department of Information Technology, Institute of Graduate Studies and Research, Alexandria University,

Alexandria, 21526, Egypt
3College of Computing and Information Technology, Arab Academy for Science, Technology and Maritime Transport,

Alexandria, 1029, Egypt
*Corresponding Author: Saad M. Darwish. Email: saad.darwish@alexu.edu.eg

Received: 09 June 2022; Accepted: 09 September 2022

Abstract: Electronic patient data gives many advantages, but also new dif-
ficulties. Deadlocks may delay procedures like acquiring patient informa-
tion. Distributed deadlock resolution solutions introduce uncertainty due
to inaccurate transaction properties. Soft computing-based solutions have
been developed to solve this challenge. In a single framework, ambiguous,
vague, incomplete, and inconsistent transaction attribute information has
received minimal attention. The work presented in this paper employed type-
2 neutrosophic logic, an extension of type-1 neutrosophic logic, to handle
uncertainty in real-time deadlock-resolving systems. The proposed method
is structured to reflect multiple types of knowledge and relations among
transactions’ features that include validation factor degree, slackness degree,
degree of deadline-missed transaction based on the degree of membership of
truthiness, degree of membership of indeterminacy, and degree of membership
of falsity. Here, the footprint of uncertainty (FOU) for truth, indeterminacy,
and falsity represents the level of uncertainty that exists in the value of a grade
of membership. We employed a distributed real-time transaction processing
simulator (DRTTPS) to conduct the simulations and conducted experiments
using the benchmark Pima Indians diabetes dataset (PIDD). As the results
showed, there is an increase in detection rate and a large drop in rollback
rate when this new strategy is used. The performance of Type-2 neutrosophic-
based resolution is better than the Type-1 neutrosophic-based approach on
the execution ratio scale. The improvement rate has reached 10% to 20%,
depending on the number of arrived transactions.

Keywords: Deadlock recovery; type-2 neutrosophic set; healthcare databases;
distributed deadlock detection

https://www.techscience.com/
https://www.techscience.com/journal/cmc
http://dx.doi.org/10.32604/cmc.2023.033175
https://www.techscience.com/doi/10.32604/cmc.2023.033175
mailto:saad.darwish@alexu.edu.eg

4418 CMC, 2023, vol.74, no.2

1 Introduction

Online healthcare solutions give constant access to medical treatments. These systems rely on a
network to share data between patients, doctors, and nurses. This leads to huge volumes of medical
data, including procedures, medicines, and allergies. Properly constructed clinical information systems
enable doctors to access patient information as needed. Computer freezes may create information
delays for electronic system users. A deadlock is a common cause of a computer’s seeming to freeze.
During the health information management service (HIMS) pilot phase, and as the number of users
increased, the necessity to handle deadlock and concurrency issues became prominent [1–3]. Several
parameters are examined while creating a distributed database, including processor location, data
availability and dependability, workload dispersion, and storage costs vs. availability. Using all of
these parameters together might result in sophisticated optimization models. Thus, it’s common to
prioritize the most important objectives, such as maximizing processing locality, and regard the rest
as constraints [4]. Recently, real-time database systems (RTDBS) have gained popularity. RTDBS
is a relational database management system with deadlines. RTDBS’s effectiveness and accuracy
depend on meeting these deadlines [5,6]. In distributed real-time database systems (DRTDBS), blocked
transactions miss deadlines.

One of the most common problems in operating systems and databases is resolving deadlocks.
Additionally, the system’s resource consumption and the events connected to deadlock processes are
affected [7]. Distributed databases allow several users to simultaneously access the same database at
the same time, which is called a “concurrent transaction”. Time stamp ordering-based concurrency
control and optimistic concurrency control are a few of the concurrency control strategies used to
achieve this synchronization [8]. There are four types of deadlock in a transaction: mutual exclusion,
hold and wait, no preemption, and circular waiting. An oriented graph known as a system resource
allocation graph may precisely characterize a deadlock [9]. The three ways to deal with deadlocks are
to prevent, avoid, or resolve deadlocks that have already occurred in transactional systems. In order
to avoid deadlocks, the system as a whole must be designed to make them impossible [10]. Avoiding
deadlocks in real time means allocating resources and initiating transactions in a way that prevents
them at runtime [11]. When a deadlock is found and resolved by utilizing a sequence of protocols such
as monitoring the wait-for-graph (WFG) of the current transactions or sending a “probe” to locate
cycles, resolution implies that deadlocks are permitted [12].

Hard (rigid deadline) and soft (flexible deadline) represent a new breed of real-time, distributed
databases that combine distributed technologies to fulfil both performance and accuracy requirements.
The main system must be developed to deal with deadlocks in an efficient way without adding
unnecessary complexity. The fuzziness of transaction object properties might lead to false positives and
failures in the deadlock detection process since these techniques don’t take this into consideration. It’s
also difficult to tell which deadlock is most critical, since these approaches don’t reveal the importance
of all of them [13,14]. A wide variety of applications rely on fuzzy logic systems to accurately describe
uncertainty. What this means in practice is that the approximate and imprecise aspects of reality may be
accurately represented. Confidence or uncertainty in a set’s membership is quantified using fuzzy logic.
There have been a lot of attempts made to use these sets to reduce the imprecision in such cases [14].

