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Abstract: Recently, machine learning-based technologies have been developed
to automate the classification of wafer map defect patterns during semicon-
ductor manufacturing. The existing approaches used in the wafer map pattern
classification include directly learning the image through a convolution neural
network and applying the ensemble method after extracting image features.
This study aims to classify wafer map defects more effectively and derive
robust algorithms even for datasets with insufficient defect patterns. First,
the number of defects during the actual process may be limited. Therefore,
insufficient data are generated using convolutional auto-encoder (CAE), and
the expanded data are verified using the evaluation technique of structural
similarity index measure (SSIM). After extracting handcrafted features, a
boosted stacking ensemble model that integrates the four base-level classifiers
with the extreme gradient boosting classifier as a meta-level classifier is
designed and built for training the model based on the expanded data for
final prediction. Since the proposed algorithm shows better performance than
those of existing ensemble classifiers even for insufficient defect patterns, the
results of this study will contribute to improving the product quality and yield
of the actual semiconductor manufacturing process.

Keywords: Wafer map; pattern classification; machine learning; boosted
stacking ensemble; semiconductor manufacturing processing

1 Introduction

A wafer is a basic unit created to evaluate electrical properties during semiconductor manufactur-
ing [1], where wafer map fabrication is used to visualize the location of defects on the wafer map.
Defective IC chips usually show defect patterns on the wafer map. These defect patterns include
useful information about the semiconductor manufacturing process. Thus, wafer map defect pattern
classification is essential to investigate the root cause of such defects occurring in the semiconductor
manufacturing process. For example, physical etching frequently produces edge-ring patterns, while
chemical etching often produces circle and scratch patterns. Therefore, accurate identification and
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classification of these defect patterns increases the chances of fixing the root cause of the main
problem [2].

In the actual semiconductor manufacturing process, the occurrence of defects is very rare. In
general, there are very few cases with detectable defect patterns when collecting manufacturing process
data, and most of the data are in a normal state. Since it is necessary to classify data with a small
defect pattern by learning the imbalanced dataset, the classification accuracy is very poor and time
consuming [3]. Furthermore, pattern classification for the collected wafer map data relies on visual
inspection by skilled engineers. Engineers randomly select samples from entire wafers and use high-
resolution microscopy to analyze defects, which is a time-consuming and inconsistent process [4]. In
order to save time and money in this process, it is essential to study automated wafer map pattern
classification algorithms [5]. A considerable amount of research is underway now on wafer map defect
classification using feature extraction algorithms in the semiconductor manufacturing process. Wafer
map defect patterns were successfully classified in initial studies by applying only machine learning
without applying feature extraction techniques [6]. In addition, research investigating the techniques
for extracting features by concentrating on the features of the wafer map has been performed [7–10].
Further, this feature extraction technique was applied to analyze spatial defect patterns using machine
learning and automated clustering algorithms [11–13]. In recent studies, defects have been analyzed
by directly extracting features from deep learning-based images. There are also many studies that have
successfully implemented wafer map defect classification by applying the feature extraction technique
followed by an ensemble learning algorithm [14–20].

In order to improve wafer map pattern classification accuracy, this study aims to suggest a Boosted
Stacking Ensemble Machine Learning (BSEML) algorithm that applies data augmentation to insuffi-
cient defect patterns. With a given training dataset, data augmentation is first performed through CAE-
based model learning. Then, features are extracted through handcrafted feature extraction techniques
based on features such as density, Radon, and geometry. The extracted feature vectors are combined
to construct a BSEML model that performs final prediction. The contributions of this study are listed
as follows.

1. The effectiveness of the proposed technique was verified using wafer datasets collected from
semiconductor manufacturers.

2. The computational efficiency was increased by extracting the key defect pattern information
hidden from the original image using various feature extraction techniques.

3. Data augmentation was performed using a CAE-based model to solve the problem of lack of
defect patterns and imbalance, and the accuracy of the proposed model was improved using
augmented data.

