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Abstract: In this paper, a non-negative adaptive mechanism based on an
adaptive nonsingular fast terminal sliding mode control strategy is pro-
posed to have finite time and high-speed trajectory tracking for parallel
manipulators with the existence of unknown bounded complex uncertainties
and external disturbances. The proposed approach is a hybrid scheme of
the online non-negative adaptive mechanism, tracking differentiator, and
nonsingular fast terminal sliding mode control (NFTSMC). Based on the
online non-negative adaptive mechanism, the proposed control can remove
the assumption that the uncertainties and disturbances must be bounded for
the NFTSMC controllers. The proposed controller has several advantages
such as simple structure, easy implementation, rapid response, chattering-free,
high precision, robustness, singularity avoidance, and finite-time convergence.
Since all control parameters are online updated via tracking differentiator and
non-negative adaptive law, the tracking control performance at high-speed
motions can be better in real-time requirement and disturbance rejection
ability. Finally, simulation results validate the effectiveness of the proposed
method.
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fast terminal sliding mode control; non-negative adaptive mechanism;
tracking differentiator

1 Introduction

In recent years, parallel manipulators have been widely deployed in various industry fields.
Examples can be found in flight simulators, machine tools, micro-mechanisms, haptic devices, etc.
[1,2]. In real applications, parallel manipulators have high stiffness, huge overload-driven capability,
and high accuracy [2]. Unfortunately, this robot always faces many complex uncertainties and
external disturbances caused by unknown dynamic systems, external noises, and nonlinear frictional
forces. Hence, the design of the trajectory tracking control for parallel manipulators presents unique
challenges, specifically while high-speed motions, high accuracy, and high acceleration are required.
In the literature, various approaches for parallel mechanisms have been proposed to enhance tracking
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control, for example, PID [1], adaptive control [2], backstepping control [3], optimal control [4],
sliding mode control [5], etc. Among them, robust control techniques are used to cancel complex
uncertainties and external disturbances as well as provide higher robustness. Based on computational
intelligence like neural networks, fuzzy systems, robust tracking control strategies have been proposed
in [6–12]. However, the learning techniques always need a huge computation because of the training
complication in fuzzy rules or neural weights. Then they may have a computational burden in
implementation.

In order to guarantee the performance of the tracking controller, the terminal sliding mode
control (TSMC) scheme has been developed and discussed as an efficient methodology [13,14].
The TSMC approach has many properties such as robustness, higher precision, rapid response, and
finite-time stable equilibrium. The essential philosophy of TSMC is to design a terminal attractor
sliding surface that guarantees finite-time convergence of the states. In the literature, TSMC has
been successfully applied in various industrial fields, for example, switched reluctance motor [13],
uncertain robot systems [14], etc. However, those approaches have three potential disadvantages:
1) singular problem, 2) slow convergence to the equilibrium, 3) chattering phenomenon problem,
and hence limits its performance in practical applications. In order to overcome the above-mentioned
drawbacks and to guarantee the performance of TSMC approaches, various approaches have been
developed in the literature. Firstly, to overcome the singular problem, nonsingular terminal sliding
mode control (NTSMC) has been analyzed in [15,16] separately. Secondly, in order to resolve the
problem of slow convergence, fast terminal sliding mode control (FTSMC) is widely employed, such
as in [17,18]. However, NTSMC or FTSMC has just only resolved one problem and neglected the
other aspects of TSMC. To cope with both singular problems and slow convergence speed, integral
terminal sliding mode control (ITSMC) [19,20] and nonsingular fast terminal sliding mode control
(NFTSMC) [21–26] are developed. However, ITSMC is designed based on TSMC, and then, the
above feebleness of TSMC may still exist. On the contrary, it is well known that NFTSMC has
many outstanding advantages like robustness, rapid response, nonsingular, and fast convergence to
the globally stable equilibrium. In the literature, various advanced methods based on NFTSMC
have also been developed for control theory studies and practical applications; for example, robot
manipulators [21–23], and induction motors [24–26]. Thirdly, to address the chattering problems,
various approaches have been discussed based on either the disturbance estimation method [27] or
the boundary layer saturation method [28]. Among them, the saturation method is widely used in
implementation because it provides both chattering elimination and high accuracy. Generally, the
corresponding suitable approaches [15–28] can overcome some drawbacks of TSMC. However, none of
these approaches can resolve all of the problems of TSMC simultaneously. From the economic point
of view, the control system of parallel manipulators requires easy implementation, low complexity,
real-time control, computer-implementable, and effectiveness with high-speed motions with complex
uncertainties and disturbances. Thanks to those promising features of NFTSMC as mentioned above,
in this study, adaptive nonsingular fast terminal sliding mode control (ANFTSMC) is proposed not
only to resolve all drawbacks of TSMC but also to enhance the performance of finite-time and high-
speed trajectory tracking control of parallel robots in the case of high-speed motions and unknown
bounded complex uncertainties and external disturbances. The several contributions of the study are
highlighted as follows.