Real-world situations need to deal with uncertainty, yet fuzzy sets are unable to deal with
indeterminacy in data. A neutrosophic set was therefore introduced [15,16] as a result. Neutrosophic
sets were established to cope with greater ambiguity in the situation by allowing experts or individuals
who answered a questionnaire to contribute more knowledge and data that was more indeterminate.
The membership functions of the three functions, truth (T), indeterminacy (I), and falsity (F), are

CMC, 2023, vol.74, no.2 4419

not uncertain in a neutrosophic set. Consequently, it is unable to cope with information in the form
of words and sentences in artificial languages known as linguistic variables, which minimizes the
total computing complexity of any real-world issue. A type-2 neutrosophic set (T2NS) may reduce
uncertainty and indeterminacy in real-world issues better than other sets because it’s FOU indicates
its degree of uncertainty (see Fig. 1). It is feasible to attach alternative language variables to the
truth, indeterminacy, and falsity membership functions since they are independent. Because of this,
T2NS has an advantage [17–20]. By including a T2NS into the model, fewer risky judgments may be
made [21,22].

Figure 1: (a) Neutrosophic truth, indeterminacy, and falsity membership functions (b) Type-2 neutro-
sophic set membership functions [19]

Using type2-neutrosophic data, our goal is to resolve deadlocks based on attributes that are
ambiguous in nature. Type-2 Neutrosophic logic introduced an FOU-based indeterminacy concept,
which is used in the proposed model. This mechanism uses transaction features that include the degree
of deadline-missed transaction, validation factor degree, and slackness degree to resolve deadlocks
between transactions whenever conflict arises, thereby decreasing transaction re-executions or waiting
and the current load on the database server. Type-2 neutrosophic logic has not been used previously
in resolving deadlocks in distributed database systems.

The remainder of this paper is organized as follows: in Section 2, we analyze the most important
deadlock control solutions discussed in the literature. Following that, Section 3 presents the proposed
model by demonstrating and describing in detail the model tasks. In Section 4, we evaluate the
performance of the recommended technique. Finally, Section 5 summarizes our results and outlines
our future intentions.

2 Related Work

Distributed deadlocks may be detected using a variety of methods [8,10,23]. The avoid deadlock
strategy is used when there is a substantial likelihood of a deadlock. The detection and resolved-
deadlock approach, on the other hand, is used when the likelihood of a deadlock is minimal. This
section highlights scholars’ contributions and deadlock-resolution solutions. The work presented
in [8] describes a deadlock detection and resolution mechanism based on transaction priority. The
highest-priority initial cycle transaction is recorded in a priority table. Priority-based tables overcome
deadlocks. The lowest-priority transaction is cancelled to free up resources for waiting transactions.
This approach fails when priorities change.

4420 CMC, 2023, vol.74, no.2

In [24], the transaction wait for graph (TWFG) method was utilized to design a unique way to
resolve priority changes by constructing two structures: a local transaction structure for identifying
local deadlock and a global transaction structure for detecting distributed deadlock. TWFG reduces
the requirement for local distributed deadlock detection. One probe message is sent on each WFG
edge, hence deadlocks are identified slowly. These methods can identify and resolve deadlock in
distributed databases, but they have constraints, including priority, standard criteria, and starvation.
In [25], the authors developed a novel way to handle the priority change issue by combining the TWFG
algorithm for deadlock detection with Grover’s technique for determining the victim transaction using
a time stamp.

The transaction degree is a deadlock-resolution mechanism presented in [26]. This solves deadlock
by aborting the transaction with the most out-of-degree and in-degree. The authors in [23] presented a
simple method for detecting deadlock. This simple method uses an update message with two functions:
one modifies Wait-for variables and the other checks for deadlock. This method doesn’t figure out
which transactions should be stopped early to avoid deadlocks and the costs that come with them.
In [27], a distributed deadlock blocking solution was suggested that uses previous knowledge of
necessary resources by extending the two-phase commit procedure. Thread-specific partitions make
lock dependencies accessible. The lock dependence set search reduces related permutations. This
method eliminates lock dependencies before deadlock localization.

In [28], a scalable and extendable model of two phase locking (2PL)-concurrency control tech-
niques based on hierarchical colored petri nets was developed. State space analysis determines whether
all transaction schedules are deadlock-free. The model can easily replicate and analyze concurrency
control techniques like strict 2PL. How to run transactions seeking the same resources in a pipeline
to prevent deadlocks and minimize waiting time has been addressed [29]. The system described in [14]
used similarity between conflicting activities to boost real-time performance and transaction criticality
to prioritize data conflict resolution. The system used fuzzy logic, a well-known artificial intelligence
(AI) concept, to integrate transaction attributes to resolve conflicts. In [9], the authors suggested a
method for overcoming deadlocks that combines fuzzy and Aristotelian logic with logical concepts.
Mamdani’s controller-based technique breaks the deadlock. It decreases the chance of deadlocks, then
finds and resolves them.

This article extends the type-1 neutrosophic-based deadlock handling approach with type-2
neutrosophic logic. Neutrosophic systems use human knowledge like fuzzy ones. A fuzzy set uses
the membership grade to handle uncertainty, whereas a type-2 neutrosophic set uses FOU-based
independent truth, indeterminacy, and falsity membership grades. Type-2 neutrosophic logic captures
uncertainty well and delivers realistic membership grades. This new theory provides a granular
representation of transaction features and helps to model uncertainties with six different memberships
very effectively.

3 The Proposed Method

Using type-2 neutrosophic logic, we propose a new model for resolving deadlocks that takes
into account the uncertainty of transaction characteristics. The Neutrosophic number is concerned
largely with ambiguous, incomplete, and inconsistent data. This theory is an extension of type-1
neutrosophic concepts since each element of a neutrosophic set has two membership functions for
truth, indeterminacy, and falsity. In this research article, our primary purpose is to explore the type-2
neutrosophic logic concept in resolving deadlocks in complex uncertain distributed database systems
through: (1) expressing input parameters (antecedents) in type-2 trapezoidal neutrosophic numbers,

CMC, 2023, vol.74, no.2 4421

(2) constructing neutrosophic IF-THEN rules to estimate the deadlock resolving using AND operator
to model qualitative features of human understanding, (3) deneutrosophication of the consequents and
comparing them with the detection rate and rollback rate to arrive at the throughput of the system.