The rest of this study is structured as follows. Section 2 briefly describes the techniques used in
related studies. Section 3 introduces the proposed algorithm. Section 4 describes the data structure
and experimental methods. Sections 5 and 6 contain the results of the study and conclusions

2 Related Work

In the past few years, there have been many studies that have applied machine learning to wafer
map pattern classification. These are largely divided into two types based on the method of extracting
the features of the wafer map and classifying the defects. Tab. 1 summarizes literature reported in the
related studies.
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2.1 Wafer Map Pattern Classification

The first method is to extract hand-made features and build a ready-made classifier. The most
commonly used features for feature extraction techniques in this approach include density, geometry,
and Radon properties [7]. Such handcrafted feature extraction reduces dimensionality by transforming
the wafer map into a vector form. Next, it takes a vector as input and makes predictions in the
classification model. This step involves various existing learning algorithms such as support vector
machine (SVM), logistic regression (LR), naive Bayes (NB), and K-nearest neighbors (K-NN). The
SVM model can be constructed more simply than the existing neural network model, and it is
characterized by less overfitting as it has no effect on multi-class data classification and error data
[10]. In addition, Baly et al. preprocessed the wafer map through End-of-line (EOL) test before
classification using the SVM classifier [6]. The LR model is a widely used classification model, which
provides probabilities for classified classes. This is a big advantage over models that can only do final
classification [21].

The NB model is based on Bayes’ theorem and learns very quickly compared to existing learning
algorithms. In particular, it allows easy and quick prediction in multi-class classification that is
probabilistically independent [22]. It has high accuracy as the K-NN model checks and compares
all classification system values, and the error data is excluded from the comparison target, thus
not affecting the resulting value [23]. Yu et al. maximized classification performance through image
denoising with median filter using an algorithm based on a KNN classifier [24]. Studies based
on these methods focus on designing model optimizations to enhance the performance of pattern
classification. These methods, however, do not overcome the limitations of the models, and some
important information from the raw wafer map image might be lost.

The second method is a CNN-based raw image classification method. As shown in Fig. 1, the
method aims to detect defects by extracting features from the wafer map based on image data. CNNs
are end-to-end models designed to process two or more dimensional arrays as input. The end-to-end
model approach is useful as it does not require the development of feature extractors [25]. CNN can
directly extract the convolution features and apply them to the wafer map since the wafer map is
expressed as a two-dimensional array. Such advantages allow this method to be actively applied to the
classification of wafer maps [26–28]. In addition, CNN-based wafer map classification studies using
various data processing techniques have been conducted until recently [28–32].

Table 1: Machine learning approaches for wafer map pattern classification

Ref. No Method Ensemble
method

Input feature Input shape Classifier Data
processing

[6] MFE - Wafer map 30 SVM EOL test
[24] MFE - Features 53 JLNDA-FD Denoising
[18] MFE Bagging Features 4 DT -
[17] MFE Voting Features 66 LR, RF, GBM, ANN -
[19] MFE Stacking Spatial 10 AB, ET, XGB -
[27] CNN - Wafer map (286, 400) CNN Simulated

generation
[28] CNN - Wafer map (100, 100) DCNN Noise

reduction

(Continued)
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Table 1: Continued
Ref. No Method Ensemble

method
Input feature Input shape Classifier Data

processing

[15] CNN - Wafer map (256, 256) CNN Contrast,
binarization

[29] CNN Stacking Wafer map (300, 300) ECNN -
[30] CNN - Wafer map (64, 64) CNN CAE
[31] CNN - Wafer map (224, 224) CBAM C-Mean

filtering
[32] CNN - Wafer map (416, 416) YOLO -
Proposed MFE Boosted

Stacking
Features (32, 32), 59 DT, SVM, RF, KNN,

XGB
CAE

Figure 1: The architecture of convolution neural network approach [25]

2.2 Ensemble Model Learning of Handcrafted Features

The ensemble system is constructed based on principles such as reliability estimation, data fusion,
and unbalanced data processing. The performance of an ensemble system depends on the accuracy
of individual classifiers and the number of base-level classifiers included [33]. However, it is very
difficult to select an appropriate classifier for designing an ensemble system. The ML classifier used
in wafer defect classification may be suitable for some defects, but may not be suitable for recognizing
all defect classes [34]. The ensemble techniques are used to overcome the limitations of individual
classifiers in ML. Learning by assigning specific weights to individual classifiers ensures robustness
for all defect classes. The goal of the ensemble classification technique is to integrate the prediction
results of various ML models within the given training data and generate the final prediction result
with improved accuracy [35]. It also facilitates fast classification through minimal calculations, coupled
with handcrafted features that improve defect identification on large-scale wafer data [36].

In recent years, increasing interest in ensemble techniques has led to the emergence of various
ensemble-based algorithms such as Voting, Bagging, Boosting, AdaBoost, XGBoost, and Mixture of
Experts (MoE) [37]. Accordingly, studies applying the ensemble classification technique to classify
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wafer map defect patterns have appeared. The voting method first combines different algorithm
models.

