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Abstract: COVID-19 is the common name of the disease caused by the novel
coronavirus (2019-nCoV) that appeared in Wuhan, China in 2019. Discov-
ering the infected people is the most important factor in the fight against
the disease. The gold-standard test to diagnose COVID-19 is polymerase
chain reaction (PCR), but it takes 5–6 h and, in the early stages of infection,
may produce false-negative results. Examining Computed Tomography (CT)
images to diagnose patients infected with COVID-19 has become an urgent
necessity. In this study, we propose a residual attention deep support vector
data description SVDD (RADSVDD) approach to diagnose COVID-19. It
is a novel approach combining residual attention with deep support vector
data description (DSVDD) to classify the CT images. To the best of our
knowledge, we are the first to combine residual attention with DSVDD in
general, and specifically in the diagnosis of COVID-19. Combining attention
with DSVDD naively may cause model collapse. Attention in the proposed
RADSVDD guides the network during training and enables quick learning,
residual connectivity prevents vanishing gradients. Our approach consists of
three models, each model is devoted to recognizing one certain disease and
classifying other diseases as anomalies. These models learn in an end-to-end
fashion. The proposed approach attained high performance in classifying CT
images into intact, COVID-19, and non-COVID-19 pneumonia. To evaluate
the proposed approach, we created a dataset from published datasets and had
it assessed by an experienced radiologist. The proposed approach achieved
high performance, with the normal model attained sensitivity (0.96–0.98),
specificity (0.97–0.99), F1-score (0.97–0.98), and area under the receiver
operator curve (AUC) 0.99; the COVID-19 model attained sensitivity (0.97–
0.98), specificity (0.97–0.99), F1-score (0.97–0.99), and AUC 0.99; and the
non-COVID pneumonia model attained sensitivity (0.97–1), specificity (0.98–
0.99), F1-score (0.97–0.99), and AUC 0.99.
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1 Introduction

COVID-19 is the common name of the disease caused by the novel coronavirus (2019-nCoV) that
appeared in Wuhan, China in 2019 [1]. This virus has been affected all aspects of our life because it
spreads rapidly in all countries and causes acute respiratory distress syndrome [2]. Infected Patients
in the first stage are suffering from many common symptoms, including headache, fever, cough, and
strong pain in most body muscles [3,4]. Many people died because they suffered from acute pneumonia
and shortness of breath [5]. The fast transfer of the virus makes a big terrible, so the diagnosis of the
infected people is a very important factor in the fight against COVID-19 and saving the patient’s life.
The gold-standard test to diagnose COVID-19 is polymerase chain reaction (PCR), but it takes 5–6 h
and in the early stages of infection may produce false-negative results [6].

In addition, the dramatic increase in the number of patients daily creates another trouble because
of the shortage of PCR kits. Consequently, there is an urgent need for early, accurate diagnosis
and health interventions to combat the virus’s spread. Therefore, many studies are conducted to
emphasize the efficiency of thoracic Computed Tomography (CT) in confirming the COVID-19
infection [6]. These studies show that most patients’ CT images exhibit ground-glass opacities (GGO)
and consolidation regions, which means CT scans can be considered an important tool to confirm
COVID-19 infection and follow-up therapy progress [6,7]. Unfortunately, the rapid transmission of
COVID-19 from one person to another, as well as indirectly through interaction with the same patients’
environments, causes additional issue because checking CT scans requires more specialist radiologists
to avoid incorrect diagnosis. [8].

With the great and quick evolution of vision techniques, many vision techniques have been used
to diagnose tumors and detect lesions in medical images. Many systems have been proposed by
researchers to segment lesions in the brain, skin, etc. These systems use various types of medical
images such as CT scans, ultrasound, magnetic resonance imaging (MIR), and X-ray images [9,10]. It
is remarkable that many of these systems produced outstanding results, outperforming radiologists in
some cases [11].

CT images attract researchers to work hard using deep learning and vision techniques to diagnose
COVID-19. A lot of papers have been published presenting systems using CT images to diagnose
COVID-19 and detect lesions in the lungs [12,13]. Although these systems show good accuracy, they
are still not reliable enough. Most of these systems use deep learning techniques because of the ability
of deep learning to extract appropriate features to achieve good results, but deep learning techniques
need a large dataset to achieve high accuracy. The lack of enough data poses challenges in the training
stage [14].

Many researchers proposed a deep-learning approach and attempted to address the lack of big
datasets through data augmentation, transfer learning techniques, or the development of a custom
network architecture. Wu et al. [15] proposed a deep model based on the ResNet50 architecture, which
consists of three branches, each of which receives the CT images from a different view. The extracted
features by the three branches are fused to be classified in the next dense layers. (AUC = 0.819, accu-
racy = 0.760, sensitivity = 0.811, Specificity = 0.615), classes (COVID-NONCOVID). Ma et al. [16]
used ten pre-trained convolutional neural networks to distinguish between patients infected by
COVID-19 and others infected by different viral pneumonia. Only cropped regions by radiologists
were passed to the classifier. Amyar et al. [17] proposed a multitask network in which three tasks
are done (classification, segmentation, and reconstruction). The input CT image is passed through
a common encoder, whose output is used in the three tasks. The U-NET architecture is used
for segmentation and reconstruction tasks. (accuracy = 94.67, sensitivity = 96, and Specificity = 92).
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Gozes et al. [18] extracted the lung region using the U-net network, and then regions of interest were
classified into normal and COVID-19 using pretrained ResNet50. A system combining classification
and lesions segmentation tasks is proposed by Wu et al. [19]. Res2Net is used in the classification task
to distinguish COVID-19 and non-COVID-19 patients. Yousefzadeh et al. [20] benefited from all the
slices in the CT file to diagnose the COVID-19 patient. All slices are passed through EfficientNetB3
to extract features, which are then passed to fully connected layers to be classified into three classes.
Wang et al. [21] proposed a method consisting of two stages. In the first stage, CT images are segmented
using 3D-UNet to extract lung lobes, which are then used to segment the whole lung parenchyma.
COVID-19 prediction is accomplished via two subnetworks, one to predict pneumonia existence and
the second to predict the pneumonia type. They proposed an attention learning block based on self-
attention and residual net style named self-prior-residual block.