1) The online non-negative adaptive mechanism (NAM) is used to estimate the uncertainties
and disturbances. Hence, unlike the existing TSMC [13–26], the proposed approach does not
require prior knowledge about the bounds of the complexity of external disturbances and
complex uncertainties.
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2) In this approach, the tracking differentiator (TD) is adopted to cope with the high-speed
motions. It can be found that the tracking control performance at high-speed motions can
be better in a real-time fashion because all control parameters are online updated based on TD
and NAM.

3) The proposed controller has possessed advantages such as simple structure, easy imple-
mentation, chattering-free, high precision, robustness, singularity avoidance, and finite-time
convergence. Besides, the proposed approach has superior tracking control performance
and disturbance rejection ability. The stability and finite-time convergence of the parallel
mechanisms are ensured by the Lyapunov theory.

2 Related Work

The stability of a robotic system with the NFTSMC controller [21–26] is proven with an
assumption that the disturbances and uncertainties are required to be bounded. The boundness is hard
to be estimated in advance because of the complexity of disturbances and uncertainties. To address this
drawback, there are other modifications to the adaptive laws in NFTSMC approaches. For example,
in [29], a robust NFTSMC control strategy is proposed based on computational intelligence (CI)
techniques such as fuzzy systems and neural networks. In [30,31], an NFTSMC scheme is developed
to improve control precision and response rapidity of nonlinear systems by extended state observer
(ESO). Also, in [32,33], based on time delay estimation (TDE), an adaptive NFTSMC is designed.
In the above approaches, generally, those CI, ESO, or TDE techniques are employed to handle the
estimation of complex uncertainties and external disturbances. Hence, these approaches may increase
the computational burden of the systems.

To address this issue, in [34], based on the backstepping technique, an adaptive backstepping
NFTSMC controller is proposed for tracking control of robot manipulators. In [35], a robust
NFTSMC scheme is developed for the tracking problem of the robotic manipulator subject to
uncertainty and disturbances. Also, in [36], a robust adaptive NTSMC control scheme is designed
for the position and the velocity tracking control of the automatic train operation system. In [34–
36], the upper bound of the complex uncertainties and external disturbances is estimated via a NAM.
The NAM adjusts the gain of the control automatically and enables the tracking protocol to work
well without prior knowledge of the robot system. Hence, these control methodologies cannot only
hold the advantageous features of NFTSMC but also have low complexity and real-time control.
However, those approaches neglect the stability of the closed-loop systems while operating at high-
speed motions, especially in the cases of complicated mixture noises. To enhance the performance in
high-speed motions, recently, an additional TD based NFTSMC has been developed and discussed in
[37,38]. TD is used to estimate the target tracking signal and the derivative quickly and accurately.
However, although ESO is used to handle the uncertainties in those approaches, it increases the
computational burden of the systems. It is shown in this study that combining NFTSMC, NAM and
TD together is feasible and promising for finite-time and high accuracy as well as high-speed tracking
control.
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3 Problem Formulation and Preliminaries
3.1 Dynamic Model of Parallel Manipulators

From [2] and [28], the parallel mechanisms dynamic model in the active joint space is presented
by

M(q)q̈ + C(q, q̇)q̇ + G(q) + F(q, q̇) = τ , (1)

where q, q̇, q̈ ∈ R
n are the vectors of the active joints position, velocity, and acceleration, respectively.