There are three types of voting methods for deriving the result: the majority, hard, and soft voting
methods. Through experimental verification, the soft voting ensemble method has been verified to
have the best performance for deriving the final result [17]. The bagging ensemble method allows for
redundancy in the data sample and extracts the sample, and then learns by using different sample
combinations within the same algorithm, decision tree (DT) or random forest (RF). Subsequently,
the average of the results is calculated to obtain the final result. A robust model for various defect
patterns has been presented according to the mathematical model of DT, an internal algorithm [18].

3 Proposed Method

This section describes the technique proposed in this study in detail. Fig. 2 shows the process for
the proposed technique. The process is as follows. There are cases in which raw wafer image data have
a class imbalance or lack defect patterns. Data augmentation using the CAE model is implemented
to expand the data by matching the ratio for the overall insufficient pattern. To extract the features
of augmented data as much as possible through the ML-based classifier, the amount of computation
is reduced by reducing the dimension of the 2D array image to a 1D array while minimizing the loss
of feature information due to the lowering of the dimension [38]. By extracting Radon, density, and
geometric-based features, the feature vectors are maintained and summed into the BSEML model.
Finally, the summed feature vectors are learned by the base-level classifier inside the BSEML model
and the final prediction is performed by the meta-level classifier.

Figure 2: The architecture of the proposed method

3.1 Feature Extraction

The feature extraction technique makes a one-dimensional array by reducing the dimension of a
two-dimensional array of the wafer map that exists as an image. With the dimension reduction, not
only the amount of computation is reduced, but also important feature information is vectorized and
converted into a one-dimensional vector [39]. Fig. 3 presents sample wafer maps from each defect
pattern type.

First, the density-based feature extraction technique is a method of calculating how densely the
defects are in the corresponding section of the wafer map [9]. In order to extract the density-based
features, each wafer map is divided into 20 parts of the (6, 6) region, and the failure density in each
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part is calculated. As shown in Fig. 4, the defect density distributions in the respective wafer regions
are also different for different defect patterns.

Figure 3: Sample images

Figure 4: Density-based images

Second, the Radon-based feature extraction technique is a method to generate an image of a
two-dimensional representation of a wafer map by Radon transformation based on projection [40].
A projection is constructed by creating a few parallel rays from an object of interest in a 2D image,
transferring the object’s integral contrast along with all of the rays to a single pixel in the projection.
A Sinogram, which depicts the original image in a linear transform, is a collection of these projections
from various angles [8]. The Radon transformation is expressed in Eq. (1).

g (ρ, θ) =
∑m

x=1

∑n

y=1
M (x, y) δ (x cos θ + y sin θ − ρ) (1)

Here, M is a wafer map of size m×n. Each element in M is set as 1 to denote a defective die, and
0 otherwise. ρ denotes the distance between the point of origin and the line, and θ indicates angle
from the x-axis. g (ρ, θ) is the response of a projection, and δ is the impulse function. Fig. 5 shows the
results of Radon transformation for eight common defect classes, identified by linear transformation
of a collection of projections for different angles.
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Figure 5: Radon-based images

Third, a geometry-based feature extraction technique is used to evaluate the geometric properties
of each wafer map [41]. Geometry-based features have been derived by calculating local, statistical, and
linear properties based on the analysis of various wafer map patterns and consultation with domain
experts. The scale and rotation of these properties are invariant, and a region-labeling algorithm is
used. The algorithm reveals the most prominent areas of the wafer defect pattern.

Fig. 6 shows the most prominent regions with the maximum area for each wafer map defect class.
This function is also considered noise filtering to remove defect noise that is randomly present on the
wafer map image. As a result, a total of 59 handcrafted features were extracted, containing 13 densities,
40 Radon shapes, and six geometric features, which were used to train the model.

Figure 6: Geometry-based images

3.2 The BSEML Model

Fig. 7 shows the architecture of the BSEML model. In the proposed model, a base-level classifier
was constructed using four ML classifiers: random forest (RF), decision tree (DT), KNN, and
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SVM. The meta-level classifier was constructed using the extreme gradient boosting classifier. The
identification accuracy of the star base-level classifier depended on the wafer map defect class.
Individual classifiers failed to achieve high accuracy as each classifier had its own learning capabilities
and parameter values. Therefore, an ensemble approach of collecting the best results from all
classifiers, aggregating them, and putting them in the meta-level classifier was used to obtain the final
classification results for all defect classes. A summary of each individual classifier is as follows.

Figure 7: The architecture of the BSEML model

A decision tree (DT), also called a classification and regression tree used in both classification
and regression analysis, is a classification model that divides the independent variable space while
sequentially applying various rules. In predicting target variables or solving classification problems,
the model enables checking which explanatory variable is the most important influencing factor and
determines the detailed criteria for the prediction and classification of each explanatory variable [42].