Although the promising results of these researches in diagnosing COVID-19, some improvements
are also required to overcome some challenges. Some of these challenges are the unbalanced and lack
of data, inter-class similarity, and intra-class variation. In addition, because most CT images that were
utilized in most research were acquired from various resources, there is a great variation in images, and
the majority of the images are not clear. Furthermore, the diagnosis of COVID-19 in most research
relies on the assumption that the disease currently spreading is COVID-19. Therefore, in the binary
classification of CT into COVID-19 and intact, any abnormalities in the lungs will be classified as
COVID-19, which is not a realistic result from the practical perspective.

To overcome the aforementioned challenges as much as possible, we proposed RADSVDD
approach based on DSVDD [22] and residual attention [23]. RADSVDD is a novel approach
combining residual attention with DSVDD to classify the CT images. To the best of our knowledge,
we are the first to combine residual attention with DSVDD in general, and especially in COVID-19
diagnosis. Combining attention with DSVDD may result in model collapse if done naively. Because
each class has its own classifier, our approach addresses the imbalanced data problem. In addition,
residual attention block can overcome the lack of data. The contributions of this research can be
summarized as follows:

• We created a dataset collected from three different datasets published on the internet.
• We judged our dataset by an expert radiologist to make sure there were no images placed in a

wrong class and to exclude images that did not contain lung parenchyma.
• We developed a novel approach to distinguish COVID-19 from the other types of pneu-

monia and intact lungs. Our approach consisted of three novel residual attention deep
SVDD(RADSVDD) models.

• Because our proposed models are one-class classifiers, they address the unbalanced data
problem.

The rest of this paper is organized as follows: In Section 2 preliminaries, a brief explanation
of all the necessary techniques or concepts that are used in our approach is presented. The dataset
description is presented in Section 3. The proposed approach with all the details about the different
parts is presented in Section 4. Experiments and results are discussed in detail in Section 5. Section 6
concludes this work.

2 Preliminaries

In this section, a brief explanation of the used techniques is introduced, and some notations are
illustrated.
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2.1 Support Vector Data Description (SVDD) [22]

SVDD is a one-class classifier in which a hypersphere is used to enclose the data. SVDD aims to
find the smallest hypersphere that has a center C ∈ F and a radius R > 0, encompassing most of the
data belonging to the feature space F . Let X ⊆ R

d be the input space, φκ(x) : X → Fκ is a mapping
function with kernel K : X × X → [0, ∞), Fκ is the dot product space.

Given training data D = {x1, x2, . . . . . . . . . . . . . . . ., xn}, x i ∈ X , i = 1, 2, . . . . . . . . . ..n, n represents
the number of samples, the SVDD problem can be formalized as follows:

min
R, �, ξ R2 + 1

υn

∑
i
ξi (1)

s.t ‖ φκ(xi) − C‖2
Fk

≤ R2 + ξi, ξi ≥ 0, ∀i (2)

Slack variable ξ permits the soft margin, υ ∈ (0, 1] controls the trade-off between penalties ξi and
the volume of the sphere. A point x is considered an outlier point if it satisfies the following condition:

‖ φκ (x) − C‖2
Fk

> R2 (3)

2.2 Deep Learning

Deep learning is a branch of machine learning that uses techniques to simulate the neocortex
activity of the human brain. The neocortex consists of layers of neurons representing 80% of the brain
in which most thinking activity occurs. These layers are learned in a hierarchical manner where levels of
abstraction representations are learned to understand the patterns of data. Low and multiple levels of
data abstraction represent the high-level abstractions. One of the most significant advantages of using
deep learning is the capability to learn extracting feature automatically at different levels of abstraction.
This property allows building systems capable of finding complex mapping functions without the need
for extracting handcrafted features [24]. When we solve a problem with a neural network composed of
vertical-stacked layers, we use a deep neural network and deep learning. Deep neural networks (DNNs)
often require a huge quantity of data to learn how to extract features hierarchically. Lower layers
learn to extract low-level features such as edges, whereas the higher layers learn to extract high-level
features. The learning process means updating the weights and biases in the network during backward
propagation to improve the accuracy of decisions made by the network [25].

2.3 Residual Attention Model

The attention mechanism in DNN generally allows the model to look at the most significant
information affecting the model’s decision. It prioritizes this valuable information, which improves
the training process and decision accuracy [26].

There has recently been a lot of research aimed at embedding attention with convolution neural
network (CNN) in vision tasks such as image captioning. The fundamental idea behind embedding
attention with CNN is to discover salient features in feature maps to decrease redundancy [27]. The
residual attention model (RAM) [23] is a robust attention technique. It consists of two branches: the
trunk and the mask. The trunk branch processes the features. As a result, it can be used in any network
architecture. The mask branch generates a soft mask to weight the features produced in the trunk
branch. One advantage of RAM is that each trunk has its own mask, which is generated to be adapted
to the trunk branch’s features. Stacking multiple attention blocks without thinking will degrade the
performance since the mask’s values will cause the feature maps in the higher layers to have values
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between zero and one. Furthermore, the soft mask may affect the trunk branch negatively. To address
these problems, this model uses residual learning, where the output H of the attention block is:

Hi,c (x) = (
1 + Mi,c (x)

) ∗ Fi,c (x) (4)

The mask branch M(x) ranges from [0, 1], with M(x) approximates 0, H (x) will approximate
original features F (x), i represents the spatial position, c represents the index of the channel. RAM
increases the clarity of the extracted features with increasing layers in a consistent way, which
accordingly increases the classification accuracy.

