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Abstract: The Internet of Thing IoT paradigm has emerged in numerous
domains and it has achieved an exponential progress. Nevertheless, alongside
this advancement, IoT networks are facing an ever-increasing rate of security
risks because of the continuous and rapid changes in network environments.
In order to overcome these security challenges, the fog system has delivered a
powerful environment that provides additional resources for a more improved
data security. However, because of the emerging of various breaches, several
attacks are ceaselessly emerging in IoT and Fog environment. Consequently,
the new emerging applications in IoT-Fog environment still require novel,
distributed, and intelligent security models, controls, and decisions. In addi-
tion, the ever-evolving hacking techniques and methods and the expanded
risks surfaces have demonstrated the importance of attacks detection systems.
This proves that even advanced solutions face difficulties in discovering and
recognizing these small variations of attacks. In fact, to address the above
problems, Artificial Intelligence (AI) methods could be applied on the millions
of terabytes of collected information to enhance and optimize the processes
of IoT and fog systems. In this respect, this research is designed to adopt a
new security scheme supported by an advanced machine learning algorithm
to ensure an intelligent distributed attacks detection and a monitoring process
that detects malicious attacks and updates threats signature databases in IoT-
Fog environments. We evaluated the performance of our distributed approach
with the applicationof certainmachine learningmechanisms. The experiments
show that the proposed scheme, applied with the Random Forest (RF) is more
efficient and provides better accuracy (99.50%), better scalability, and lower
false alert rates. In this regard, the distribution character of ourmethod brings
about faster detection and better learning.

Keywords: Attack detection; Fog; IoT network; machine learning; dis-
tributed mechanism

1 Introduction

Nowadays, IoT networks are encountering enormous development and the number of IoT
devices is expected to reach the number of 50 billion devices by the end of 2021 [1]. Hence, these

This work is licensed under a Creative Commons Attribution 4.0 International License,
which permits unrestricted use, distribution, and reproduction in any medium, provided
the original work is properly cited.

http://dx.doi.org/10.32604/cmc.2022.020141


2728 CMC, 2022, vol.70, no.2

networks deal with a large volume of data that needs to be put away efficiently, and which then
should be allocated to consumers in a secure and protected manner [2,3].

A key solution for data treatment and storage is to the usage of cloud technologies [4]. These
systems offer numerous functionalities for computing resources like effective information storage,
high-speed connection to internet [5,6]. However, the enormous amount of processed, analyzed,
and filtered information in the cloud can cause several issues in relation with latency, network
traffic blockage, and also security and privacy concern [6–8]. These problems are manifested due
to the inability of cloud to support heterogeneous systems and devices, mobility, delay, and geo-
localization.

In this context, fog computing can be envisaged as a key solution for these limitations. In fact,
fog paradigm is an emerging computing technology projected in order to reduce traffic congestion
and delay production at the cloud network by moving several resources and functionalities nearer
to the IoT devices and then to users. Thanks to these characteristics, these fog nodes form a
network with distributed services like storage, data analysis, and computation in real time with
reduced latency. Fig. 1 shows the fundamental architecture of IoT-Fog-Cloud layers.

IoT Layer

Fog Layer

Cloud Layer

More mobility
More responsive

Less latency

Figure 1: Architecture of IoT-Fog-Cloud environments

On the other hand, even with this technological development, the substantial number of data
users still needs to be highly secured and protected. In Goasduff [9], Gartner has revealed that,
during the security incidents that have taken place in recent years, 75 percent of behaviors’ attacks
were discovered at the application layer and that servers have been the major target for hackers.
For these reasons, the security procedures should be taken into consideration when using an
architecture since problems can occur in both data and networks. In fact, cyber security practices
defend these networks against internal and external risks. However, the security and privacy
mechanisms that exist in cloud cannot be directly applied to fog network due to its characteristics
of geographical distribution, mobility, and heterogeneity [10,11].