τ ∈ R
n is the vector of the corresponding forces. G(q) ∈ R

n is the matrix of the gravitational forces.
F(q, q̇) ∈ R

n is the vector of the complex uncertainties and external disturbances and is expressed as

F(q, q̇) = �M(q)q̈ + �C(q, q̇)q̇ + �G(q) + f (q) + d(q, q̇), (2)

where f (q) ∈ R
n is the active joints friction models, d (q, q̇) ∈ R

n is the disturbances force, and �M(q),
�C(q, q̇) and �G(q) are actual components caused by uncertainties and disturbances.

The parallel mechanisms dynamic is represented in a second-order differential equation as

q̈ = M−1(q)τ + D(q, q̇) + �F(q, q̇), (3)

where �F(q, q̇) = −M−1(q).F(q, q̇) is the unknown uncertainties and disturbances in the nominal
model. D(q, q̇) = M−1(q)[−C(q, q̇)q̇ − G(q)] is the known nominal parallel mechanisms dynamic.

3.2 Notations, Preliminaries, and Useful Assumptions

The Euclidean norm of a vector that has K elements is as

‖v‖ =
√√√√ K∑

i=1

|vi|2 (4)

To avoid any possible confusion, a variable vector x = [x1, . . . , xn] ∈ R
n, sigc

(x) and its derivative
are presented as

sigc
(x) = |x|csign(x) = [|x1|csign(x1), . . . , |xn|csign(xn)]

T , c > 0 (5)

d
dt

(sigc
(x)) = c|x|c−1ẋ, (6)

sign(x) =

⎧⎪⎨
⎪⎩

1 ifx > 0
0 ifx = 0
−1 ifx < 0.

(7)

Assumption 1 The sum of the unknown uncertainties and disturbances is bounded as

‖�F(q, q̇) = −M−1(q).F(q, q̇)‖ ≤ m0. (8)

4 Controller Design

Define qa ∈ R
n as the desired state vector and e = q − qa as the vector of the tracking error.

According to [21–26], the NFTSMC surface function and its derivation are expressed as

s = e + α|e|ϕsign(e) + β|ė|a/bsign(ė), (9)
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ṡ = ė + αϕ|e|ϕ−1ė + β
a
b
|ė|(a/b)−1(q̈ − q̈a), (10)

where the positive odd numbers a and b are satisfied by the rules 1 < a/b < 2 and ϕ > a/b,
α = diag {α1, . . . , αn} ; αi > 0, β = diag {β1, . . . ,βn} ; βi > 0, |e|ϕ−1 = diag

{|e1|ϕ−1, . . . ,|en|ϕ−1
}
, |e|ϕ =

diag {|e1|ϕ, . . . ,|en|ϕ}, |ė|(a/b) = diag
{|ė1|(a/b), . . . ,|ėn|(a/b)

}
, and |ė|(a/b)−1 = diag

{|ė1|(a/b)−1, . . . ,|ėn|(a/b)−1
}
,

i = 1, . . . ,n.