2.4 Deep Support Vector Data Description (DSVDD)

The great success of deep learning in recent years attracts most researchers. Ruff et al. [22]
proposed a deep SVDD model to detect anomalous images. Deep SVDD combines a deep convolution
network to transfer data and SVDD to find the smallest closed hypersphere. It learns deep features
representing data with the goal of one-class classification. In their work, one-class and soft-margin
models are proposed. In the one-class model, the loss function is a minimization problem of the
mean squared distance between all training data samples and the center of a hypersphere. Because
this hypersphere is supposed to encompass normal images, images falling outside of it are considered
anomalous, as shown in Fig. 1.

Figure 1: The neural network with weights W is trained by deep SVDD to transform data from X ⊆
R

m to F ⊆ R
d and then find the smallest possible hypersphere characterized by center C and radius

R that combines most of the normal data representation which is generated by φ (·, W) transformer.
Anomalous data representation lay outside the hypersphere

The authors set constraints on the neural network to avoid model collapse, which occurs when
DSVDD attempts to map the features to a single point φ (·, W) ≡ C. Neural network must not use
bias, and the activation function must be an unbounded function. In addition, the center C of the
hypersphere must not be free and should be fixed to avoid the all-zeros-weights solution.

3 Dataset

COVID-19 is a novel disease; hence, developing an automatic diagnostic system is a challenging
task due to a lack of data. Most researchers used clinical data because there isn’t enough data to train
deep models. Three publicly available datasets on the internet were combined to create a dataset with
three classes (COVID-19, pneumonia, and normal). Because CT scan files contain several slices that
may not always have an infection or lung parenchyma [28], these datasets were judged by an expert
radiologist to exclude images that did not have a lung parenchyma or abnormalities in the case of
COVID-19 or pneumonia CT scan files.
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The COVID-CT dataset [29] contains two groups of images. The first group consists of (349)
images for COVID-19 patients, while the second consists of (397) images for a non-COVID-19 lung
infection. Two datasets are also used to increase data. COVID_DATASET [30] comprises of three
classes COVID-19 (719 images), Normal (2495) and pneumonia (1825). Finally, the SARS-CoV-2 CT
dataset [31] contains two classes: 1252 COVID-19 CT images for infected patients by COVID-19 and
1230 non-COVID19 CT images, which contains another pulmonary disease. Since we aim to build
a dataset that contains three classes as mentioned above, the non-COVID images from the last two
datasets are excluded because they may contain a different variety of pulmonary diseases, Fig. 2 shows
samples of our dataset.

Figure 2: Representative samples from our dataset representing A: normal, B: COVID-19, and C:
pneumonia

In addition, COVID-19 [32] dataset was used , which contains 20 COVID-19 CT scan files (nii.gz
files) with ground truth files. The ground truth files contain three groups of masks, one for the entire
parenchyma including the lesion areas; the second one contains masks for the lesion areas only and
the last one contains masks for the parenchyma. This dataset was used to train U-Net [33] to segment
lung parenchyma. Tab. 1 shows the sample statistics of all datasets.

Table 1: Statistics of the images in the used datasets

Dataset Normal COVID-19 Pneumonia Non-COVID
pulmonary diseases

COVID-CT - 349 - 397
COVID_DATASET 2495 719 1825 -
SARS-CoV-2 - 1252 - 1230
Ours 1556 1944 1203 -
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4 Proposed Approach

This section provides a detailed explanation of the proposed approach, which covers data
preprocessing and the deep classification model. The proposed approach is depicted in Fig. 3.

Extracting lung parenchyma 
using U-Net and morphological 

operations then resizing the 
image into 256×256 

Figure 3: CT image is fed into a trained u-net to extract parenchyma. To remove undesired parts,
morphological operations are applied. The normal model is then used to classify the image. If the CT
image is not normal, it will be sent to the COVID-19 model to determine if it is a COVID-19 infection.
If the image is not normal or COVID-19, it will be classified by the pneumonia model as pneumonia
or a different disease

4.1 Data Preprocessing

Data preprocessing is a vital stage in building most deep learning models. Since our dataset images
are collected from different resources, images may contain verity lines around lung tissue that may
affect the classification process. U-Net is trained to extract the lungs’ parenchyma mask. To remove the
small portions that may surround the lungs’ parenchyma, morphological operations are applied to the
mask. This mask is used to extract parenchyma and exclude images that do not contain parenchyma.
The processed image is resized to 256 × 256 and the color is normalized to be in the range [0, 1].
Parenchyma_algorithm shows the preprocessing steps.
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4.2 Proposed Method

Inspired by DSVDD [22] and the residual attention model [23], RADSVDD is proposed that is
trained in an end-to-end fashion. RADSVDD combines the residual attention model and SVDD. In
this section, an explanation of the proposed method in detail is presented.