To overcome these challenges, the fog system offers a powerful environment that provides
added and supplementary resources for further improving data security. Accordingly, among the
well-used techniques of data security, we have the Intrusion Detection System (IDS), which is a
type of detection systems that protects networks by offering monitoring services for all systems [2].
Moreover, an IDS is an essential component of a network’s security, where intrusion and other
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security gaps must be discovered rapidly and effectively [12]. In this regard, there are two main
intrusion detection methods, namely anomaly-based methods and signature-based methods.

For the Signature-based techniques, it matches the pre-defined attack behaviors against the
current patterns of the network [13]. The mechanism needs to store the behavior of each attacker
in a database which means that the system will fail to detect hidden attacks. On the other hand,
anomaly-based approaches try to construct a profile for normal behavior and subsequently any
actions that do not fit this profile will be considered as anomalous task. This method is effective
in the discovering of hidden attacks but it does so by producing high false positive rates. Fur-
thermore, numerous researches have been concentrated on developing IDSs with greater detection
rates and reduced rates of false alert [14,15]. However, because of the continuous and quickly
changes in network environments, various new attacks appear continuously. Hence, another issue
with current IDSs is that they cannot detect unknown attacks. For this reason, it is advised to
improve IDSs quality [16]. Furthermore, network security weaknesses and limitations are reduced
by the use of intelligent devices. Hence, it is imperative to deploy an intelligent platform to
protect the systems against attacks. To address the abovementioned problems, Artificial Intelligence
(AI) methods such as Machine Learning (ML) could be applied on the millions of terabytes of
collected information to enhance and optimize the processes of IoT and fog systems [2]. For these
environments, artificial intelligence stands to the addition and the application of specific studied
procedures, for the control and the optimization of activities in the entire network. In addition,
the smart analysis process improves the network awareness to the environment’s changes, in order
to enhance their performance, mainly regarding the latency and energy consumption metrics.

Within this framework, we propose in this article, a distributed attack detection scheme based
on intelligent monitoring algorithm that takes advantage of the traditional IDS for the benefit
IoT and fog environments. Firstly, our proposed scheme employs an algorithm that exploits the
similarity of attack parameters to create a signature database. Secondly, it uses an intelligent
learning algorithm to improve attack detection with high accuracy and low false-negative rates.

In this regard, we propose the division of fog network into small cells comprising a number
of fog nodes. Each fog cell (FNcell) is managed by an Attack Detection Manager (ADM). Then,
we place a Monitoring Agent (MA), called Attack Detection Controller (ADC), at each fog node.

Specifically, our work makes the following contributions:

— We propose a novel methodology for designing a scalable, self-adaptive, and autonomous
attack detection and monitoring systems based on advanced artificial intelligence (AI)
techniques.

— We take advantage of machine learning methodologies to identify malicious attacks and
update alert signature databases.

— The deployment of fog cell architecture is proposed. This considerably reduces the latency
of the anomaly detection at the fog layer by sending new attack signatures to neighboring
ADC in the same FN-cell, and to neighboring ADM in other FN-cells. In a second stage,
it enables the deactivation of malicious activities of such users. In a third stage, it provides
attack classification that helps to determine precise prevention measures.

— We carried out an analysis and comparison of the proposed ADM/ADC with different
solutions in the literature using NSL-KDD dataset.

Undoubtedly, the use of an intelligent method for network traffic ensures a quick attack
detection, thereby reducing the operational overhead and the reaction time of the monitoring
system to deactivate the malicious actions.
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The paper is organized as follows; Section 2 will be reserved for describing and discussing
some related works. In Section 3, we will present our proposed SIMAD contribution. The eval-
uation of the proposed model will be presented in Section 4. Finally, Section 5 concludes our
contribution and offers the main findings of the article.

2 Related Works

The Internet of Things (IoT) offers tremendous occasions to the engineering and industrial
activities [5,17]. Undoubtedly, this innovation is expected to be far more dynamic with the up and
coming Fifth-Generation (5G) mobile network [18]. Nevertheless, the huge IoT utilization in basic
areas, leads to the production of plentiful delicate and real time information.