The suggested technique has the following advantages: (1) Access priority is maintained to
assure serializability without aborting transactions. (2) Transaction execution time costs less than re-
execution. A transaction may wait longer to obtain data rather than access it and abort it. (3) The
transaction with the greatest work is prioritized since it will be finished faster with greater rights.
(4) By giving a little waiting time, system throughput increases and overhead is lowered. Table 1
shows the method’s parameters. Herein, transaction managers have the following responsibilities:
(1) Transaction delimitation: start, commit, and rollback. (2) Transaction contexts provide all the
information a transaction manager needs to monitor a transaction. Transaction managers create and
associate transaction contexts with threads. (3) Transaction managers may commonly coordinate a
transaction across several resources. (4) Failure recovery: transaction managers ensure resources aren’t
left in an inconsistent state after a system or application failure.

Table 1: List of parameters used in the proposed approach

Parameter Definition

D (T) Transaction’s data object
T Transaction
s (T) Start time of transaction T
d (T) deadline of transaction T
VFt (T)
DLMT

Validation factor of transaction T at time t
Total number of deadline-missing
transactions

S
N
ta

Slackness degree
Total number of transactions processed
The arrival time of a transaction

l
c

Amount of unfinished work
Amount of computation already invested

TS
MP

Deadlock’s transaction status
Miss percentage

t Current time

3.1 Step 1: Transaction Reading

The resource manager accepts transaction requests and specifies the requisite resources and lock
mode for each transaction (see Fig. 2) [30]. It also sorts transactions by timestamp. Each read-phase
transaction receives a timestamp interval. This interval stores a transaction’s temporary serialization
order [31]. Each transaction is identified by a unique transaction identifier. However, changing the
identifier may cause the order of transactions to change, e.g., an older transaction may become the
youngest. To circumvent this, the new system associates each transaction with a timestamp (in addition
to the identification) showing the time the transaction entered the system [32]. This timestamp is not
affected after an abort, and so may be utilized for transaction ordering. For simplicity reasons, we will
utilize identifiers to arrange transactions and will assume that they have such a timestamp [33]. During

4422 CMC, 2023, vol.74, no.2

the validation phase of transaction Ti, the technique verifies that Ti does not interact with any other
committed transactions or currently validating transactions. Both conflict detection and resolution
occur during the validation phase of a transaction’s execution. Reducing the number of transaction
restarts is a critical strategy to enhance the speed of deadlock resolution solutions [34,35].

Figure 2: Database transaction processing system

3.2 Step 2: Distributed Deadlock Detection

The concept of a WFG was employed to discover deadlocks [36]. A system is said to be in deadlock
if and only if it encounters a cycle in the WFG. Then, each transaction in the WFG that is a part of
the cycle is considered as though it is in a deadlock condition (see Fig. 3). If a system encounters a
deadlock, the next stage is to recover via neutrosophic mechanisms [37]. To handle distributed database
deadlock detection, as in our case, the proposed model employs an optimized path-pushing strategy,
which involves sending a portion of a possible cycle, referred to as a “path” to another site only when
the first transaction in the path has a higher priority than the last one [38]. This results in a halving
of the quantity of messages [39]. The approach identifies phantom deadlocks because the portions of
the WFG sent between sites are asynchronously captured snapshots, i.e., they might be inconsistent.
For further information, see [40,41].

Figure 3: Global wait-for-graph with a cycle

3.3 Step 3: Extracting Transaction Attributes

In general, existing techniques to resolve deadlock in RTDBS rely on transaction scheduling
(serialization) that is motivated by priority rather than fairness concerns. See [42] for the drawbacks of

CMC, 2023, vol.74, no.2 4423

the serialization technique. As discussed before, a deadlock avoidance method needs basic knowledge
about the transaction structure and the required resources, yet this information is often unavailable or
imprecise [43]. Thus, the proposed technique in this paper is capable of resolving deadlock issues via
the use of a simple structure that exploits transactional properties and neutrosophic logic to handle the
vague nature of these properties. In our situation, deadlock resolution in the RTDBS is determined
by three transaction characteristics [44]: the degree of deadline-missing transactions, the degree of
validation factor, and the degree of slackness [45].

• Degree of deadline-missed transaction: the primary objective of RTDBS is to adhere to the
time limits imposed by the activities. As a result, the major performance metric is the “miss
percentage,” or the proportion of transactions that miss their deadlines. The following equation
is used to determine the proportion of data that is missing [38]:

Miss Percentage (MP) = 100 ∗ DLMT/N (1)

The smaller the proportion of transactions that miss their deadline, the greater the chance of
waiting for the transaction.

• Validation factor (VF) degree: The suggested technique is designed in such a way that a checking
algorithm is used to ensure that validated data is used in conjunction with the transaction
scheduling process. The checking process guarantees that all temporal data in a transaction’s
read set stays valid throughout its execution time, hence ensuring the transaction’s temporal
consistency. Following that, the key factor concurrency control method updates validation
rules during the validation phase, which schedules near-completed priority transactions by
asserting the validation factor. The validation algorithm determines the transaction’s validation
factor, which is a variable computed from the current time, the transaction’s start time, and the
transaction’s deadline time. The degree of validation is computed using the following equation
[38]:

VFt (T1) = (t − s (T1)) / (d (T1) − s (T1)) (2)

The lower the validation factor degree, the longer the deadline is, the probability of waiting for
the transaction increases.