A random forest (RF) is a bagging ensemble algorithm that trains several DT models and
synthesizes the results to make the prediction. The bagging ensemble algorithm is a method of training
individual DT models with a sampled dataset by allowing duplicates from the original dataset. In
addition, DT is based on the principle of uncertainty called entropy, and the concept of entropy is
expressed by the following expression [43].

H (t) = −
∑c

i=1
p (i|t) log2 p (i|t) (2)

p (i|t) denotes the probability value at which each element can come out, and H (t) denotes the
uncertainty of the random variable numerically. Entropy in ML means that the higher the value, the
lower the probability of successful classification. Therefore, RF and DT models are trained by selecting
a predicted value that lowers the entropy index. Values predicted through multiple models are averaged
to produce a final predicted value. The RF algorithm improves the generalization performance of the
predictive model by randomly selecting features for further diversity in the DT model [44].

KNN is an algorithm that is used to determine the classification of new data. The KNN for
classification is expressed as follows [45].

ŷ (̃x) = argmax
q∈{1,2,...Q}

1
t

∑
t:̃xt∈Nk (̃x)

T (yt = q) (3)

For the input data x̂, the KNN classifier predicts a label, ŷ (̃x). Where, Nk (̃x) is a set of x̃ts close to
x̃, and T (y) is a function that outputs 1 if y is true, and 0 if false. By comparing the existing data with
the newly input data, the input data are classified based on the existing data that are similar. Since
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this algorithm checks and compares all the values of the existing classification system, the accuracy
is high, and error data are excluded from comparison by only using the k nearest data. Therefore, the
error data do not significantly affect the result value [46].

SVM is an algorithm that performs classification using support vectors and hyperplanes. The data
are classified by maximizing the margin between the separated hyperplane and the support vector
while minimizing the error [47]. Training by maximizing the margin may lead to some errors, but the
classification accuracy is high for newly input data. Training by minimizing errors may lead to incorrect
classification due to a narrow margin. The expression to maximize the SVM margin is as follows [48].

maximize M (4)

s.t.
∑p

k=1
α2

k = 1, (5)

yi

(
α0 + α1xi1 · · · + αpxip

) ≥ M (1 − μi) , (6)

μi ≥ 0,
∑n

i=1
μ ≤ C (7)

M denotes the margin, α denotes the slope to hyperplane, x denotes the point on the hyperplane,
and y denotes the ground truth class. By adding a tuning parameter C that allows the error μi in the
case of misclassification for each observation, data xi was appropriately allowed to have a soft margin.
Therefore, in this study, the accuracy of defect classification was improved by selecting a method for
maximizing the margin [49].

The proposed BSEML model is an ensemble technique combining base-level classifiers to improve
prediction performance [50]. Based on the stacking ensemble structure, the error rate of individual
classifiers is minimized. A stacking ensemble consists of a base-level classifier and a meta-level
classifier. All base-level classifiers are trained with different approaches to perform target tasks using
different learning algorithms. The data diversity of the ensemble model was improved by selecting
different base-level classifiers with different parameter boundaries. Since the classifier selected this way
was trained with the same extracted features, various predictive models were created with the same
input data according to the decision boundary, thereby preserving the uniqueness of each classifier
[33]. The meta-level classifier was trained to integrate the robustness of different base-level classifiers
by verifying base-level classifier would be more accurate for each class of defects when performing the
target task.

The base-level classifier output is then provided to the meta-level classifier to make final predic-
tions [51]. In this study, extreme gradient boosting (XGB) was selected as a meta-level classifier to
construct a boosted stacking ensemble.

XGB is the most popular algorithm in tree-based ensemble learning, which is based on the
principle of boosting. A strong prediction model is built by weighing the learning error of the weak
learner and reflecting it sequentially on the next learning model. Although the model is based on a
gradient boosting machine (GBM), it works by solving the problems of slow execution time and lack
of regularization, which are the weaknesses of GBM [52].