4.2.1 Residual Attention Network (RAN)

Residual attention network (RAN) is designed by stacking a set of residual blocks and attention
blocks as shown in Tab. 2 These blocks are designed to address vanishing gradients and guide
convolution via the attention mechanism during the training stage. An explanation of these blocks
will be presented in the following section:

Table 2: The residual attention network architecture

Layer (bias = False) Kernel size Output

Conv2D (5 × 5), 32, stride = 1 padding = same (256 × 256)

MaxPool 2d (2 × 2), stride = 2 (128 × 128)

Residual_block

⎛
⎝1 × 1

3 × 3
1 × 1

32
32
128

⎞
⎠ (128 × 128)

Attention_block Attention × 1 (128 × 128)

Residual_block

⎛
⎝1 × 1

3 × 3
1 × 1

128
128
256

⎞
⎠ (64 × 64)

Attention_block Attention × 1 (64 × 64)

Residual_ block

⎛
⎝1 × 1

3 × 3
1 × 1

256
256
512

⎞
⎠ (32 × 32)

Attention_block Attention × 1 (32 × 32)

Residual_ block

⎛
⎝1 × 1

3 × 3
1 × 1

512
512
1024

⎞
⎠ (32 × 32)

Residual_ block

⎛
⎝1 × 1

3 × 3
1 × 1

1024
1024
1024

⎞
⎠ (32 × 32)

(Continued)
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Table 2: Continued
Layer (bias = False) Kernel size Output

Residual_ block

⎛
⎝1 × 1

3 × 3
1 × 1

1024
1024
1024

⎞
⎠ (32 × 32)

Average_pooling2d (4 × 4), stride = 1 (29 × 29)

Dense 128

Residual Block

The field of image classification has been revolutionized by deep convolution networks. Algorithm
and hardware advancements have increased the ability to add layers to the deep convolution network.
Because of vanishing gradients, training a neural network becomes more difficult as network depth
increases. As the value of gradient approaches zero in early layers, networks with too many layers
become highly unstable. With each additional layer, the gradient value shrinks and eventually
becomes insignificant. Vanishing gradients reduce network performance, and adding more layers only
exacerbates the problem. A residual connection connects the output of one layer to the input of the
previous layer, ensuring that gradient values do not vanish abruptly [34]. Consider H(x) to be an
underlying mapping to be fitted by a few stacked layers (not necessarily the complete net), with x
representing the inputs to the first of these layers. If one believes that several nonlinear layers can
asymptotically approximate complicated functions, it is equal to believing that they can asymptotically
approximate residual functions, i.e., H(x)-x (assuming that the input and output are of the same
dimensions). Instead of expecting stacked layers to approach H(x), these layers are allowed expressly
to approximate a residual function F(x)= H(x) − x. As a result, the original function becomes
F(x) + x. Although both forms should be able to approach the necessary functions asymptotically (as
expected), the ease of learning may differ [35]. Fig. 4 shows the complete pre-activation block, which
includes Leaky Relu activation, batch normalization, and a 2D convolution layer three times.
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Figure 4: The residual block that is used in our proposed network

Attention Block

Using attention in deep models has grown in popularity in computer vision, image processing,
and natural language processing. Attention-aware features and features that can be extracted based
on spatial, context, or channel aware-features can be generated by attention techniques. Attention
techniques learn the significance and relationships between features. In a vision classification task,
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using visual attention assists in determining the relevant image regions and their relationships. The
classification task is dependent on the existence or absence of these portions of the image. In our
case, these regions on the chest CT image represent signs of COVID-19 or another type of pneumonia
infection. Data in the attention block passes through two branches: the trunk and the mask. The
trunk branch processes data to extract features, while the other branch generates a soft mask that acts
as a control gate for the output of the trunk branch. The soft mask branch combines bottom-up and
top-down structures. Bottom-up structures extract low-resolution features, which will be extended by
top-down structures using linear interpolation. Fig. 5 shows the attention block.
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Figure 5: The attention block that is used in our proposed network

As shown in Fig. 5, the soft mask branch begins with a sequence of max pooling and residual
blocks that represent bottom-up feedforward structure and results in robust semantic information.
The robust semantic information passes through a sequence of linear interpolation and residual blocks
represent top-down feedforward structure to expand the semantic information to be the same size as
the output of the trunk branch. The sigmoid function is used at the end of the soft mask branch to
normalize the output but it may cause degradation of the feature the deeper the network becomes.
To address the degradation caused by using the sigmoid function, we add one to each value in the
generated soft mask M i.e., M = M + 1.

4.2.2 Residual Attention Deep Support Vector Data Description (RADSVDD)

Since CT images of COVID-19 patients show abnormalities compared to normal CT images, they
can be considered anomalous images. This abnormality volume increases with the severity of infection
[6]. Residual Attention Deep SVDD (RADSVDD) is proposed to extract effective information and
accordingly enhance the prediction. Our model combines the residual attention model as a feature
extractor and DSVDD to find the smallest hypersphere encompassing the normal images. The
attention block guides the network to concentrate on the most effective features in the CT images,
increasing prediction efficiency, whilst the residual block prevents gradient vanishing.