• Slackness degree: Slackness quantifies the amount of time that a transaction’s execution may be
delayed while still meeting the transaction’s deadline. If we use the term ta to signify the arrival
time of a transaction, slackness (S) may be stated as [44]:

S = d (T) − ta − c − l (3)

The more slackness a transaction has, the higher its priority should be. In this situation, the earlier
the transaction’s deadline, the greater its priority. A transaction with a smaller quantity of unfinished
work may be prioritized over one with a large amount of unfinished work. When a transaction
enters the commit phase, its priority may be increased to a higher value. This allows a committed
transaction with a minimum processing time to be completed quickly. Thus, resources held by the
committed transaction may be freed sooner, preventing subsequent transactions from being blocked.
A transaction that has already completed a significant amount of computation may be assigned a
higher priority. This procedure shortens turnaround time and aids in maintaining external consistency
of data. Prior knowledge of MP, VF , and S is necessary to determine the deadlock. Human beings
are more at ease making judgments on linguistic variables. Linguistic variables enable us to translate
imprecise ideas stated in natural languages into exact mathematical expressions. Due to the high degree

4424 CMC, 2023, vol.74, no.2

of fuzziness and uncertainty inherent in linguistic variables, neutrosophic sets are well suited to solving
issues involving such data [21,22]. Fig. 4 illustrates the process of feature extraction.

Figure 4: Transaction features extraction process

3.4 Step 4: Type-2 Neutrosophication

Our suggested technique employs type-2 trapezoidal neutrosophic numbers with linear member-
ship functions. These membership curves are not mutually exclusive, and neighboring curves may
overlap in certain areas. Experts determine their input values based on a comparison of nearby
membership curves’ properties. We get membership degrees for the input values depending on which
part of the membership curve these values fall inside [46]. At this stage, the inputs (attributes) MP,
VF , and S are extracted in crisp numerical form within the universe of discourse by running the
RTDBS simulator for medical databases. Membership functions are used to determine the degree of
membership of each input to the proper neutrosophic set. The degree of membership is between 0 and
1. In our scenario, they all have three linguistic levels, such as “Low,” “Medium,” and “High,” with
corresponding linear membership functions. DS expressions are also given in linguistic variables that
include ‘wait’ and ‘execute’. See [46] for the definition of the linear trapezoidal neutrosophic function.
The range and neutrosophic set definitions a′′

1 ≤ a1 ≤ a′
1 ≤ a2 ≤ a3 ≤ a′

4 ≤ a4 ≤ a′′
4 (see Fig. 5) for each

attribute are given based on the maximum and minimum values of this variable by running the RTDBS
simulator. Fig. 6 illustrates the graphical representation of the type-2 neutrosophic membership
function.

Figure 5: Linear trapezoidal neutrosophic number [46]

CMC, 2023, vol.74, no.2 4425

Figure 6: Graphical representation of type-2 neutrosophic membership function [20]

A single-valued neutrosophic set (SVNS)
�

S on universal set U is characterized by truth mem-
bership function TMF

(
∅�

S

)
, indeterminacy membership function IMF

(
∅�

S

)
and falsity membership

function FMF
(
∅�

S

)
respectively, in the following way [19]:

�

S = {〈ξ ,
(
∅�

S
(ξ), ψ�

S
(ξ), ϕ�

S
(ξ)

)〉 : ξ ∈ U ,∅�
S
(ξ), ψ�

S
(ξ), ϕ�

S
(ξ) ∈ [0, 1]

}
(4)

Such that 0 ≤ ∅�
S
(ξ), ψ�

S
(ξ), ϕ�

S
(ξ) ≤ 3. Let

�

S (ξ) =
[

�

S
U

(ξ),
�

S
L

(ξ)

]
be an interval type-2

neutrosophic set (IT2NS) on universal set U where ξ ∈ U and
�

S
U

: U → [0, 1] and
�

S
L

: U → [0, 1] are
two type-1 neutrosophic sets (T1NSs) known as upper and lower neutrosophic sets respectively having

the condition 0 ≤ �

S
L

(ξ) ≤ �

S
U

(ξ) ≤ 1 defined as follows [19]:
�

S = {〈ξ ,
([
∅�

S
U(ξ),∅�

S
L (ξ)

]
,
[
ψ�

S

U
(ξ), ψ�

S

L
(ξ)

]
,
[
ϕ�

S
U(ξ), ϕ�

S
L (ξ)

])〉 : ξ ∈ U
}
,[

∅�
S

U(ξ),∅�
S

L (ξ)
]
,
[
ψ�

S

U
(ξ), ψ�

S

L
(ξ)

]
,
[
ϕ�

S
U(ξ), ϕ�

S
L (ξ)

] ∈ [0, 1]
(5)

∅�
S
(ξ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
ξ − �

S1

)
∅�

S

�

S2 − �

S1

�

S1 ≤ ξ ≤ �

S2

∅�
S

�

S2 ≤ ξ ≤ �

S3(�

S4 − ξ
)
∅�

S

�

S4 − �

S3

�

S3 ≤ ξ ≤ �

S4

0 otherwise

(6)

ψ�
S
(ξ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�

S2 − ξ +
(
ξ − �

S1

)
ψ�

S

�

S2 − �

S1

�

S1 ≤ ξ ≤ �

S2

ψ�
S

�

S2 ≤ ξ ≤ �

S3

ξ − �

S3 +
(�

S4 − ξ
)

ψ�
S

�

S4 − �

S3

�

S3 ≤ ξ ≤ �

S4

1 otherwise

(7)

4426 CMC, 2023, vol.74, no.2

ϕ�
S
(ξ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�

S2 − ξ +
(
ξ − �

S1

)
ϕ�

S

�

S2 − �

S1

�

S1 ≤ ξ ≤ �

S2

ϕ�
S

�

S2 ≤ ξ ≤ �

S3

ξ − �

S3 +
(�

S4 − ξ
)

