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Abstract: In networking, one major difficulty that nodes suffer from is the
need for their addresses to be generated and verified without relying on a
third party or public authorized servers. To resolve this issue, the use of self-
certifying addresses have become a highly popular and standardized method,
of which Cryptographically Generated Addresses (CGA) is a prime example.
CGA was primarily designed to deter the theft of IPv6 addresses by binding
the generated address to a public key to prove address ownership. Even though
the CGA technique is highly effective, this method is still subject to several
vulnerabilities with respect to security, in addition to certain limitations in
its performance. In this study, the authors present an intensive systematic
review of the literature to explore the technical specifications of CGA, its
challenges, and existing proposals to enhance the protocol. Given that CGA
generation is a time-consuming process, this limitation has hampered the
application of CGA in mobile environments where nodes have limited energy
and storage. FulfillingHash2 conditions in CGA is the heaviest andmost time-
consuming part of SEND. To improve the performance of CGA, we replaced
the Secure Hash Algorithm (SHA1) with the Message Digest (MD5) hash
function. Furthermore, this study also analyzes the possible methods through
which a CGAcould be attacked. In conducting this analysis,Denial-of-Service
(DoS) attacks were identified as the main method of attack toward the CGA
verification process, which compromise and threaten the privacy of CGA.
Therefore, we propose some modifications to the CGA standard verification
algorithm to mitigateDoS attacks and tomake CGAmore security conscious.
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1 Introduction

In the present era, a huge increase in the number of hosts on the Internet is observed;
thus, communication and networking experts expect Internet protocol version 4 (IPv4) to be
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replaced by IPv6 [1–3]. The IPv6 suite primary protocol is a neighbor discovery protocol (NDP),
which is considered as a replacement for the address resolution protocol (ARP) function in
IPv4 [4]. The NDP protocol performs an array of functions (definite router functions) that are
related to nonrouter or host-specified functions. Moreover, the NDP protocol performs multiple
tasks, including node examination, duplicate address detection, stateless address auto configuration
(SLACC) [5,6], and address solving and redirection to appropriate routers [7].

IPv6 has existed for 16 years, and most organizations have begun transitioning from IPv4
to IPv6. However, though some organizations have moved to IPv6, many have yet to start their
transition [8]. This delay is due to several reasons, one of which is related to IPv6 security [9–11].
NDP internal working mechanisms were developed with the expectation that nodes would be
linked with other trusted nodes. However, these assumptions were not observed in real-time
implementation [12]. Airports, coffee shops, and other places with a wireless environment are
not secure, and anyone can join and threaten the link easily. Owing to this lack of security, the
NDP is vulnerable to denial of service (DoS) attacks, which may cause devices to crash [13–16].
The NDP can experience various attacks, such as neighbor advertisements, neighbor solicitations,
and numerous frequently occurring threats owing to the trusted assumption of NDP internal
working mechanisms. For instance, the duplicate address detection (DAD) attack is a common
NDP problem [17,18] owing to the mandatory usage of an address duplication procedure while
the NDP configures itself using a SLACC process [19,20]. Such attacks are a threat to many
sectors, such as banking and e-commerce, where recovery costs for devices and network opera-
tions are considerable. To deal with NDP security issues, the Internet Engineering Task Force
(IETF) proposed an updated version of the NDP called the secure neighbor discovery (SEND)
protocol [21,22]. The role of the SEND protocol is to ensure address ownership validity while
excluding malicious attacks and router authorization procedures [23]. As an updated version of
the NDP, the SEND protocol contains four new features, that is, a cryptographically generated
address (CGA), an RSA, two ICMPv6 messages, and a timestamp (TS) [24,25]. The CGA is
the core of the SEND protocol, which is designed to deter the stealing of IPv6 addresses by
binding the generated address to a public key to verify address ownership. Although the CGA
technique is highly effective, it remains subject to several security vulnerabilities in addition to
certain performance limitations. In this study, the authors modify a standard CGA by proposing a
new method for improving CGA performance and security. The need for additional IP addresses
with the exponential growth of the number of devices connected to the Internet is evident. Thus,
transition to IPv6 is progressing, which will soon completely replace IPv4. The main objective of
this research is to highlight and address IPv6 vulnerabilities that threaten devices.