In this experiment, the meta-level classifier increased the accuracy of final predictions by applying
weights to predictions of weak leaner models among basic classifiers and performing parallel learning.
Tab. 2 shows the algorithm for the BSEML model.
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Table 2: The algorithm of BSEML model

Algorithm: Algorithm for proposed model

Input: training data D = {xi, yi}m
i=1; base-level classifier h1, . . . , hk; initialized distribution S (i);

normalization factor Zn; meta-level classifier H
Output: trained ensemble classifier H

Initialisation:
1: Step 1: learn base-level classifiers
2: for t = 1 to T do
4: learn ht based on D
5: end for
6: Step 2: construct new data set of predictions
7: for i = 1 to m do
8: Dh = {

x′
i , yi

}
where x′

i = {h1 (xi) , . . . , hT (xi)}
9: End for
10: Step 3: learn a meta-level classifier
11: for n = 1 to j do
12: Determine weight αn of ht

13: Initialized distribution S1 (i) = m−1

14: Update weights
15: Sn+1 (i) = Sn (i) e−αnyihn(xi)/Zn

16: H (x) = sign
(∑j

n=0 (S (x))
)

17: End for
18: Learn H based on Dh

19: Return H

Once the BSEML model is trained, it can be utilized to classify wafer map patterns. Given wafer
map x as a new input, the predictive label y is derived by the following process. The wafer map x
is augmented by the CAE model and enters gMFE to generate a feature vector. The feature vectors
are aggregated to obtain the final probability prediction ĤBSE to form gMFE and used as inputs to the
BSEML model. When training data D is input to the BSEML model, base-level classifiers are trained.
Next, a new dataset Dh is created based on the data learned in h. Finally, when Dh is transferred to
the meta-level classifier, the weights for weak learners with low accuracy are updated to perform final
class prediction. This gives high weights to weak learners with low accuracy and low weights to strong
leaners with high accuracy, resulting in appropriate weight updates [53].

ŷ = f (x) = argmax
(

ĤBSE
)

(8)
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Eq. (8) shows the equation for the final class prediction. In ĤBSE, with the class corresponding to
the largest element, the final prediction ŷ for the wafer map x is obtained.

4 Experimental Analysis
4.1 Data Description

The WM-811K dataset, obtained in an actual industrial process, was used in this study; the dataset
is publicly available in [54]. The dataset is a map of 811,457 wafers generated from over 40,000 detectors
during circuit testing in the manufacturing process. Defect patterns were marked by domain experts in
172,950 wafer maps of theirs. For the experiment, only the wafer maps labeled in the dataset were used.
A labeled wafer map belongs to one of the nine defect classes: Center, Donut, Edge-Ring, Edge-Local,
Local, Random, Near-full, Scratch, and None. Each wafer map was checked in a two-dimensional
array before being passed on to augmentation preprocessing.

As feature extraction was not possible for array elements with fewer than 100 defective elements,
four abnormal wafer maps were removed. These four abnormal wafer maps were found to belong to
the None class. Therefore, the number of datasets was reduced to 172,496. Tab. 3 shows the defect
distribution in the labeled dataset. The None class defect occupies the most in the total. The shape
of the wafer map varies from (26, 26) to (300, 300). The dataset obtained from the actual process has
very few defect patterns and requires a lot of money and time. Therefore, 14,326 training datasets were
extracted by randomly sampling from the labeled dataset. In order to apply the wafer map to a later
process, all wafer maps were reshaped into (32, 32) where defect patterns were evenly distributed.

Table 3: Dispersion of data classes in the dataset

Class Index Defect pattern Wafer

1 Center 4294
2 Donut 555
3 Edge-local 5189
4 Edge-ring 9680
5 Local 3593
6 Near-full 149
7 Random 866
8 Scratch 1193
9 None 147472
Total 172946

4.2 Convolutional Auto-Encoder for Data Augmentation

In the dataset acquired from the actual process, there is a difference in the amount of data for each
defect class, and in severe cases, the data is biased toward only the majority class. Machine learning
algorithms proceed with learning by assuming that each class has an equal ratio. As for a dataset with
a class imbalance, machine learning does not perform precise learning and is biased toward the class
which occupies a large proportion of the dataset [55].
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The WM-811K used in this study has an imbalanced dataset. The None class accounts for more
than 90% of the total defects, and there are insufficient defect patterns in the Donut and Near-full
classes.

Therefore, in order to expand the number of defect images in the dataset and improve the
generalization ability of the model, a data augmentation method based on CAE was used [56].

CAE is a variant of convolutional neural networks that is used as a tool for unsupervised learning
of convolution filters [57]. CAE is usually applied in image reconstruction processes to minimize
reconstruction errors by learning optimal filters. In AE, the images must be spread out as single vectors
and the network must be designed regarding to the constraint on the number of inputs.

However, unlike normal AE that completely ignores the 2D image structure, CAE is a feature
extractor that can learn even from two-dimensional images [58]. Fig. 8 shows the CAE parameters
and architecture employed in this study. For each convolution 2D layer of the encoder and decoder of
the CAE model, a kernel size of (3, 3) was used, and MaxPooling2D was applied. The kernel size of
the pooling layer was (2, 2). ReLu was used for the activation functions of all layers, and a sigmoid
for classification was used for the deconvolution layer at the end of the model. The entire process
is explained as follows. The received input image data passes through the convolution layer while
maintaining the spatial information in the encoder unit. The information passes through the layer,
then through the central latent space layer, and finally through the decoder unit with noise added. The
noise scale was set to 10% to minimize the effect on the defect pattern in this study [59].