ϕ�
S

�

S4 − �

S3

�

S3 ≤ ξ ≤ �

S4

1 otherwise

(8)

where ∅�
S

= [
∅�

S
U ,∅�

S
L
]

, ψS̆ = [
ψ�

S

U , ψ�
S

L
]

and ϕ�
S

= [
ϕ�

S
U , ϕ�

S
L
]

are interval type-2 neutrosophic

numbers (IT2NNs). The number S̆ can be represented as (see Fig. 7):
�

S =
[

�

S
U

,
�

S
L
]

=
[(

�

S
U

1 ,
�

S
U

2 ,
�

S
U

3 ,
�

S
U

4 ;∅U
�
S
, ψU

�
S
, ϕU

�
S

)
,
(

�

S
L

1 ,
�

S
L

2 ,
�

S
L

3 ,
�

S
L

4 ;∅L
�
S
, ψL

�
S
, ϕL

�
S

)]
(9)

and is called interval type-2 trapezoidal neutrosophic logic number (IT2TrNN) where

0 ≤ �

S
U

1 ≤ �

S
U

2 ≤ �

S
U

3 ≤ �

S
U

4 ≤ 1, 0 ≤ �

S
L

1 ≤ �

S
L

2 ≤ �

S
L

3 ≤ �

S
L

4 ≤ 1,

0 ≤ ∅
L
�
S

≤ ∅
U
�
S

≤ 1, 0 ≤ ψL
�
S

≤ ψU
�
S

≤ 1, 0 ≤ ϕL
�
S

≤ ϕU
�
S

≤ 1 (10)

Figure 7: An interval type-2 trapezoidal neutrosophic number [19]

3.5 Step 5: IF_THEN Rule Building

A total of 27 rules are constructed using three layers of linguistic variables for the MP, VF , and
S attributes of all transactions. Experts’ expertise and knowledge are included in the formulation of
the IF-THEN rules based on neutrosophic logic. Table 2 contains all of the rules. The rule that is fired
is discovered after acquiring the membership degree of each component of the antecedent. The AND
operator is used to get a single value when more than one portion of an antecedent is encountered for
a particular rule. See [17,46] for more details.

CMC, 2023, vol.74, no.2 4427

Table 2: List of rules used in the neutrosophic logic-based deadlock resolution approach

Rule Antecedent MP Antecedent VF Antecedent S Consequent TS

1 High High High Execute
2 High High Medium Execute
3 High High Low Execute
4 High Medium High Execute
5 High Medium Medium Execute
6 High Medium Low Execute
7 High Low High Execute
8 High Low Medium Execute
9 High Low Low Wait
10 Medium High High Execute
11 Medium High Medium Execute
12 Medium High Low Execute
13 Medium Medium High Execute
14 Medium Medium Medium Wait
15 Medium Medium Low Wait
16 Medium Low High Execute
17 Medium Low Medium Wait
18 Medium Low Low Wait
19 Low High High Execute
20 Low High Medium Execute
21 Low High Low Wait
22 Low Medium High Execute
23 Low Medium Medium Wait
24 Low Medium Low Wait
25 Low Low High Wait
26 Low Low Medium Wait
27 Low Low Low Wait

3.6 Step 6: Type-2 De-Neutrosophication

Prior to deneutrosophication, the range of output values is normalized to ensure that they are
proportionally allocated to the neighboring neutrosophic transaction status (TS) sets [21]. Herein, a
type-2 ordered weighted averaging (OWA) operator is utilized for the de-neutrosophication procedure

[46]. An OWA operator having dimension n is a mapping
�

S : R
n → R associated with an n vector

�

W =
(�

W 1,
�

W 2, . . . ,
�

W n

)
such that w̆i ∈ [0, 1] and

∑n

i=1

�

wi = 1. Moreover,

�

S�
w

(�

S1,
�

S2, . . . ,
�

Sn

)
=

∑n

j=1

�

wj

�

t j (11)

4428 CMC, 2023, vol.74, no.2

where
�

t j represents j-th largest element of aggregated object collection
�

S1,
�

S2, . . . ,
�

Sn. The (α, β, γ)-cut

of an IT2NN
�

S is represented as follows (see Fig. 8):
�

S = {〈ξ ,
([
∅�

S

U(ξ),∅�
S

L (ξ)
] ≥ α,

[
ψ�

S

U
(ξ), ψ�

S

L
(ξ)

] ≤ β,
[
ϕ�

S

U(ξ), ϕ�
S

L (ξ)
] ≤ γ

)〉} (12)

Figure 8: The (α; β; γ)-cut of an IT2TrNN [19]

Fig. 9 summarizes the main architecture of the suggested deadlock model that makes use of
transactional properties and neutrosophic logic to deal with the ambiguity of these characteristics
to resolve deadlock.

4 Simulation Results

To assess the performance of the suggested deadlock resolution model, we performed a com-
prehensive series of simulation experiments using the matrix laboratory (MATLAB) and hypertext
preprocessor (PHP) programming languages. The experiments were conducted on an x64-based pro-
cessor and 8 Giga byte (GB) of double data rate 3 (DDR3) memory on an Intel ® CoreTM i7-5500 M
CPU running at 2.50 GHz. A distributed real-time transaction processing simulator (DRTTPS) was
used to conduct the simulations [47]. DRTTPS may be customized to generate a range of system loads
and scenarios. An event is any action, such as granting locks, sending messages, or committing or
aborting transactions. The simulated distributed system is made up of nodes that communicate with
each other through messages on a virtual network. Pipes are used to connect nodes in this network.
Pipes have a latency (to mimic transmission delay) and a bandwidth sufficient to transmit a certain
number of messages. Each node has its own set of pages from which any transaction can read and/or
write. The network’s data is partitioned across nodes. At each node, a generator produces transactions
at Poisson-like intervals. A more detailed description of DRTTPS’s architecture can be found in [48].