Due to the aforementioned reason, these networks are considered as the most risky system. To
resolve this matter, several research works have been suggested. Consequently, numerous security
methods have been proposed such as, for example, cryptography procedures and authentication
and access control schemes. However, regardless of the use of such solid privacy efforts, a net-
work can even now be compromised by hackers utilizing innovative methods and high procedure
assets. Top of FormHence, there must be an intrusion detection layer under any prevention
layer. Accordingly, several intrusion detection systems (IDS) have been developed in the literature.
The majority of the intrusion detection solutions deployed commercially implement signature-
based approaches [14]. The authors in [14] proposed a signature-based IDS to detect Distributed
DoS attacks in IoT networks. The proposed hybrid scheme includes two elements, which are the
IDS routers and the IDS detectors. The former is placed in the edge gateway and it executes
firewall functions. The latter unit supervises the internal traffic flow by deploying sensors. When
detecting malicious devices, it sends corresponding information to the gateway. The presented
results indicated that the proposed system detects attacks like hello flooding and version number
modification.

In fact, the most significant benefit of anomaly traffic detection is the possibility of obtaining
days without assaults. However, the proposed scheme in [14] is limited to a specific number of
IoT devices.

In [19], Ullah et al. propose a two-level hybrid model for an anomalous activity detection
scheme for intrusion detection in IoT networks. The suggested hybrid model comprises two phases
for anomaly detection and for the identification of threat type. The first one uses the flow features
and the decision tree classifier to sort normal and abnormal traffic according to the categories
of attack. Then, these abnormal traffic will be sent to the second phase which will use Recursive
Feature Elimination [19] in order to choose important parameters. The two-level hybrid scheme
achieves satisfactory results in terms of recall, precision, and specificity.

In this regard, traditional intrusion detection systems (IDS) are becoming incompatible with
the new network environment and with the emerging systems related with machine learning and
deep learning. In Jan et al. [20], a lightweight IDS model is suggested for IoT networks, utilizing
as a classifier the support vector machine (SVM) to distinguish between an interruption and an
anomalous activity. In Pontevedra et al. [21], the authors suggested a real-time IDS model to
identify wormhole attacks in IoT layers. This model uses the routing features and information in
order to identify illegitimate users and nodes. authors in Anthi et al. [22] present a supervised
IDS scheme to be deployed for smart home IoT devices.

Moreover, many efforts have been devoted to develop deep learning and machine learn-
ing attack detection approaches for IoT and fog systems, which lead to some algorithms
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accomplishing higher accuracy and adaptability to a wider range of situations. Unlike the
signature-based IDS, the machine learning-based IDS are capable of detecting even unknown
attacks. However, the fundamental challenge in this direction involves the designing of an efficient
machine learning based IDS that performs well on real-time data. A Deep Learning Intrusion
Detection System (DL-IDS) scheme is proposed in [22] to identify security risks in IoT. The
authors use in their evaluation Minkowski distance and k Nearest Neighbor in order to generate
missing data in the dataset at the preprocessing phase. The DL-IDS scheme achieves satisfactory
results in terms of precision and accuracy. An Ensemble Learning-based Network Intrusion
Detection System (ELNIDS) is suggested in [23]. It aims to recognize routing threats in RPL-
based IoT networks. The authors utilize cooperative machine learning algorithms like Subspace
Discriminant, Boosted trees, RUSBoosted Trees, and Bagged Trees to arrange network traffic into
typical or anomalous.

In [24], the authors proposed a model for 6LoWPAN-based IoT organizations called Com-
pression Header Analyzer Intrusion Detection Scheme (CHA-IDS). They employed AI to identify
and distinguish different risks categories. The CHA-IDS scheme is situated on the router and uses
anomaly and signature-based recognition approaches.