Let X = {x1, x2, . . . . . . . . . . . . . . . , xn} , X ⊆ R
m is the normal training samples. φ(·,W) : X →

F ,F ⊆ R
d is the residual attention network, W = {

W 1, W 2, . . . . . . . . . . . . . . . , W �
}

are set of weights
where W � represents the weights of the layer � ∈ {1, 2, . . . . . . . . . ., L}, L represents the number of layers.
RADSVDD aims to train the network and seek the smallest hypersphere enclosing the training data.
The RADSVDD objective can be formulized as follows:
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min
W

1
n

∑n

i=1
‖ φ (xi;W) − c ‖2 +λ

2

∑L

�=1
‖ W �‖2

F (5)

The distance of the extracted features φ (xi;W) to c ∈ F is penalized using the quadratic loss
function. The second term is a network weight decay regularizer with a hyperparameter λ > 0. Since
the used data in the training belong to one class (normal), RADSVDD reduces the volume of the
hypersphere by minimizing the mean distance of the extracted features for all training samples to the
center c. A given x ∈ X is considered an anomalous image if the distance between the extracted features
and the center of the hypersphere c is greater than the final radius R∗,. s.t

score (x) = ‖φ (x;W∗) − c ‖2 (6)

where W∗ is the set of trained network’s weights,{
x is normal, score (x) ≤ R∗

x is anomoly, score (x) > R∗ (7)

4.3 Implementation Details

According to the number of the classes, three models were trained separately. In each model, one
of the classes was considered to be a normal class, whereas the others were anomalous classes. A mini-
batch of only four images was used to train our models due to the limited resources. All models were
trained for 50 epochs on NVIDIA Tesla K80 GPU using TensorFlow and Keras. The Adam optimizer
was used with an initial learning rate of (10−5) and β1, β2 were set to 0.9 and 0.999 respectively. Bias
was removed from all layers to avoid the model collapse.

5 Experiments
5.1 Training and Testing Strategy

As described in the proposed approach, we trained three models. In the training of the normal
model, intact CT images were considered to be the normal class. A portion of 70% of the normal
class was picked out randomly to train the model. 10% was used for validation, whereas 20% was
used for testing. 10% of the COVID-19% and 10% of the pneumonia CT images were also picked out
randomly to be used for the validation. The rest of the COVID-19 and pneumonia CT images were used
during the testing of the model. The COVID-19 CT images were considered the normal class during
the training of the COVID-19 model, while the intact and pneumonia CT images were considered the
anomalous class. The model was trained with the same strategy as the normal model. In the last model,
the pneumonia class was considered the normal class, whereas the COVID-19 and the intact CT images
were the anomalous classes. The final model was trained in the same manner as the models in the
previous training steps. A checkpoint was saved automatically if the current validation performance
exceeded the previous best validation performance. To confirm the efficiency of the proposed models,
the models were also trained using different sample ratios as follows: (50%, 10%, 40%), (30%, 10%,
60%) representing (training, validation, and testing) respectively.

5.2 Evaluation Metrics

The proposed models were evaluated using sensitivity, specificity, F1 score, and area AUC.
Sensitivity tells us how much the model can distinguish positive cases, whereas specificity tells us how
much the negative cases can be distinguished by the model. Since we dealt with high-imbalanced data
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binary classification task, the AUC metric and F1 score were used to evaluate the overall performance
of each model. The equations of the used metrics are as follows:

Sensitivity = TP/(TP + FN) (8)

Specificity = TN/(TN + FP) (9)

Precision = TP/(TP + FN) (10)

Recall = TP/(TP + FP) (11)

F1 score = 2 ∗ (Precison ∗ Recall)/(Precison + Recall) (12)

where TP = True Positive, FN = False Negative, FP = False Positive and TN = True Negative.

5.3 Results

The testing and validation results of the three models will be presented in this section.

5.3.1 Normal Model

Tab. 3 displays the sensitivity, specificity, F1 score, and AUC of the normal model validation and
testing for each dataset split ratio. The results show that our model learns even with a small dataset
and can recognize healthy CT images with outstanding performance. The confusion matrices of the
normal model on validation and testing data are shown in Fig. 6. Fig. 7 shows the receiver operating
characteristics (ROC) curve of the normal model for each dataset splitting ratio, which appears to
show the stability and the ability of the proposed model to achieve high performance.

Table 3: The values of the evaluation metrices for the normal model

Training
sample ratio

Validation Testing

Sensitivity Specificity F1 Score AUC Sensitivity Specificity F1 Score AUC

70% 0.98 0.9677 0.9738 0.9901 0.9803 0.973 0.9766 0.9957
50% 0.9935 0.9618 0.9774 0.9978 0.9647 0.9797 0.9721 0.9935
30% 0.9613 0.9873 0.9741 0.9969 0.9572 0.9854 0.9711 0.99

Predicted 
0 1 

A
ct

ua
l 

0 3062 85 

1 7 349 

Predicted
0 1

A
ct

ua
l 

0 3083 64 

1 22 601 

Predicted 
0 1 

A
ct

ua
l 

0 3101 46 

1 40 895 

A: The confusion matrix of 
the trained normal model 
on 70% of the intact CT

B: The confusion matrix of 
the trained normal model 
on 50% of the intact CT

C: The confusion matrix of 
the trained normal model 
on 30% of the intact CT 

Figure 6: The confusion matrices of the trained normal model according to all training data spilt ratios
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A: ROC in the case of training 
on 70% of the intact CT

B: ROC in the case of training 
on 50% of the intact CT 

C: ROC in the case of training 
on 30% of the intact CT 

Figure 7: The receiver operating characteristics for all training scenarios of the normal model

According to the confusion matrix of the model trained on 70% normal data, only 7 normal images
were classified as anomaly images, indicating that the model is highly sensitive to normal images. Fig. 8
shows examples of false-negative and false-positive images. Except for the specificity value, which was
attained by the model trained on 30% of the normal data, the model trained on 70% of the normal
data achieved the highest metrices values when compared to the other normal models.