The original DRTTPS will perform two simulations, one with an agent-based deadlock detection
mechanism and another with a timeout-based deadlock detection strategy. The simulation has been
updated to include the codes necessary to implement the suggested neutrosophic-based deadlock
resolution paradigm. The results will be stored in a locally accessible my structured query language
(MySQL) database. Configuration of the testbed is accomplished using an interactive user interface.
Numerous load scenarios and system configurations can be simulated using a combination of

CMC, 2023, vol.74, no.2 4429

parameters. Additionally, the interface provides options for concurrency management, preemption,
load balancing, and deadlock detection and resolution protocols. The simulation settings were used
in accordance with [12]. While the suggested methodology is applicable to any real-time distributed
database, we tested it on one in the area of health informatics. The data source is the Pima Indian
diabetes dataset (PIDD) [49].

Figure 9: The proposed deadlock handling framework based on type-2 neutrosophic set

The first set of experiments was conducted to compare the suggested type-2 neutrosophic–based,
type-1 neutrosophic-based, and traditional fuzzy-based deadlock resolution protocols in terms of
execution rate. Herein, the simulator was running with a maximum of 25 transactions being allowed
to be active at any given time. It was shown from Fig. 10 that the performance of type-2 neutrosophic-
based resolution is better than the type-1 neutrosophic-based resolution on the execution ratio scale.
The improvement rate has reached 10% to 20%, depending on the number of arrived transactions.
It is also clear that the performance of the type 1-neutrosophic based approach outperforms the
traditional fuzzy-based one. So, our resolution manager achieves up to 30x better throughput than
the fuzzy resolution algorithm. One explanation for this performance is that both neutrosophic and

4430 CMC, 2023, vol.74, no.2

fuzzy based resolution approaches rely on transactions’ features instead of serialization concepts. With
six membership grades, type-2 neutrosophic logic effectively captures the ambiguity and produces
solutions that are close to reality. It is feasible to make fewer wait decisions by incorporating a type-2
neutrosophic set in the model.

Figure 10: Comparison between fuzzy, type-1 neutrosophic, and type-2 neutrosophic–based deadlock
resolution protocols in terms of execution rate %

The second set of experiments was run to evaluate the performance of the proposed type-
2 neutrosophic-based deadlock resolution model with respect to the number of deadline-missed
transactions in proportion to the total number of active transactions, according to the simulation
outcomes. The results are listed in Table 3 in terms of executing and waiting rates, taking into account
that the simulator was running with a maximum of 25 transactions being allowed to be active at any
given time. The results reveal that the smaller the proportion of transactions that miss their deadline,
the greater the chance of waiting for the transaction. When the number of transactions that miss
their deadline increases, the proposed model attempts to reduce the number of waited transactions
by merging the properties of the transactions, making a final decision on the transaction’s overall
priority, and scheduling the execution according to the priority vector of active transactions.

Table 3: Commit and wait rates for different transaction attributes

Total No. of
active trans-
actions/No.

Degree of deadline-miss
transaction

Validation factor degree Slackness degree

of deadline-
miss
transactions

Wait Execute Wait Execute Wait Execute

5/1 0 5 1 4 0 5
10/2 0 10 1 9 0 10
15/4 3 12 1 14 1 14
20/4 2 18 2 18 2 18
25/5 3 22 3 22 2 23

CMC, 2023, vol.74, no.2 4431

In the same scenario, the results in Table 3 reveal the performance of the proposed model’s in
terms of executing and waiting rates with respect to the other two degrees: validation factor degree and
slackness degree, in proportion to the total number of active transactions, according to the simulation
outcomes. As expected, the results confirm that the lower the validation factor degree, the longer the
deadline is, the probability of waiting for the transaction increases. What’s more, the results indicate
that the more slackness a transaction has, the higher its priority should be. In this situation, the earlier
the transaction’s deadline, the greater its priority.

5 Conclusion

The suggested approach addresses the shortcomings of previous systems by prioritizing trans-
actions according to their characteristics. The model makes use of the concepts of validation factor
degree, slackness degree, and degree of deadline-missed transaction to improve real-time performance
and prioritize transactions with a higher data conflict resolution importance. Type-2 neutrosophic
logic is used to combine the attributes of transactions in order to facilitate conflict resolution between
them. The amount of uncertainty that occurs in the value of a grade of membership is represented here
by the footprint of uncertainty for truth, indeterminacy, and falsity. The simulation implementation on
a medical PIMA Indian diabetes database and a performance comparison between type-1 and type
2 neutrosophic-based real-time deadlock control methods show that our method can ensure good
real-time performance while guaranteeing temporal consistency. In future work, we plan to develop
a hybrid framework between a neutrosophic and a rule-based system [50,51] that incorporates deep
learning. Furthermore, more experiments will be conducted to test the efficiency of the proposed
model with other membership functions or a higher number of membership functions.

Funding Statement: The authors received no specific funding for this study.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

References
[1] E. Mourtou, “An evaluation of deadlock situations in a Greek hospital database,” Journal on Information

Technology in Healthcare, vol. 7, no. 6, pp. 400–410, 2009.
[2] W. Gardner, K. Fierlbeck and A. Levy, “Breaking the deadlock: Towards a new intergovernmental

relationship in Canadian healthcare,” Healthc Pap, vol. 14, pp. 7–15, 2014.
[3] R. Jørgensen, J. Christiansen, H. Nissen, K. Kristoffersen and V. Zoffmann, “The deadlock of saying

“that is what we already do!” A thematic analysis of mental healthcare professionals’ reactions to using
an evidence-based intervention,” Journal of Psychiatric and Mental Health Nursing, vol. 26, no. 1–2, pp.
39–48, 2019.