Let � (e, ė) = ė + αϕ|e|ϕ−1ė and �(ė) = β (a/b) |ė|(a/b)−1. From (3) and (10), we have

ṡ = �(e, ė) + �(ė).
[
M−1(q)u + D(q, q̇) + �F(q, q̇) − q̈a

]
. (11)

Under Assumption 1, modifications of the NFTSMC design have also been proposed in the
literature [21–26,29–36]. For example, in [23] and in [32], the NFTSMC control law is expressed as

u = ueq + usw = −M(q)[�(e, ė)�−1(ė) + D(q, q̇) − q̈a + (m0 + ξ) sign(s)]. (12)

In [24], the NFTSMC control law is presented by

u = ueq + usw = −M (q)
[
� (e, ė)�−1 (ė) + D (q, q̇) − q̈a + ξs + m0sign (s)

]
. (13)

In (12) and (13), ξ is a known small positive constant. ueq = −M (q) [� (e, ė) �−1 (ė) + D (q, q̇) − q̈a]
is the equivalent control law which ensures fast finite-time convergence no matter the system states are
near the sliding surface. usw = −M(q) (m0 + ξ) sign(s) or usw = −M(q)(ξs + m0sign(s)) is the switching
control law that can make the parallel mechanisms system more robust against complex uncertainties
and disturbances. It should be noted that ξ is manually set in the above NFTSMC controllers, and
thus, the robot dynamics model is not compensated. The controller structures can considerably be
simplified and make the controller attractive. However, the stability of the robot system at a high
speed may have problems, especially in the cases of complex mixture noises. Besides, the stability of the
parallel mechanisms system with the use of the NFTSMC controller is proven with an assumption that
the bounds of the uncertainties and disturbances are known (Assumption 1). However, the assumption
is difficult to be satisfied in practical applications with the complexity of the complex uncertainty and
external disturbance.

To address these issues, in this study, an online NAM is used to estimate the upper bounds
of complex uncertainties and external disturbances of parallel manipulator systems. The proposed
controller does not require prior knowledge about the bounds of uncertainties and disturbances.
Besides, the TD is adopted to deal with the transition process and to decrease the initial impulse of
the manipulative variable. Combining NFTSMC, TD, and online NAM together in this study, the
proposed ANFTSMC law is expressed as

u = ueq + uAsw = −M(q)[�(e, ė)�−1(ė) + D(q, q̇) − q̈a + K̂p.s + (m̂0 + K̂d)sign(s)], (14)

K̂p =
{

k̂p|e|λ1−1 for|e| > δ1

k̂p|δ1|λ1−1 for|e| ≤ δ1

, k̂p > 0, (15)

K̂d =
{

k̂d|ė|λ2−1 for|ė| > δ2

k̂d|δ2|λ2−1 for|ė| ≤ δ2

, k̂d > 0. (16)
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The NAM law of the parameters m̂0 is

˙̂m0 = c|s||ė|(a/b)−1, c > 0. (17)

Theorem 1 Supports that the parallel manipulators are described by (1) with the complex
uncertainties and external disturbances as (2). Under the sliding mode surfaces (9), the control inputs
(14), and the online adaptive update laws (15)–(17), it is concluded that the system trajectories can
move fast to zero in a finite time without any singularity.

Proof Consider a Lyapunov function candidate as

V(t) = 1
2

sTs + a
b

β

2c
(m̂0 − m0)

2, (18)

V̇(t) = sT ṡ + a
b

β

c
(m̂0 − m0)

˙̂m0. (19)

Substituting (11) and (17) into (19) and with �(ė) = β(a/b)|ė|(a/b)−1, we have

V̇(t) = sT(�(e, ė) + �(ė).(M−1(q)u + D(q, q̇) + �F(q, q̇) − q̈a)) + �(ė)|s|(m̂0 − m0). (20)

In combination with the control input (14), it yields

V̇(t) = sT .�(ė).
(
�F(q, q̇) − K̂P.s −

(
m̂0 + K̂d

)
sign(s)

)
+ �(ė)|s| (m̂0 − m0

)
(21)

= −�(ė).
(

K̂ps2 + K̂d|s|
)

+ �(ė) (�F(q, q̇)s − m0|s|)

≤ −�(ė).
(

K̂ps2 + K̂d|s|
)

≤ −
n∑

i=1

�(ėi).
[
k̂p|ei|λ1−1.s2

i + k̂d|ėi|λ2−1.|si|
]

≤ 0.