Figure 8: Samples of wrong-classified CT images by the normal model

5.3.2 Covid-19 Model

We summarized the values of the evaluation metrices of the COVID-19 model for validation
and testing in Tab. 4. By examining the confusion matrices in Fig. 9, we notice that the model can
distinguish the COVID-19 from pneumonia and intact CTs with high efficiency Confusion matrices
show how exact the features extracted by the network are, with sensitivity and specificity values above
97 percent and reaching 99 percent in practically all COVID-19 models. Fig. 10 shows the ROC curves
of the COVID models, which appear to show the stability and robustness of the proposed model.
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Table 4: The values of the evaluation metrices for the COVID-19 model

Training
sample ratio

Validation Testing

Sensitivity Specificity F1 Score AUC Sensitivity Specificity F1-score AUC

70% 0.9947 1 0.9974 0.9999 0.9835 0.9971 0.9902 0.9971
50% 0.9691 1 0.9843 0.9983 0.9846 0.9902 0.9874 0.9978
30% 0.9794 0.9891 0.9842 0.9977 0.976 0.9699 0.973 0.9948

Predicted 
0 1 

A
ct

ua
l 0 2751 8 

1 7 417 

Predicted
0 1

A
ct

ua
l 0 2732 27 

1 12 766 

Predicted 
0 1 

A
ct

ua
l 0 2676 83 

1 28 1139 

A: The confusion matrix of 
the trained COVID-19 model 
on 70% of the COVID-19 data 

B: The confusion matrix of 
the trained COVID-19 model 
on 50% of the COVID-19 data

C: The confusion matrix of 
the trained COVID-19 model 
on 30% of the COVID-19 data

Figure 9: The confusion matrices of the trained COVID-19 model according to all training data ratios

A: ROC in the case of training on 
70% of the COVID-19 data 

B: ROC in the case of training on 
50% of the COVID-19 data 

C: ROC in the case of training on 
30% of the COVID-19 data 

Figure 10: The receiver operating characteristics for all training scenarios of the COVID-19 model

Fig. 11 shows some wrongly classified samples. Fig. 11A depicts false-negative samples, which
were supposed to be classified as COVID-19 but were classified as non-COVID. Fig. 11B shows CT
images that were supposed to be classified as non-COVID but were instead classified as COVID-19
CT. The arrows in the CT images in Fig. 11A indicate lesion regions affected by Corona disease. The
lungs in CT 1, 2, and 3 in Fig. 11A contain slight lesions, which makes them closer to the CT of healthy
lungs, whereas the lungs in CT 4 for acute non-COVID pneumonia patients. CT 2, 3 in Fig. 11B are
intact CT, but due to the circled regions that are similar to the (GGO, consolidation) areas, they were
wrongly classified as COVID-19 CT. CT 4 in Fig. 11B was classified as COVID-19 because COVID-19
and other viral pneumonias share common characteristics (GGO, consolidation), and the majority of
the regions in this CT are consolidation areas.
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A. COVID-19 CT images were classified as non-COVID-19

B. Non-COVID CT images were classified as COVID-19

Figure 11: Samples of misclassified CT images by the COVID-19 model

5.3.3 Pneumonia Model

We reported the sensitivity, specificity, F1 Score, and AUC of the pneumonia model on validation
data and testing data in Tab. 5. The proposed model has high sensitivity for distinguishing pneumonia
from COVID-19 and intact CT images, as shown in Tab. 5. The confusion matrices of the pneumonia
models on the validation and testing data are shown in Fig. 12 according to the different split ratios.
Confusion matrices give strong evidence of the robustness of the proposed model, as the false-negative
values in the three models are (0, 10, 16). Fig. 13 depicts the pneumonia model’s ROC curves, which
demonstrates the model’s stability and capacity to attain high performance despite the lack of a big
dataset. Fig. 14 shows some false-positive samples.

Table 5: The values of the evaluation metrices for the pneumonia model

Training
sample ratio

Validation Testing

Sensitivity Specificity F1-Score AUC Sensitivity Specificity F1 Score AUC

70% 1 0.9941 0.9971 0.9999 1 0.9903 0.9951 0.9998
50% 0.9917 0.9656 0.9785 0.9977 0.9793 0.9803 0.9798 0.9974
30% 0.9833 0.9685 0.9759 0.9959 0.9779 0.9891 0.9835 0.9981

Predicted 

0 1 

A
ct

ua
l 0 3466 34 

1 0 243 

Predicted 

0 1

A
ct

ua
l 0 3431 69 

1 10 472 

Predicted 

0 1 

A
ct

ua
l 0 3462 38 

1 16 707 

A: The confusion matrix of 
the trained pneumonia model 
on 70% of the pneumonia data 

B: The confusion matrix of 
the trained pneumonia model 
on 50% of the pneumonia data

C: The confusion matrix of 
the trained pneumonia model 
on 30% of the pneumonia data

Figure 12: The confusion matrices of the trained pneumonia model according to all training data ratios
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A: ROC in the case of training 
on 70% of the pneumonia data 

B: ROC in the case of training 
on 50% of the pneumonia data

C: ROC in the case of training 
on 30% of the pneumonia data 

Figure 13: The receiver operating characteristics for all training scenarios of the pneumonia model

Figure 14: False-positive samples were classified by the pneumonia model. The first left two images
are intact CT images, whereas the last two images represent COVID-19 CT