As described above, the schemes presented in [19–24], which are based on anomaly detection,
have used machine learning mechanisms. However, they could have high false-positive rates if
bad decisions about normal traffic flow are made. The proposed hybrid schemes capture the
advantages of the cooperation of various detection strategies. Yet, they may acquire the issues
of the adopted techniques. In this regard and in order to resolve the problem of the absence of
enough data for the anomaly detection mechanisms and to improve the administrations of IoT
systems, the researchers in [25,26] utilized the fog computing paradigm with IoT networks. In fact,
in [25], the authors proposed an Anomaly Detection IoT (AD-IoT) model to detect cybersecurity
risks in smart city environment. This model utilizes the random forest (RF) classifier to classify
network traffic flow into normal or anomalous. The results obtained show that the RF classifier
achieved satisfactory accuracy in attack detection with a low false-positive rate. Fog computing-
based schemes [25,26] employed anomaly-based detection methodology using machine learning or
statistical techniques, which means the traffic will always be scanned to check if it is normal or
abnormal. However, these schemes fail to utilize the full potential of the fog nodes in terms of
storage even though storing the signatures of the previously detected attacks will improve attack
detection accuracy, reduce computational overheads, and further decrease the detection response
time.

In [13], the proposed IDS utilizes numerous base learners in various algorithms and executes
diverse techniques in fog-to-things networks. It uses the NSL-KDD dataset, within which the
learners accomplish higher precision than the single learner does. It identifies anomalies with
reduced latency. Then, it gives the attack arrangement that facilitates the determination of the
exact avoidance procedures. In [27], the authors proposed a two-case study that includes device-
driven and human-driven intelligence. The first one employed machine learning to detect user
comportments and to achieve low-latency in Medium Access Control (MAC)-layer scheduling
among sensor devices. For the second case study, the authors employed a method for task
offloading by using AI to identify the offloading decision among many adjacent fog nodes. In [12],
Sadaf et al. proposed an intrusion detection scheme using deep learning methods like isolation
forest and Autoencoder techniques. Their method aims to identify attacks from the normal traffic
data at the fog layer rather than analyzing it in the cloud layer. In fact, many DL methods have
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been developed based on traditional ANNs [28]. Furthermore, the small size of the dataset for
the training process was another factor that resulted in over-fitted models.

As can be seen, some of the traditional methods employed in the above studies like conven-
tional attacks detection schemes based on machine learning has proved to be successful oftentimes.
However, they still had many limitations such as; its lacking scalability against distributed and
advanced attacks and low accuracy. With regard to our analysis, we observed that traditional
solutions using machine learning methods are not effective and efficient in identifying new attacks
or unknown attacks, and also small attack changes. Moreover, most approaches disregarded how
to update their systems. Indeed, systems would not detect changing attacks without being updated
in the real time. However, DL approaches deliver best accuracy and faster processing thanks to its
self-learning capability. Besides, although the recent developments in the Internet of Things and
in fog computing paradigm have brought new opportunities to improve their service, they are still
facing several challenges in terms of achieving accurate security monitoring.

Unlike other existing works, in our work, we design our system by considering these chal-
lenges and limitations. In fact, some limits may be enhanced through the utilization of Machine
Learning ML. By creating high-level representations of features, ML discovers complex functions
that map input to output without the need for manual intervention by experts [29].

3 Proposed Secure Intelligent Method for Attacks Detection (SIMAD)

3.1 Overview of the Proposed Architecture
The distributed nature of IoT and Fog computing environments makes it more vulnerable

to numerous internal and external attacks. For this reason, these networks must be monitored
continuously. Hence, they require as a distributed solution a new service for cyber-security attack
detection.