Hence, the parallel mechanisms states converge to the sliding surfaces asymptotically. To show
that the system trajectories can move fast to zero in a finite time, V̇(t) in (19) can be rewritten as

V̇(t) = dV(t)
dt

≤ −�(ė).(K̂ps2 + K̂d|s|) = −ρ1V(t) − ρ2V 1/2(t), (22)

where ρ1 = 2�(ė)K̂p > 0 and ρ2 = √
2�(ė)K̂d > 0. Hence, it yields

dt ≤ −dV(t)
ρ1V(t) + ρ2V 1/2(t)

= −V−1/2(t)dV(t)
ρ1V 1/2(t) + ρ2

= −2dV 1/2(t)
ρ1V 1/2(t) + ρ2

. (23)
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Define tr as the reaching time. It is certain that V(tr) = 0. Taking integral of both sides of (23), it
yields

tr∫
0

dt ≤
V(tr)∫

V(0)

−2dV 1/2(t)
ρ1V 1/2(t) + ρ2

=
[−2

ρ1

ln
(
ρ1V 1/2(t) + ρ2

)] ∣∣∣∣
V(tr)

V(0)

(24)

tr ≤ −2
ρ1

ln
(

ρ1V 1/2(0) + ρ2

ρ2

)
.

Following the Lyapunov stability theorem, the sliding surface in (9) can converge fast to zero in

the amount of time tr ≤ 2
ρ1

ln
(

ρ1V 1/2(0) + ρ2

ρ2

)
. It can be concluded that the system trajectories can

move fast to zero in a finite time. It completes the Proof.

Remark 1 The structure of the ANFTSMC scheme is given in Fig. 1. In practical applications, the
desired reference may be a square wave signal or a step signal, which always includes jump points. The
system may not be able to track the reference signal in real-time. Specifically, when the initial tracking
error e is large, the control gain should be large to have a fast-tracking response. It may generate large
overshoots and large initial impulses. To address this issue, TD designed in (15) and (16) is employed
to have a suitable transition process. According to (15) and (16), it should be emphasized that TD
provides transitive desired input signals and those noise-free differential signals. Besides, the TD gains
are very simple.

Control Input

Online adaptive update 
laws in Eqs. (15)-(17)

+

-

+
-

Parallel
Manipulators

Uncertainties

Figure 1: ANFTSMC scheme

Remark 2 In TD gains (15) and (16), δ1, δ2 > 0 are the positive threshold parameters of the errors
and the errors rate, respectively, and are selected in between the maximum error and close to zero. The
parameters λ1, λ2 > 0 are tuned in practice. With TD, the errors can reach zero much more quickly
in a finite time. To improve the error curve further, the value of the parameters λ1 and kp should be
decreased at the same time, because the term kp|ei|λ1−1 or kp|δ1|λ1−1 makes the proportional control much
more sensitive, especially with small errors. The differentiation term kd|ėi|λ2−1 or kd|δ2|λ2−1 prevents
overshooting output through a transient period when the error is sufficiently large. k̂p and k̂d can be
selected by a trial and error manner [28]. The nonlinear gains under these selections also have the
following properties: a huge gain for large error rates and a little gain for small error rates; on the
contrary, a huge gain for small errors and a little gain for large errors. This design makes a rapid
conversion of the dynamic systems with advantageous damping. Thus, the control approach is highly
suitable for high-speed motions of parallel mechanisms systems.
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Remark 3 From (17), it can be deduced that ˙̂m0 ≥ 0. Hence, the optimal value m̂0 can be obtained
via the NAM for the unknown bounded component m0. Besides, the NAM law in (17) does not
require the symmetric and regression properties, which are used in most of the adaptive update laws
for controlling robot systems in previous approaches [29–36]. Hence the proposed control laws are
applicable to any mechanical systems, including parallel manipulators.