Figure 8: The architecture of CAE model

4.3 Structural Similarity Index Measure Methods for Augmented Data Validation

SSIM was used to compare the difference between the original wafer image data and the
augmented wafer image data. SSIM is a method designed to evaluate visual similarity rather than
numerical error. SSIM specializes in deriving the structural information of the image and compares
the degree of distortion of the structural information [60]. The SSIM equation is expressed as Eq. (9),
and the following equations represent its internal equations [3].
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SSIM (x, y) =
(
2λxλy + C1

) (
2oxy + C2

)
(
λ2

x + λ2
y + C1

) (
o2

x + o2
y + C2

) (9)

L (x, y) = 2λxλy + C1

λ2
x + λ2

y + C1

(10)

In Eq. (10), λx denotes the average x of the image, λ denotes the average y of the image, and
C1 denotes the normalization constant for brightness. The following equation represents the average
luminance.

C (x, y) = 2oxoy + C2

o2
x + o2

y + C2

(11)

In Eq. (11), ox denotes the standard deviation of input image, oy denotes the standard deviation of
the y image, and C2 denotes the contrast term constant. The following equation represents the contrast
of the image.

S (x, y) = oxy + C3

oxoy + C3

(12)

In Eq. (12), oxy denotes the correlation coefficient between x and y. The correlation coefficient
between x and y was calculated to compare the structures of the original image and the augmented
image.

By comparing and analyzing raw image data and augmented image data with the SSIM scale,
augmented image data with an SSIM value of 90% or more were used as feature extraction model
input value [61]. Fig. 9 shows a comparison between the raw image and the augmented image.

Figure 9: The comparison of generated image to the original image

4.4 Experimental Settings

In this study, a dataset of four cases was constructed from the training dataset for performance
evaluation. Since the defect class is in a very unbalanced state in the original data, three augmentations
were performed to solve this problem. Tab. 4 shows the wafer map data organized by enhancement
ratio. Case 1 consists of raw wafer data as they are. Case 2 consists of a 30% augmented data from raw
wafer data. Cases 3 and 4 consist of 40%, and 50% augmented data from raw wafer data, respectively.
In addition, while performing data augmentation, the ratio of each defect pattern in the original data
was maintained as much as possible. However, the None class was excluded from augmentation as it
contained too much data compared to other defect classes. In each experiment, 80% of the data was
used as the training dataset for the performance model, and the remaining 20% was used as the test
dataset.
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Table 4: Distribution of generated images

Case index Defect pattern type Data augmentation
Case 1 (Original) Center 90

Donut 12
Edge-Loc 285
Edge-ring 31
Loc 297
Near-full 23
Random 74
Scratch 65
None 13,489

Total 14,366

Case 2 (30% augmentation) Center 630
Donut 80
Edge-Loc 888
Edge-ring 527
Loc 891
Near-full 96
Random 592
Scratch 576
None 13,489

Total 17,769

Case 3 (40% augmentation) Center 900
Donut 252
Edge-Loc 1,184
Edge-ring 806
Loc 1,188
Near-full 268
Random 888
Scratch 864
None 13,489

Total 19,839

Case 4 (50% augmentation) Center 1,170
Donut 302
Edge-Loc 1,480
Edge-ring 1,054
Loc 1,485
Near-full 324
Random 1,110
Scratch 1,080
None 13,489

Total 21,494
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This experiment was performed using Python 3.6 in the Ubuntu 12.04 environment, and hand-
crafted feature extraction was obtained through the scikit-image library [62]. The scikit-learn library,
Ensemble-Pytorch library, and XGBoost library were used together for training and comparison
models [63–65].

4.5 Validation Methods

Macro-average F1, micro-average F1, and confusion matrix were used to evaluate classification
performance. These are performance metrics commonly used for classifying wafer map patterns,
mainly on imbalanced data [66]. F1macro and F1micro are described by the following expressions.