In this section, we describe our proposed approach based on a distributed model for attack
detection and monitoring for the fog network. Moreover, considering the extended size of modern
networks and the complexity of big network traffic data, the problem exceeds the limits of human
managing capabilities. In this regard, we propose the use of an artificial intelligent algorithm
to deliver a scalable, self-adaptive, and autonomous attack detection. Thus, we divide the fog
computing network to small cells that contain a number of fog nodes (FNcell). Every cell is
managed by an intelligent Attack Detection Manager (ADM). At every fog node, we place
an intelligent local attack detection controller (ADC), which monitors the whole fog node to
supervise the users’ activities and to analyze the collected data. Within the fog environment, the
monitoring is functional until the end of the user’s activity. If the system detects any malicious
behaviors, the ADC has the ability to deactivate their tasks, so that the IoT user would be rejected
from the network. This procedure is repeated for each user. Consequently, for the purpose of
collaboration, the incorporated monitoring agent ADC in the FN-cell reports the user’s behaviors.
Then, after detecting a new attack, identified by new signatures, this agent sends them to the
ADM, which is responsible for updating the signature databases. Moreover, for homologous ADM
at neighbor fog cells, the security information updates are exchanged. The suggested network
model is illustrated in Figs. 2 and 3.

In Fig. 4, we present a detailed overview of our proposal, which comprises three steps realized
by two components (ADC and ADM), as described below.
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Figure 2: Proposed architecture

Figure 3: Flowchart of the proposed scheme

Figure 4: Overview of the detection model

1) Monitoring user’s activities: To protect and ensure efficient operation of IoT devices in the
fog network, the suggested attack detection model can be employed to compensate for the lack
of a monitoring process and to prevent possible attacks. This activity undertakes the task of
coordinating the ADC for acquiring the basic knowledge that will be used for the learning step.
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The network controllers should be able to identify the network features, such as its components,
the architecture, the type, the available and the running services, the operating systems, the
memories capacities, and even possible vulnerabilities. Each ADC monitors the whole fog node
in order to supervise the user’s behaviors. It collects information to be, after that, analyzed and
classified.

2)Analyzing and classifying information: After collecting the necessary data, the ADC performs
the analysis and the classification of traffic flows into normal tasks or malicious tasks. Through
the use of the machine learning algorithm, the monitoring agent is able to detect the anomalous
activity in comparison with the normal traffic. Then, the ADC utilizes network audit tools in
order to generate alerts. This analyzer is able to analyze huge volumes of data for detection
purposes. In fact, the ADC is able to determine any alteration action that must be detected and
deactivated.

3) Sharing attacks signatures: After the detection of a malicious attack and the deactivation
the user’s task, the ADC sends attack signatures to the ADM, if it is a new attack. Then, the
ADM updates its signature database and shares these information with other ADC placed on his
fog cell. In addition, it sends these new signatures to the neighbor ADM placed in the neighbor
fog cells.

3.2 Architecture of Intelligent Attack Detection Method
The presented smart attack detection scheme involves three steps comprising data preparation,

feature extraction, and classifier attack phase. Firstly, the data preprocessing consists of a treat-
ment phase to deliver good quality data. Secondly, the feature extraction is essential to extract
diverse categories of characteristics from data as vectors. Moreover, this phase aims to produce
classifiers that use the features attack to classify attacks from normal data. After this phase, the
system will decide whether the input data is an attack or not. All these modules work together
in collaboration to improve the mechanism of attack detection (Fig. 5).

Figure 5: Proposed intelligent attack detection scheme

4 Experimental Evaluation

The goal here is to identify signature attacks and send information to computer managers in
real time. In fact, our proposed ML aims to redefine how computers detect and identify attack
signatures based on user’s behavior.

Our method enables the ADC and the ADM to achieve high detection rates, even if it is
applied to enormous environmental changes like fog and IoT networks. In this manuscript, based
on distributed machine learning, we propose an attack detection system that takes advantage of
an artificial intelligent algorithm. Therefore, we propose to evaluate our distributed approach by
involving some ML/DL models in order to choose the best one.
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4.1 Methodology
The proposed intelligent scheme is presented in Fig. 5. The methodology of our work is

detailed as follows.

4.1.1 Data Preprocessing/ Preparation
This step comes after the collection of the handled data. Data preparation, generally named

as “pre-processing”, is the stage during which the data is cleansed and well-structured for the
following step of information process. Throughout this step, the raw dataset is fastidiously checked
for any kinds of faults. The aim of this preparation is to exclude low-quality information which
can either be incomplete, redundant, or incorrect, and to begin making the information that can
guarantee the high quality of the adopted intelligent model.