Remark 4 The approximation learning techniques based on computational intelligence such as
fuzzy systems, neural networks, etc. are used to approximate the unknown bounded component m0 as
that in [29]. However, such learning techniques are computationally expensive.

Remark 5 The discontinuous function sign(·) in the control input (14) may cause chattering
phenomena. To cope with this, the sign(·) function is replaced by a saturation function

sign(s) = s
‖s‖ + ρ

, (25)

where ρ is a positive constant, ||s|| is the Euclidean norm of the vector s. As stated in [32], the stability
and finite-time convergence of the saturation function are proved based on the Lyapunov approach.

Remark 6 To implement the ANFTSMC controller, the desired state of the position, and the
acceleration of the active joints should be known. Unfortunately, the dynamic model of parallel
manipulators is only available with position measurement. In this paper, based on the backward
differentiator technique [32], the measurement of the acceleration can be calculated as

¯̈qa(t) = 1
N

N−1∑
i=0

q̈a(t−i) = qa(t) − 2qa(t−L) + qa(t−2L)

L2
. (26)

The acceleration signals defined by (26) can reduce the noises on the sensor signal. Besides, it
achieves finite time error convergence no matter what the input signals are.

Remark 7 Compared with state-of-the-art approaches [13–26], the proposed approach does
not require the upper bound of uncertainties, which is almost impossible to obtain in many real
applications. Besides, the proposed control scheme has superior tracking control performance such
as convergence fast to the finite-time stable equilibrium, the non-singularity, rapid response, and the
strong robustness with complex uncertainties and external disturbances.

5 Demonstrative Example

In this section, the performances of the proposed controller are verified for a 2-DOF parallel
mechanisms as shown in Fig. 2. Its kinematics parameters are as in [2,8,28]. To show the strong
robustness of the proposed controller, the unknown modeling �M(q) and �C (q,q̇), the nonlinear
frictions forces f (q̇) and the external disturbances d(q,q̇) are

�M(q) = 0.25M(q); �C(q,q̇) = 0.25C(q,q̇), (27)

f (q̇) =
[

0.4976 0

0 0.4570

]
.

[
sign(q̇1)

sign(q̇2)

]
+

[
2.9936 0

0 2.7617

]
.

[
q̇1

q̇2

]
, (28)

d(q,q̇)cases1,2 = 0.1

[
sin(0.2t) + 1 + 0.8q̇1

cos(0.3t) + 0.8q̇2

]
, (29)
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d(q,q̇)case3 = 1.0

[
sin (2t) + 1 + q̇1

cos (3t) + 1.2q̇2

]
. (30)

Figure 2: The 2-DOF redundant parallel manipulator

It is noted that the parallel manipulator is influenced by the uncertainties F (q, q̇) = �M (q) q̈ +
�C (q, q̇) q̇ + f (q) + d (q, q̇) and such uncertainties and their derivative may be unbounded.

In order to show the improvement in performance, the ANFTSMC control scheme is compared
with the NFTSMC [32]. The NFTSMC sliding surfaces are selected in (9). The NFTSMC input control
law is obtained in (12).

To overcome the chattering problem, the sign(·) function in ANFTSMC (in (14)), and in
NFTSMC (in (12)) are both replaced by the saturation function given in (25), where ρ = 0.001. In
all simulations, the reference trajectories tracking are chosen as: xE = 0.006 + 0.02 × cos(ω.t)and
yE = 0.0785 + 0.02 × sin(ω.t). The initial positions of the parallel mechanisms are set as:
q1 = −0.2235, q2 = 3.517, q3 = 3.655, q4 = 2.395 [rad]; and q̇1 = 0, q̇2 = 0 [rad/s]. The initial values of
the adaptive update laws are as K̂pi = 0, K̂di = 0 (i = 1, 2) and m̂0 = 0. The sliding surface parameters
and the control parameters are set in Tab. 1. To show the accuracy improvement in the case of high-
speed motions of the proposed controllers, we have tested in three different cases as follows