[4] D. Jasmina, Z. Avdagic, F. Orucevic and S. Omanovic, “Advanced consistency management of highly-
distributed transactional database in a hybrid cloud environment using novel R-TBC/RTA approach,”
Journal of Cloud Computing, vol. 10, no. 1, pp. 1–31, 2021.

[5] D. Jörg, C. Hauser and B. Erb, “Reliability and availability properties of distributed database systems,” in
Proc. of the 18th Int. Enterprise Distributed Object Computing Conf., USA, pp. 226–233, 2014.

[6] T. Sashi, R. Batth and S. Kaur, “A review on fragmentation, allocation and replication in distributed
database systems,” in Proc. of the Int. Conf. on Computational Intelligence and Knowledge Economy, UAE,
pp. 538–544, 2019.

4432 CMC, 2023, vol.74, no.2

[7] P. Shanchen, H. Chen, H. Liu, J. Yao and M. Wang, “A deadlock resolution strategy based on spiking
neural P systems,” Journal of Ambient Intelligence and Humanized Computing, vol. 10, no. 1, pp. 1–12,
2019.

[8] D. Ola, “Analysis of deadlock detection and resolution algorithms in distributed database system,” African
Journal of Computing & ICT , vol. 8, no. 1, pp. 205–211, 2015.

[9] E. Janani and M. Khalili, “A new logistic algorithm contrasts transactions deadlock by using mamdani
controller,” in Proc. of the Int. Conf. on Knowledge-Based Engineering and Innovation, Iran, pp. 1–10, 2017.

[10] J. Sumika, N. Kumar and K. Chauhan, “An overview on deadlock resolution techniques,” International
Journal of Engineering Research & Technology, vol. 7, pp. 1–4, 2019.

[11] M. Deepti, “Deadlock prevention algorithm in grid environment,” in Proc. of MATEC Web of Conferences,
India, pp. 20113–20119, 2016.

[12] H. Waqar, A. Vezina and M. Fontaine, “Topological response to deadlock detection and resolution in
real-time database systems,” in Proc. of the IEEE Int. Conf. on Internet of Things, Egypt, pp. 1880–1887,
2018.

[13] G. Masoomeh and A. Harounabadi, “A new method for optimization of deadlock resolution of distributed
database with formal model,” International Journal of Electronics Communication and Computer Engineer-
ing, vol. 5, no. 1, pp. 220–228, 2014.

[14] S. Darwish, A. El-Zoghabi and M. Hassan, “Soft computing for database deadlock resolution,” Interna-
tional Journal of Modeling and Optimization, vol. 5, no. 1, pp. 15–21, 2015.

[15] M. Abdel-Basset, M. Mohamed, F. Smarandache and V. Chang, “Neutrosophic association rule mining
algorithm for big data analysis,” Symmetry, vol. 10, no. 4, pp. 1–19, 2018.

[16] S. De and J. Mishra, “Processing of inconsistent neutrosophic data and selecting primary key from the
relation,” in Proc. of IEEE Int. Conf. on Inventive Computing and Informatics, India, pp. 317–320, 2017.

[17] D. Nagarajan, M. Lathamaheswari, S. Broumi and J. Kavikumar, “A new perspective on traffic control
management using triangular interval type-2 fuzzy sets and interval neutrosophic sets,”Operations Research
Perspectives, vol. 6, no. 100099, pp. 1–13, 2019.

[18] F. Karaaslan and F. Hunu, “Type-2 single-valued neutrosophic sets and their applications in multi-
criteria group decision making based on TOPSIS method,” Journal of Ambient Intelligence and Humanized
Computing, vol. 11, no. 10, pp. 4113–4132, 2020.

[19] M. Touqeer, R. Umer, A. Ahmadian and S. Salahshour, “A novel extension of TOPSIS with interval type-
2 trapezoidal neutrosophic numbers using (α, β, γ)-cuts,” RAIRO-Operations Research, vol. 55, no. 5, pp.
2657–2683, 2021.

[20] A. Bakali, S. Broumi, D. Nagarajan, M. Talea, M. Lathamaheswari et al., “Graphical representation of
type-2 neutrosophic sets,” Neutrosophic Sets and Systems, vol. 42, pp. 28–38, 2021.

[21] S. Pai and R. Gaonkar, “Safety modelling of marine systems using neutrosophic logic,” Journal of
Engineering for the Maritime Environment, vol. 235, pp. 225–235, 2021.

[22] S. Topal, F. Tas, S. Broumi and O. Kirecci, “Applications of neutrosophic logic of smart agriculture via
internet of things,” International Journal of Neutrosophic Science, vol. 12, no. 2, pp. 105–115, 2020.

[23] K. Al-Hussaini, N. Al-Amdi and F. Abdulrazzak, “A new multi-resource deadlock detection algorithm
using directed graph requests in distributed database systems,” in Proc. of the Int. Conf. of Reliable
Information and Communication Technology, Malaysia, pp. 462–474, 2020.

[24] S. Gupta, “Deadlock detection techniques in distributed database system,” International Journal of Com-
puter Applications, vol. 74, no. 21, pp. 41–44, 2013.

[25] A. Rashid and N. Ali, “Deadlock detection and resolution in distributed database environment,” Interna-
tional Journal of Scientific and Research Publications, vol. 5, no. 9, pp. 1–9, 2015.

[26] P. Chahar and S. Dalal, “Deadlock resolution techniques: An overview,” International Journal of Scientific
and Research Publications, vol. 3, no. 7, pp. 1–5, 2013.

[27] J. Nithiya and S. Priya, “Thread based deadlock detection and management in distributed database,”
Journal of Engineering Research and Application, vol. 8, no. 2, pp. 56–61, 2018.