During this preparation phase, we transformed the input data into a matrix that can be
vectorized. Among the known operations, we cite:

(a) Outlier’s replacement: by computed medians, to avoid disappeared data point.
(b) Replacement of the missing values by computed medians.
(c) Data normalization: this step leads to the organization of the data in order to ensure the

coherence between the records in the dataset.
(d) Deletion of the constant features and the low variance features by the Variance Threshold

function.
(e) Feature extraction through PCA: Since it comes from diverse sources, network traffic

generally has different types of parameters. Here, the features are collected together in the
form of vectors, and they are then allocated to different channels for training. For this
reason, we will reduce the dimension of the selected features using Principal Component
Analysis (PCA).

4.1.2 Classification
In this step, the classifier returns whether the network traffic is an attack or not. Therefore,

we will apply our distributed approach by using some classifiers, in order to choose the best one.

4.2 Dataset Description
In the security domain, there are numerous types of datasets that have been used by

researchers to train and evaluate their machine learning systems and deep learning systems.
The most commonly used one is NSL-KDD dataset, which is mainly based on KDDCUP’99
dataset [30]. The dataset was thoroughly processed in order to remove the redundancy and/or the
incomplete records. Tab. 1 shows the traffic distribution of the NSL-KDD dataset [30].

Table 1: Traffic distribution of the NSL-KDD in two classes with statistics on the attack types

Traffic Training Test

Normal 67343 9711
Dos 45927 7458
Probe 11656 2754
R2L 995 2421
U2R 52 200
Total attack 58630 12833
Total traffic 125973 22544
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The selected learnt features were applied to the labelled test dataset to classify them into
attack and normal traffic.

The used NSL-KDD dataset of [30] is pre-processed and prepared, following the next steps:

Step 1: Collecting and receiving data frame from the dataset in both train and test and having
column for labels csv files.

Step 2: Merging all the collected data frames into one data frame (df). Then, searching for
missing, duplicated, and mistaken values in all columns, and dropping them from the (df).

Step 3: Normalizing numeric data with a min-max scalar (between 0 and 1). Thus, adding a
target column to the data frame. Then, deleting constant features to select the best ones.

• Initial number of features = 122
• Deleted Features are Index([’num_outbound_cmds’], dtype=’object’)
• Number of features now is = 121

Afterwards, we aim to reduce the number of the selected features while conserving the total
variance at a great value. Consequently, we plotted, in Fig. 6, the number of components in
function of the cumulative sum of variance, in order to choose the desired number of features.

Figure 6: Dataset explained variance

Step 4: Reducing the dimension of the selected features using Principal Component Analysis
(PCA), to have the following final configuration.

• Number of components = 10
• Total variance from PCA components = 0.8621156371639519

After these steps, the dataset is prepared and ready to be used by applying our approach with
the integration of some classifiers from the literature.

4.3 Statistical Evaluations
To evaluate our work, we test the performance of the RF algorithm, in the context of

attack detection, in comparison with other methods tested using the NSL-KDD dataset. There
are diverse metrics that can be used to evaluate this performance, like accuracy (Ac), sensitivity,
detection rate (DR), positive predictive value (PP), and negative predictive value (NP). These
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factors are assessed through the use of true positive (TP), true negative (TN), false positive (FP),
and false negative (FN). Using these factors, the performance evaluation measurements can be
defined as [31]:

Confusionmatrix: which is a matrix that envisages the work of a tested classification technique
versus actual classification.