Table 1: Parameters of the sliding surface and the controllers

Sliding surfaces & controllers Parameters Value

Sliding surface ϕ 1.5
a, b 9, 7
α diag(0.8, 0.8)

β diag(1, 1)

ANFTSMC k̂p, k̂d 20, 5
λ1, λ2 0.7, 1.1
δ1, δ2 3 × 10−4, 3 × 10−3

c 0.01

(Continued)
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Table 1: Continued
Sliding surfaces & controllers Parameters Value

NFTSMC [32] m0 30
ξ 15

Case 1 Low-speed motion (the maximum velocity is 0.2 [m/s] and ω = 7 [rad/s]) with uncertainties
and disturbances designed in (27)–(29).

Case 2 High-speed motion (the maximum velocity is 0.48 [m/s] and ω = 17 [rad/s]) with
uncertainties and disturbances designed in (27)–(29).

Case 3 High-speed motion (the maximum velocity is 0.48 [m/s] and ω = 17 [rad/s]) with
significantly enlarged uncertainties and disturbances designed in (27), (28) and (30).

The simulation results in case 1 are given in Figs. 3–6. The position tracking errors of
the active joints q1 and q2 are shown in Fig. 4. These velocity tracking errors are given in Fig. 5.
The sum of the unknown modeling, the nonlinear friction forces, and the external disturbances in
the low-speed trajectory tracking motions is given in Fig. 6. From Figs. 4 and 5, it demonstrates that
those two controllers can make the parallel manipulator system track the desired trajectory under
complex uncertainties and external disturbances and the proposed controller has better performance
as expected.

Figure 3: Control torques of the active joints in case 1 under ANFTSMC

(a) (b)

Figure 4: Position tracking error of the active joints in case 1. (a) q1. (b) q2
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(a) (b)

Figure 5: Velocity tracking error of the active joints in case 1. (a) q̇1. (b) q̇2

Figure 6: Total of the unknown modeling, the frictions forces, and the disturbances in case 1

Figs. 7–14 show the simulation results for cases 2 and 3. Figs. 10 and 14 show the sum of
the unknown modeling, the nonlinear friction forces, and the external disturbances, respectively.
Figs. 6, 10, and 14 show the results when the velocity of the end effector increases from 0.2 m/s to
0.48 m/s, and both the amplitude and the frequency oscillation of F(q, q̇) defined in (2) increase
significantly. The values of F(q1, q̇1) are {−3.9 ≤ F(q1, q̇1) ≤ 3.9} in case 1, {−9.1 ≤ F(q1, q̇1) ≤ 8.1}
in case 2, and {−9.2 ≤ F(q1, q̇1) ≤ 27.8} in case 3. Similarly, the respective values of F(q2, q̇2) are
{−2.8 ≤ F(q2, q̇2) ≤ 3.4}, {−6.1 ≤ F(q2, q̇2) ≤ 7.3}, and {−16.2 ≤ F(q2, q̇2) ≤ 17.2}. As shown in
Figs. 8, 9, 12 and 13, it can be observed that the peaks of the motion and velocity tracking errors under
NFTSMC [32] are related largely in cases 2 and 3, for example, in case 2: {−1.02 × 10−3 ≤ e(q1) ≤
−2.4×10−4} and {−9.1×10−4 ≤ e(q2) ≤ 5.5×10−4}, and in case 3: {−2.52×10−3 ≤ e(q1) ≤ 1.35×10−4}
and {−2.63 × 10−3 ≤ e(q2) ≤ 2.08 × 10−3}. Specifically, NFTSMC [32] becomes unstable with case 3.
However, these peaks are reduced dramatically with the tracking errors close to zero in the proposed
ANFTSMC controller. It is because the online NAM in the proposed controller can speed up the
convergence rate. From Figs. 4, 5, 8, 9, 12 and 13, it can be seen that the finite-time convergence
is approximate 1 s with the use of ANFTSMC. According to these figures, it can be seen that the
ANFTSMC controller has the smallest tracking errors in comparison with that using the NFTSMC
controller in both low-speed and high-speed motions. The corresponding control torques of the active
joints for cases 1, 2, and 3 are given in Figs. 3, 7, and 11, respectively. It is also clear that the chattering
phenomenon is significantly reduced by using the saturation function (25). Therefore, it is evident
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that the proposed control is suitable to deal with tracking control problems of parallel manipulator
systems.