6 Conclusion

In this paper: we proposed a novel approach to diagnose COVID-19 and distinguish
COVID-19 from other types of pneumonia. Three RADSVDD models were used in the proposed
approach. Each RASVDD model was trained to recognize only one class and classify the others as
anomalies. To train and assess the performance of the proposed approach, a CT dataset was built using
publicly available datasets on the internet with the assistance of an expert radiologist. This dataset
comprised CT images for three different classes: intact, COVID-19, and non-COVID pneumonia.
To emphasize the proposed model’s ability to learn with a small dataset, three different data ratios
were employed to train each model. Because each model is a one-class classifier, when a new virus
emerges, we can train a new model to recognize it and add it into our existing models. The normal
model attained sensitivity (0.96–0.98), specificity (0.97–0.99), F1-score (0.97–0.98), and AUC 0.99.
The COVID model attained sensitivity (0.97–0.98), specificity (0.97–0.99), F1-score (0.97–0.99), and
AUC 0.99. The non-COVID pneumonia model attained sensitivity (0.97–1), specificity (0.98–0.99),
F1-score (0.97–0.99), and AUC 0.99. In the future, Since COVID-19 shares some characteristics with
other types of pneumonia, merging the symptoms with the features extracted by our deep model will
improve the diagnosis. For that, we aim to extend our dataset by adding CT scan images with the
symptoms of the patients. In addition, we aim to consider all the slices of the patient’s CT scans as one
sample during the diagnosis. To confirm the robustness of our framework, we will use CT datasets
for another pulmonary diseases and measure the ability of our model to distinguish between different
diseases.



CMC, 2023, vol.74, no.2 3349

Funding Statement: The authors received no specific funding for this study.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

References
[1] “WHO. Coronavirus Disease (COVID-19),” [Online], 2021. Available: https://www.who.int/health-topics/

coronavirus#tab=tab_1.
[2] N. Zhu, D. Zhang, W. Wang, X. Li, B. Yang et al., “A novel coronavirus from patients with pneumonia in

China, 2019,” New England Journal of Medicine, vol. 382, no. 8, pp. 727–733, 2020.
[3] C. Huang, Y. Wang, X. Li, L. Ren, J. Zhao et al., “Clinical features of patients infected with 2019 novel

coronavirus in Wuhan, China,” The Lancet, vol. 395, no. 10223, pp. 497–506, 2020.
[4] M. M. Lotfy, H. M. El-Bakry, M. M. Elgayar, S. El-Sappagh, G. Abdallah et al., “Semantic pneumonia

segmentation and classification for COVID-19 using deep learning network,” Computers, Materials &
Continua, vol. 73, no. 1, pp. 1141–1158, 2022.

[5] D. S. Hui, E. I. Azhar, T. A. Madani, F. Ntoumi, R. Kock et al., “The continuing 2019-nCoV epidemic
threat of novel coronaviruses to global health—The latest 2019 novel coronavirus outbreak in Wuhan,
China,” International Journal of Infectious Diseases, vol. 91, pp. 264–266, 2020.

[6] C. Long, H. Xu, Q. Shen, X. Zhang, B. Fan et al., “Diagnosis of the coronavirus disease (COVID-19):
rRT-PCR or CT?” European Journal of Radiology, vol. 126, pp. 108961, 2020.

[7] A. Khan, S. H. Khan, M. Saif, A. Batool, A. Sohail et al., “A survey of deep learning techniques for the
analysis of COVID-19 and their usability for detecting omicron,” arXiv preprint arXiv:2202.06372, 2022.
[online] Available: https://arxiv.org/abs/2202.06372.

[8] M. Rahimzadeh, A. Attar and S. M. Sakhaei, “A fully automated deep learning-based network for detecting
COVID-19 from a new and large lung CT scan dataset,” Biomedical Signal Processing and Control, vol. 68,
pp. 102588, 2021.

[9] G. Litjens, T. Kooi, B. E. Bejnordi, A. A. A. Setio, F. Ciompi et al., “A survey on deep learning in medical
image analysis,” Medical Image Analysis, vol. 42, pp. 60–88, 2017.

[10] N. El-Rashidy, S. El-Sappagh, S. Islam, H. M. El-Bakry and S. Abdelrazek, “End-to-end deep learning
framework for coronavirus (COVID-19) detection and monitoring,” Electronics, vol. 9, no. 9, pp. 1439,
2020.

[11] T. Javaheri, M. Homayounfar, Z. Amoozgar, R. Reiazi, F. Homayounieh et al., “Covidctnet: An open-
source deep learning approach to identify COVID-19 using CT image,” arXiv preprint arXiv:2005.03059,
2020. [online] Available: https://arxiv.org/abs/2005.03059.

[12] A. I. Khan, J. L. Shah and M. M. Bhat, “CoroNet: A deep neural network for detection and diagnosis of
COVID-19 from chest x-ray images,” Computer Methods and Programs in Biomedicine, vol. 196, pp. 105581,
2020.

[13] N. Subramanian, O. Elharrouss, S. Al-Maadeed and M. Chowdhury, “A review of deep learning-based
detection methods for COVID-19,” Computers in Biology and Medicine, vol. 143, pp. 105233, 2022.

[14] D. Shen, G. Wu and H. -I. Suk, “Deep learning in medical image analysis,” Annual Review of Biomedical
Engineering, vol. 19, pp. 221–248, 2017.

[15] X. Wu, H. Hui, M. Niu, L. Li, L. Wang et al., “Deep learning-based multi-view fusion model for screening
2019 novel coronavirus pneumonia: A multicentre study,” European Journal of Radiology, vol. 128, pp.
109041, 2020.

[16] J. Ma, A. R. Kanafi, U. R. Acharya, N. Khadem and A. Mohammadi, “Application of deep learning
technique to manage COVID-19 in routine clinical practice using CT images: Results of 10 convolutional
neural networks,” Computers in Biology and Medicine, vol. 121, pp. 103795, 2020.

https://www.who.int/health-topics/coronavirus#tab = tab_1
https://www.who.int/health-topics/coronavirus#tab = tab_1
https://arxiv.org/abs/2202.06372
https://arxiv.org/abs/2005.03059


3350 CMC, 2023, vol.74, no.2

[17] A. Amyar, R. Modzelewski, H. Li and S. Ruan, “Multi-task deep learning based CT imaging analysis for
COVID-19 pneumonia: Classification and segmentation,” Computers in Biology and Medicine, vol. 126, pp.
104037, 2020.