Pk = TPk

TPk + FPk

(13)

Rk = TPk

TPk + FNk

(14)

F1macro = 1
C

∑C

k=1

2 × Pk × Rk

Pk + Rk

(15)

Pmicro =
∑C

k=1TPk∑C

k=1TPk + ∑C

k=1FPk

(16)

Rmicro =
∑C

k=1TPk∑C

k=1TPk + ∑C

k=1FNk

(17)

F1micro = 2 × Pmicro × Rmicro

Pmicro + Rmicro

(18)

where, Pk and Rk denote precision and recall, respectively. F1macro calculates the unweighted average F1
score for each class. F1macro allows efficient calculation for a minority class in data with class imbalance
by giving same weights to individual classes. Whereas, F1micro proceeds with learning by giving the same
weight to individual classes, and a class with a large amount of data greatly affects the calculation in
data with class imbalance. In this experiment, F1macro was smaller than F1micro in general, due to the
distribution of class imbalance in the dataset.

The confusion matrix is a table that supports the visualization of the performance of a trained
classification algorithm in a classification problem. Each row of the matrix denotes an instance of the
predicted class, and each column presents an instance of the actual class. The confusion matrix used
in this experiment was normalized for effective analysis [67].

4.6 Compared Models

The proposed model was compared with two basic classifiers and four ensemble-based models.
Tab. 5 shows the F1 scores of the proposed and compared models for each defect. The two base-level
classifiers, the SVM and KNN classifier, are provided by the scikit-learn library, which are the base-
level classifiers used in the stacking layer of the BSEML model. The four ensemble-based models
selected include voting, stacking, bagging, and boosting models. As for the internal models of the
voting ensemble model, SVM, KNN, RF, and DT were selected in the same way as the BSEML model
and trained using soft vote method. The internal model of the stacking classifier was also selected
in the same way as the BSEML model, and DT was used for the meta-level classifier [68]. As the
bagging model, BaggingClassifier, a classifier provided by scikit-learn, was used, and learning was
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conducted by setting base_estimator to RF-based classifier and n_estimator to 100. GBM was used
as the boosting model, and n_estimator was set to 200 for learning considering that it is robust for
overfitting [69].

Table 5: F1 score comparison analysis of the proposed model distribution for generated image

Metric Case SVM KNN Voting Stacking Bagging Boosting BSEML

F1macro 1 0.457 0.274 0.471 0.517 0.432 0.398 0.525
2 0.535 0.647 0.668 0.821 0.807 0.851 0.896
3 0.545 0.761 0.765 0.867 0.833 0.872 0.897
4 0.526 0.756 0.753 0.891 0.843 0.901 0.931

F1micro 1 0.788 0.836 0.879 0.922 0.898 0.907 0.933
2 0.839 0.877 0.885 0.926 0.912 0.923 0.961
3 0.806 0.892 0.895 0.930 0.957 0.927 0.977
4 0.799 0.873 0.895 0.934 0.961 0.933 0.978

5 Results and Discussion

Tab. 5 provides a comparison of F1macro and F1micro for each data size case between the compared
models and the proposed model. As shown in Tab. 5, the proposed model outperformed other models
in all cases. In particular, it showed a remarkable increase in F1macro, indicating better classification
performance on data with class imbalance. In Case 1, with raw data, F1macro, showed the best
performance with the largest margin. While the accuracy of the pre-model models increased with data
augmentation, the proposed model had the best classification performance among them. Tab. 6 shows
a comparison of the F1 scores of seven models by data case for various defect classes. The ensemble
models showed different robustness in each defect class. In particular, the stacking model and the
bagging model showed strength in random and scratch classes, respectively.

Table 6: F1 score comparison analysis of the proposed model for every defect class

Case index Defect SVM KNN Voting Stacking Bagging Boosting BSEML

Case 1 Center 0.558 0.176 0.378 0.390 0.400 0.500 0.475
Donut 0.323 0.333 0.452 0.365 0.331 0.436 0.565
Edge-Loc 0.424 0.208 0.466 0.543 0.454 0.534 0.554
Edge-Ring 0.400 0.316 0.400 0.545 0.222 0.308 0.656
Loc 0.277 0.148 0.292 0.323 0.276 0.336 0.370
Near-Full 0.167 0.556 0.933 0.933 0.667 0.222 0.750
Random 0.650 0.080 0.545 0.776 0.515 0.595 0.727
Scratch 0.267 0.132 0.346 0.296 0.348 0.320 0.261
None 0.969 0.978 0.980 0.981 0.979 0.933 0.982

Case 2 Center 0.403 0.580 0.603 0.861 0.916 0.868 0.869
Donut 1.000 0.821 0.951 1.000 1.000 1.000 1.000
Edge-Loc 0.276 0.353 0.416 0.605 0.754 0.627 0.827

(Continued)
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Table 6: Continued
Case index Defect SVM KNN Voting Stacking Bagging Boosting BSEML