Figure 7: Control torques of the active joints in case 2 under ANFTSMC

(a) (b)

Figure 8: Position tracking error of the active joints in case 2. (a) q1. (b) q2

(a) (b)

Figure 9: Velocity tracking error of the active joints in case 2. (a) q̇1. (b) q̇2
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Figure 10: Total of the unknown modeling, the frictions forces, and the disturbances in case 2

Figure 11: Control torques of the active joints in case 3 under ANFTSMC

(a) (b)

Figure 12: Position tracking error of the active joints in case 3. (a) q1. (b) q2
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(a) (b)

Figure 13: Velocity tracking error of the active joints in case 3. (a) q̇1. (b) q̇2

Figure 14: Total of the unknown modeling, the frictions forces, and the disturbances in case 3

To show the quantitative comparison, the root square mean error (RSME) of the position tracking
errors of the active joints is chosen as the performance index. Tab. 2 summarizes the quantitative
comparisons between ANFTSMC and NFTSMC [32] under those three different tests. This table
also indirectly shows the robustness and the precision level of individual control strategies. From the
table, it can be seen that in comparison with the NFTSMC scheme, the ANFTSMC controller has
5.88%, 21.55%, and 42.01% position accuracy improvements in cases 1, 2, and 3, respectively. It can
be concluded that the proposed ANFTSMC controller indeed has a smaller position tracking error
in the case of having complex uncertainties and external disturbances as well as in the high-speed
tracking motion. Furthermore, when the velocity of the end effector increases from 0.2 to 0.48 m/s
and the complexity of significantly enlarged uncertainties and disturbances are changed from case 1
to case 3, the position tracking errors of the NFTSMC scheme increase significantly (The active joint
q1 is 49.64%, and the active joint q2 is 49.63%, respectively). In contrast, it is a small increase in the
position tracking error by using the ANFTSMC scheme (18.85% for q1, and 18.25% for q2). Indeed,
the proposed ANFTSMC controller can achieve good performance and is highly suitable for practical
applications in the case of unknown bounded complex uncertainties and external disturbances as well
as high-speed motions for parallel manipulators.
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Table 2: Performance index

Controllers NFTSMC [32] ANFTSMC

Cases Active joints

Case 1 Joint 1 4.84 × 10−4 4.52 × 10−4

Joint 2 4.76 × 10−4 4.48 × 10−4

Case 2 Joint 1 7.08 × 10−4 5.55 × 10−4

Joint 2 6.96 × 10−4 5.46 × 10−4

Case 3 Joint 1 9.61 × 10−4 5.57 × 10−4

Joint 2 9.45 × 10−4 5.48 × 10−4

6 Conclusion

This paper reports our study on the adaptive nonsingular fast terminal sliding mode finite-time
tracking control for parallel manipulators with the existence of complex uncertainties and external
disturbances in the case of high-speed motions. The proposed control scheme is successfully designed
based on the tracking differentiator, the non-negative adaptive mechanism, and the nonsingular fast
terminal sliding mode control. The non-negative adaptive law is employed to handle the real-time
estimation of the total of complex uncertainties and external disturbances. This control scheme does
not require prior knowledge of bounded uncertainties and disturbances. Simulation results show that
the proposed scheme has superior tracking control performance, and the tracking error converges fast
to zero in a finite time without any singularity. Possible future work can be to choose the optimal
control parameters by using optimization algorithms.
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