[18] O. Gozes, M. Frid-Adar, N. Sagie, H. Zhang, W. Ji et al., “Coronavirus detection and analysis on
chest CT with deep learning,” arXiv preprint arXiv:2004.02640, 2020. [online] Available: https://arxiv.org/
abs/2004.02640.

[19] Y. -H. Wu, S. -H. Gao, J. Mei, J. Xu, D. -P. Fan et al., “Jcs: An explainable COVID-19 diagnosis system
by joint classification and segmentation,” IEEE Transactions on Image Processing, vol. 30, pp. 3113–3126,
2021.

[20] M. Yousefzadeh, P. Esfahanian, S. M. S. Movahed, S. Gorgin, D. Rahmati et al., “Correction: Ai-corona:
Radiologist-assistant deep learning framework for COVID-19 diagnosis in chest CT scans,” Plos One, vol.
16, no. 9, pp. e0257119, 2021.

[21] J. Wang, Y. Bao, Y. Wen, H. Lu, H. Luo et al., “Prior-attention residual learning for more discriminative
COVID-19 screening in CT images,” IEEE Transactions on Medical Imaging, vol. 39, no. 8, pp. 2572–2583,
2020.

[22] L. Ruff, R. Vandermeulen, N. Goernitz, L. Deecke, S. A. Siddiqui et al., “Deep one-class classification,”
in Int. Conf. on Machine Learning, PMLR, Stockholm, Sweden, vol. 80, pp. 4393–4402, 2018.

[23] F. Wang, M. Jiang, C. Qian, S. Yang, S. Li et al., “Residual attention network for image classification,” in
Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, pp.
3156–3164, 2017.

[24] A. Bhardwaj, W. Di and J. Wei, “Why deep learning?” in Deep Learning Essentials: Your Hands-on Guide
to the Fundamentals of Deep Learning and Neural Network Modeling, 1st ed., Birmingham, UK: Packt
Publishing Ltd., Chapter 1, pp. 8–18, 2018.

[25] A. Glassner, “Deep learning,” in Deep Learning: From Basics to Practice, 1st ed., vol. 1, Seattle WA, USA:
The Imaginary Institute, Chapter 1, pp. 37–43, 2018.

[26] J. Zhang, Y. Xie, Y. Xia and C. Shen, “Attention residual learning for skin lesion classification,” IEEE
Transactions on Medical Imaging, vol. 38, no. 9, pp. 2092–2103, 2019.

[27] A. M. Hafiz, S. A. Parah and R. U. A. Bhat, “Attention mechanisms and deep learning for machine vision:
A survey of the state of the art,” arXiv preprint arXiv:2106.07550, 2021. [online] Available: https://arxiv.
org/abs/2106.07550.

[28] Z. Han, B. Wei, Y. Hong, T. Li, J. Cong et al., “Accurate screening of COVID-19 using attention-based
deep 3D multiple instance learning,” IEEE Transactions on Medical Imaging, vol. 39, no. 8, pp. 2584–2594,
2020.

[29] “COVID-CT,” [online], 2020. Available: https://github.com/UCSD-AI4H/COVID-CT/tree/master/
Images-processed.

[30] zeynaloy. “(2020-09-20). “COVID-19 CT images dataset,” [online] Available: https://www.kaggle.com/
zeynaloy/covid19-ct-images-dataset.

[31] PlamenEduardo. “(2020-04-22). “SARS-COV-2 CT-scan dataset,” [online] Available: https://www.kaggle.
com/plameneduardo/sarscov2-ctscan-dataset.

[32] J. Ma, G. Cheng, W. Yixin, A. Xingle, G. Jiantao et al., (April 20, 2020). “COVID-19 CT lung and infection
segmentation dataset,” [online] Available: https://zenodo.org/record/3757476#.Yab9b9BBxPa.

[33] O. Ronneberger, P. Fischer and T. Brox, “U-Net: Convolutional networks for biomedical image segmenta-
tion,” in Int. Conf. on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany,
pp. 234–241, 2015.

[34] V. Sharma and C. Dyreson, “COVID-19 screening using residual attention network an artificial intelligence
approach,” in 2020 19th IEEE Int. Conf. on Machine Learning and Applications (ICMLA), Miami, FL,
USA, pp. 1354–1361, 2020.

[35] K. He, X. Zhang, S. Ren and J. Sun, “Deep residual learning for image recognition,” in Proc. of the IEEE
Conf. on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, pp. 770–778, 2016.

https://arxiv.org/abs/2004.02640
https://arxiv.org/abs/2004.02640
https://arxiv.org/abs/2106.07550
https://arxiv.org/abs/2106.07550
https://github.com/UCSD-AI4H/COVID-CT/tree/master/Images-processed
https://github.com/UCSD-AI4H/COVID-CT/tree/master/Images-processed
https://www.kaggle.com/zeynaloy/covid19-ct-images-dataset
https://www.kaggle.com/zeynaloy/covid19-ct-images-dataset
https://www.kaggle.com/plameneduardo/sarscov2-ctscan-dataset
https://www.kaggle.com/plameneduardo/sarscov2-ctscan-dataset
https://zenodo.org/record/3757476#.Yab9b9BBxPa

	Residual Attention Deep SVDD for COVID-19 Diagnosis Using CT Scans
	1 Introduction
	2 Preliminaries
	3 Dataset
	4 Proposed Approach
	5 Experiments
	6 Conclusion