Edge-Ring 0.703 0.790 0.889 0.934 0.955 0.958 0.958
Loc 0.192 0.262 0.246 0.512 0.494 0.565 0.565
Near-Full 0.371 0.636 0.389 0.778 0.982 0.830 0.983
Random 0.385 0.726 0.807 0.957 0.845 0.926 0.926
Scratch 0.514 0.684 0.741 0.863 0.941 0.908 0.909
None 0.970 0.971 0.969 0.967 0.975 0.975 0.979

Case 3 Center 0.435 0.756 0.694 0.871 0.883 0.891 0.931
Donut 0.994 0.871 0.887 1.000 1.000 0.994 1.000
Edge-Loc 0.273 0.561 0.524 0.680 0.789 0.700 0.826
Edge-Ring 0.714 0.891 0.905 0.969 0.970 0.971 0.983
Loc 0.285 0.441 0.464 0.658 0.667 0.639 0.810
Near-Full 0.382 0.673 0.762 0.824 0.859 0.878 0.944
Random 0.371 0.857 0.856 0.918 0.935 0.898 0.971
Scratch 0.386 0.825 0.797 0.909 0.905 0.906 0.951
None 0.971 0.967 0.974 0.976 0.978 0.969 0.975

Case 4 Center 0.405 0.718 0.665 0.891 0.923 0.891 0.951
Donut 1.000 0.886 0.940 0.995 0.995 0.995 0.999
Edge-Loc 0.297 0.557 0.567 0.758 0.785 0.759 0.875
Edge-Ring 0.699 0.865 0.912 0.971 0.976 0.972 0.981
Loc 0.234 0.489 0.483 0.693 0.741 0.693 0.858
Near-Full 0.350 0.630 0.588 0.861 0.915 0.959 0.885
Random 0.424 0.803 0.943 0.953 0.921 0.916 0.981
Scratch 0.354 0.796 0.912 0.918 0.917 0.971 0.975
None 0.971 0.966 0.967 0.976 0.976 0.947 0.977

The proposed model presents good performance for all defect classes. Such results indicate that the
proposed model increases the F1 score for each defect class by appropriately utilizing the combination
of ensemble models for each different defect pattern. Fig. 10 shows the normalized confusion matrix of
the basic classifier SVM, voting ensemble model and the proposed model. A clear improvement in the
classification performance is observed from the base-level classifier to the ensemble classifier and then
to the proposed model. The base-level classifier shows high accuracy only for the Donut and None
classes. The ensemble classifier shows high accuracy for all defect classes except for a specific defect
class. The proposed model combines the strengths of ensemble classifiers to achieve very high defect
detection rates for all classes. In addition, the stacking ensemble model and the BSEML model were
compared to investigate which defect patterns were weighted as learning progressed. Fig. 11 shows the
average of the learning weight matrix for each defect in the Case 4 data set in the form of a bar graph. A
larger weight of the classifier for each defect class indicates that the classifier has greater impact on the
final prediction. The proposed model has a tendency to give high weights to defect patterns showing
high classification difficulty. The proposed model was trained with a low weight for the Donut and
Edge-Loc classes, for which it showed higher classification accuracy than the stacking ensemble model.
This means that the classification performance of the proposed model can be improved by assigning
appropriate weights to defect patterns for learning.



2962 CMC, 2023, vol.74, no.2

Figure 10: Confusion matrix of the baseline models and proposed model

Figure 11: The comparison of weights for each defect classes

6 Conclusion

In this study, an algorithm that combines the reinforcement of insufficient defect patterns with an
excellent hybrid model was proposed. The proposed method performs data augmentation using CAE
on an image-type wafer map and features were subsequently extracted by applying density-based,
geometry-based, and Radon-based feature extraction methods. This feature extraction technique
improved the efficiency of the wafer defect identification system by providing detailed information
about the wafer map and reducing the amount of computation required for learning. Then, four
machine learning classifiers were stacked, and an ensemble model was built by using the XGB Classifier
as a meta-level classifier. The proposed method demonstrated superior classification performance
compared to those of the base-level classifier and ensemble models and showed robustness against
insufficient defects. The effectiveness of the proposed method was verified experimentally using real
data sets.

The improved classification performance demonstrated in this study is expected to have a
significant effect on the stable automation of wafer map classification, leading to an improvement in
product quality and yield in the actual semiconductor manufacturing process. Based on the proposed
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model, it will be possible to develop a model that guarantees robust performance while maintaining
higher performance in various manufacturing domains, and it will also be possible to develop a model
optimized for any domain by applying actual datasets from various manufacturing fields.
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