Accuracy (Ac): is the percentage of the proximity between the predicted value and the actual
value. Specifically, it represents the ratio of the sum of the TP and the TN against the total
number of population. Eq. (1) depicts the mathematic expression of Ac:

Ac= (TP+TN)/(TP+TN+FP+FN) (1)

Recall: also called Sensitivity, represents the proportion of the actual positives that are prop-
erly predicted. It shows how many attacks the detection scheme may return. The mathematic
expression of recall is as follows:

Recall=TP/(TP+FN) (2)

Positive predictive (PP) value/ Precision: is the percentage of proximity between the predicted
positive results compared to the value when the true condition is positive. Its mathematical
formulation is as follows:

Precision= PP=TP/(TP+FP) (3)

F1 score: represents the weighted harmonic mean of recall and precision. It is formulated as
follows:

F1 score= 2 ∗Recall ∗Precision/(Recall+Precision) (4)

Negative predictive (NP) value: represents the ratio of the predicted negative values compared
to the value when the true condition is negative. Its mathematical expression is:

NP=TN/(FN+TN) (5)

4.4 Results
In this section, we provide the results achieved from applying our proposed intelligent scheme

and other DL/ML models for attack detection using NSL-KDD dataset. The evaluation metrics
are summarized in Tab. 2, which displays that the proposed RF classifier for the application of
our method is in fact better than others traditional models with the highest accuracy. In fact, the
accuracy value of the proposed model has been perceived to be 99, 50 percent (Fig. 7).

In addition, the experimental results show that the proposed distributed scheme has good
performance in attack detection at the fog layer, without the need for having an attack detector
for each fog node. Our proposed model is evaluated under a number of classification factors
and it is proved that its attack detection rates with the application of the RF classifier rises up
to 99%, and that FPR = 0.00847, which means that this method is performing well. Moreover,
in Tab. 2 we present the overall statistical evaluation values achieved by the RF in comparison
with other classifiers including [32]: Decision tree, Gradient Boosting, SVM, ANN, Ada Boost,
Logistic Regression, Quadratic Discriminant Analysis, Linear Discriminant Analysis, and Gaussian
NB. The obtained results show that, without exception, the RF has the best results in terms of
precision, recall, and F1 score. Furthermore, RF has the highest TP number of 17548, which are
predicted as abnormal samples and are indeed abnormal (Figs. 8 and 9). Thus, the number of
FN and TP can indicate that the attacks detection rates of the RF is the highest.
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Table 2: Performance evaluation values

Classifier metrics TP FN FP TN Precision Recall Accuracy (%) F1

Random forest 17548 187 163 19079 0.9950 0.9950 99,50 0.9950
Decision tree 17484 251 272 18970 0.9858 0.9858 98,58 0.9858
Gradient boosting 16966 769 354 18888 0.9698 0.9696 96,96 0.9696
SVM 16933 802 336 18906 0.9694 0.9692 96,92 0.9692
ANN 18853 389 871 16864 0.9662 0.9659 96,59 0.9659
Ada Boost 16722 1013 561 18681 0.9576 0.9574 95,74 0.9574
Logistic Regr. 16126 1609 941 18301 0.9315 0.9315 93,10 0.9309
Quad. Discr. Anal. 16267 1468 1201 18041 0.9278 0.9278 92,78 0.9277
Linear Discr. Anal. 15697 2038 986 18256 0.9193 0.9182 91,82 0.9180
Gaussian NB 14712 3023 1591 17651 0.8771 0.8752 87,52 0.8748
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Figure 7: Accuracy comparison
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Fig. 10 shows that our distributed scheme outperforms the centralized model when we applied
the RF classifier. In fact, our intelligent distributed detection method confirms its reliability and
its scalability with a significant number of fog nodes. This indicates that when we integrate a large
number of fog nodes, the accuracy increases and the delay reduces. Moreover, we deduce that
these substantial results are a consequence of the distribution aspect of our method. Furthermore,
the choice of RF as classifier to be applied in our model is greatly confirmed. Potentially, the
combination of many prediction values issued from numerous decision trees into one single
method, is essential to have these significant results. This is explained by the fact that even if
a model is created out of many mediocre methods, it will always be superior to a single good
model.
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Figure 10: Comparison between our distributed scheme with the application of RF method
against centralized ML model

Furthermore, the learning and the optimization of our system are done simultaneously, at the
ADC and then, distributing attack signatures to others nodes. This improves the performance of
our proposal due to the sharing of attack parameters in the IoT-Fog distributed environment.