CMC, 2023, vol.74, no.2 4433

[28] S. Pashazadeh, “Modeling and verification of deadlock potentials of a concurrency control mechanism
in distributed databases using hierarchical colored petri net,” International Journal of Information and
Education Technology, vol. 2, no. 2, pp. 77–82, 2012.

[29] M. Goswami, K. Vaisla and A. Singh, “VGS algorithm: An efficient deadlock prevention mechanism for
distributed transactions using pipeline method,” International Journal of Computer Applications, vol. 46,
no. 22, pp. 1–9, 2012.

[30] A. Ansari, R. Biswas and S. Aggarwal, “Neutrosophic classifier: An extension of fuzzy classifier,” Applied
Soft Computing, vol. 13, no. 1, pp. 563–573, 2013.

[31] B. Kavitha, S. Karthikeyan and P. Maybell, “An ensemble design of intrusion detection system for handling
uncertainty using neutrosophic logic classifier,” Knowledge-Based Systems, vol. 28, no. 1, pp. 88–96, 2012.

[32] S. Saravanakumar, “A real time approach on genetically evolving intrusion detection using neutrosophic
logic inference system,” in Proc. of the Int. Conf. on Computing Intelligence and Data Science, India, pp.
49–62, 2018.

[33] A. Hefny, A. Hassanien and S. Basha, “Neutrosophic rule-based identity verification system based on
handwritten dynamic signature analysis,” Computers, Materials & Continua, vol. 69, no. 2, pp. 2367–2385,
2021.

[34] M. Abdel-Basset, M. Gunasekaran, M. Mohamed and F. Smarandache, “A novel method for solving the
fully neutrosophic linear programming problems,” Neural Computing and Applications, vol. 31, no. 5, pp.
1595–1605, 2019.

[35] S. Kalita, M. Kalita and S. Sarmah, “A survey on distributed deadlock detection algorithm and its
performance evolution,” International Journal of Innovative Science, Engineering & Technology, vol. 2, no.
4, pp. 615–620, 2015.

[36] M. Grechanik, B. Hossain and H. Wang, “Preventing database deadlocks in applications,” in Proc. of the
9th Joint Meeting on Foundations of Software Engineering, Russia, pp. 356–366, 2013.

[37] W. Lu, C. Yu, W. Xing, X. Che and Y. Yang, “An efficient deadlock detection and resolution algorithm for
generalized deadlocks,” International Journal of Innovative Computing, Information and Control, vol. 13,
no. 2, pp. 703–710, 2017.

[38] W. Lu, Y. Yang, L. Wang, W. Xing, X. Che et al., “A fault tolerant election-based deadlock detection
algorithm in distributed systems,” Software Quality Journal, vol. 26, no. 3, pp. 991–1013, 2017.

[39] X. Zhang and M. Uzam, “Transition-based deadlock control policy using reachability graph for flexible
manufacturing systems,” Advances in Mechanical Engineering, vol. 8, no. 2, pp. 1–9, 2016.

[40] S. Pandey and U. Shanker, “Transaction scheduling protocols for controlling priority inversion: A review,”
Computer Science Review, vol. 35, pp. 1–15, 2020.

[41] N. Krivokapić, A. Kemper and E. Gudes, “Deadlock detection in distributed database systems: A new
algorithm and a comparative performance analysis,” The VLDB Journal, vol. 8, no. 2, pp. 79–100. 1999.

[42] M. Haroon, “Challenges of concurrency control in object oriented distributed database systems,” Interna-
tional Journal of Modern Computation, Information and Communication Technology, vol. 2, no. 7, pp. 48–52,
2019.

[43] S. Pandey and U. Shanker, “RACE: A concurrency control protocol for time-constrained transactions,”
Arabian Journal for Science and Engineering, vol. 45, pp. 10131–10146, 2020.

[44] W. Moudani, N. Khoury and M. Hussein, “An optimistic concurrency control approach applied to
temporal data in real-time database systems,” WSEAS Transactions on Computers, vol. 11, no. 12, pp. 419–
434, 2012.

[45] M. Khatib and M. Atique, “FGSA for optimal quality of service-based transaction in real-time database
systems under different workload condition,” Cluster Computing, vol. 23, no. 1, pp. 307–319, 2020.

[46] P. Singh, “A type-2 neutrosophic-entropy-fusion based multiple thresholding method for the brain tumor
tissue structures segmentation,” Applied Soft Computing, vol. 103, no. 107119, pp. 1–23, 2021.

[47] M. Samani, “Distributed Database System-Simulator,” California, USA: GitHub, Inc., 2022. [Online].
Available: https://github.com/mani-samani/DistributedDatabaseSystem-Simulator.

https://github.com/mani-samani/DistributedDatabaseSystem-Simulator

4434 CMC, 2023, vol.74, no.2

[48] W. Haque and P. Stokes, “Simulation of a complex distributed real-time database system,” in Proc. of the
Spring Simulation Multi-Conf., UK, pp. 359–366, 2007.

[49] D. Aha, “UC Irvine Machine Learning Repository,” California, USA: National Science Foundation,
University of California, 2007. [Online]. Available: https://archive.ics.uci.edu/ml/datasets.php.

[50] H. Sun and R. Grishman, “Lexicalized dependency paths based supervised learning for relation extraction,”
Computer Systems Science and Engineering, vol. 43, no. 3, pp. 861–870, 2022.

[51] H. Sun and R. Grishman, “Employing lexicalized dependency paths for active learning of relation
extraction,” Intelligent Automation & Soft Computing, vol. 34, no. 3, pp. 1415–1423, 2022.

https://archive.ics.uci.edu/ml/datasets.php

	Type-2 Neutrosophic Set and Their Applications in Medical Databases Deadlock Resolution
	1 Introduction
	2 Related Work
	3 The Proposed Method
	4 Simulation Results
	5 Conclusion