To test the efficiency of the proposed attack detection method in terms of latency, we
implemented our model in iFogSim [33], using distributed and centralized fog architectures.

The response time is measured 10 times and we computed the average value for different net-
work architectures. The obtained results show that the response time of the proposed distributed
scheme in IoT-fog systems is less than that of the centralized architecture, since the fog nodes are
closer to the IoT layer, and hence can discover attacks with a short delay (See Fig. 11).
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Figure 11: Average response time for fog-based centralized and distributed detection architectures



2740 CMC, 2022, vol.70, no.2

Thereby, IoT devices, organizations, and applications can obtain a better and faster reply in a
secure way, due to the deactivation of malicious users/applications that might execute operations
that may diminish their efficiency and stretch their resources.

4.5 Performance Analysis
The performance measurements of the proposed model show a significant difference compared

to other models. This could be explained by the environmental characteristics surrounding our
model. Accordingly, our scheme allows a greater bandwidth consumption and low latency in data
processing.

Data Security: the IoT fog networks are not secure from malicious threats. In this regard, our
intelligent model is able to analyze the network traffic and detect intruders in order to ensure the
security and privacy of users’ credentials.

Latency: most of IoT applications necessitate substantially severe latency constraints. Thus,
this parameter is very important to evaluate certain mechanisms. In fact, by realizing the pro-
cessing and the traffic analysis at the fog layer instead of the cloud, the delay could be reduced
considerably. Consequently, the servicing in fog and cloud network would be performed more
efficiently and rapidly. Moreover, the concordance between the proposed components of our model
makes the attack detection considerably faster. At the point when a an ADC produces an attack
alert, these information should be communicated to the ADM, therefore, to decrease the risks in
other fog nodes, a part of the detection processing will be reduced, and consequently, we gain
time. In this respect, our proposal achieves low-latency in attack detection and can thus reduce
its own energy objectives.

Network Availability: the volume of data exchanged in the IoT network is enormous. Here,
the proposed model ensures an autonomous, intelligent, and distributed system for dealing with
this amount of information. Therefore, we avoid the unavailability of IoT-fog networks.

Network Bandwidth: by using blacklist, a repeated attack can be prevented. For instance, the
IP address, email address, and similar other information would be recorded in a blacklist in order
to prevent the hacker from repeating the same attack. Since the ADC would monitor the behavior
of such user, we cannot detect false positives. Therefore, the network throughput will be well
alleviated.

5 Conclusion

Despite the fact that recent advances in the IoT and fog paradigms have brought about new
opportunities to improve the service, achieving accurate security monitoring still faces several
challenges, which make cyber security an important field of research. Therefore, in this paper,
we presented an intelligent method to deliver a scalable and autonomous attack detection and
monitoring system. Our methodology aims to divide fog computing into small cells situated
at the edge of the network, to operate the services of detection, monitoring, evaluation, and
administration. The proposed scheme enables to achieve high attack detection rates, even if it
is imposed on successive environmental variations like fog computing. Furthermore, our method
focuses on segregating attacks from the normal network traffic data at the fog layer. Subsequently,
we have chosen the most accurate classifier, which is the random forest RF, to finally detect
attacks. The optimal achievements of the chosen method are that it eliminates the complexity
of the system in the IoT-fog networks and that it rises the classification accuracy, stability, and
the reliability. Indeed, by using our scheme, the latency and the response times of the attacks
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detection will be highly reduced. Additionally, the experimental results revealed that our intelligent
scheme outperforms diverse other models with high accuracy, sensitivity and positive and negative
detection rates.

As a future work, in order to address the matter of energy efficiency for the proposed scheme
in IoT-fog environments, we will apply intelligent parameters to improve its performance in terms
of energy consumptions. Thus, we will aim to address the issue by developing a predictive model
for energy consumption in IoT fog environments using machine learning. We will try to use and
compare different classifiers in order to choose the more accurate one.
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