1.1 Contribution
The CGA technology employs an addressing technique of fixed-size addresses with the help of

a cryptographic hash function for an address owner’s public key. This technique enables owners to
confirm ownership of addresses by mapping between addresses and owners using a public/private
key pair [26,27]. The contribution of this study is threefold. (i) This study explores CGA tech-
nical specifications, deficiencies, and security vulnerabilities. (ii) This study conducts a survey
regarding the researchers’ proposal to improve CGA performance. (iii) This study introduces two
models to improve CGA performance and security, namely, the CGA-Lighter and Locked-CGA
models, respectively.
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1.2 Paper Organization
The rest of this paper is organized as follows. Section 2 explains the CGA specifications, and

Section 3 describes the CGA deficiencies along with various types of CPA attacks and solutions.
Section 4 elucidates the methodology and results, and Section 5 discusses the conclusion. Finally,
the limitations and future research directions are presented in Section 6.

2 CGA Specifications

In networking, the use of IPv6 improves self-certified addresses with the SEND protocol. The
CGA generates a standard 64-bit address with notable symbols, as shown by [26]. Moreover, it
can undergo self-verification without the need for a public-key infrastructure to create an IPv6
address. CGA addressing was initially proposed by [28] as a childproofing certification for mobile
IPv6 and further improved by [29]. In addition, [30] recommended an alternative process using
the “SUVC” concept. Subsequently, [31] demonstrated the process in the real world.

In the IPv6 address format, special semantics and several parameters are used in the interface
identifier. The first parameter set is comprised of “u” and “g” bits, which are located in the
seventh and eighth bits in the interface identifier. The combination of u = g = 1 is kept unused
for other purposes, which can be used in the CGA, as suggested in [31]. The other value in the
interface identifier is the security parameter “sec,” which is a 3-bit user-defined parameter. In a
CGA, this parameter is used in relation to a hash extension, which is an essential notation used
in CGA generation, as presented in Tab. 1.

Table 1: Notations CGA generation

Data Notation Length

Subnet prefix SP 64-bit
Interface identifier Interface ID 64-bit
Public-key K_pub Variable-length
Private-key K_priv Variable-length
Digital signature Sign Variable-length
Modifier m 128-bit
Collision count CC 8-bit
Security parameter sec 3-bit
u,g flags u, g 1-bit each
Subnet prefix SP 64-bit
Interface identifier Interface ID 64-bit
Public-key K_pub Variable-length
Private-key K_priv Variable-length
Digital signature Sign Variable-length
Modifier M 128-bit

The CGA uses a hash extension method, which is empowered by the sec security parameter.
This method includes a linear hash extension by enforcing several 16-sec bits to zero, which
is referred to as Hash2. Its main purpose is to improve CGA security. To generate addresses,
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a computer must fulfill a number of parameters, such as the hash extension, which could slow
the process of address creation if used with a big sec value.

2.1 Creation of Addresses
The following are the steps to produce an IPv6 address that uses CGA [32]:

a. To adjust the modifier randomly to a 128-bit value, select the security value and initialize
the collision counter.

b. Add the modifier with 64 + 8 zero bits and the present public-key. Then, run the hash
algorithm on these joined character strings. The outcome is Hash2 with 112 bits on
the far-left.

c. The 16_sec bits have to be matched with the bits on the far-left with zero. If all are zero,
proceed to Step D. Otherwise, increment the modifier and return to Step B.

d. Add the modifier with subnet notation, present public-key, and count of collisions. Then,
run this modifier with the hash algorithm on these joined character strings. The outcome
is Hash1 with 64 bits on the far-left side.

e. The two special bits, i.e., u and g, are preset to obtain an identifier for an interface on
Hash1 to 1 and 3 bits on the far-left to sec-6. A 128-bit IPv6 address is obtained by adding
the subnet notation and interface identifier.

f. In a scenario where the IP address has conflict with machines in the same subnetwork,
increment the count of collisions and return to Step E. This process avoids three initial
conflicts. If it still exists, it halts the process and forwards the error.

2.2 Authentication of Addresses
a. Check and confirm whether the conflict counter is 0. If it is 1 or 2 and the subnet notation

is also the same, then CGA authentication automatically becomes unsuccessful.
b. Add the modifier with the subnet notation, the conflict count, and public-key. Then, run

the H algorithm on the combined character strings. The outcome is Hash1 with 64 bits on
the far-left.

c. The Hash1 to the address interface identifier is to be equated.
d. Alter the two special bits, u and g. The initial 3 bits on the left side are overlooked.

In this scenario, the 64-bit values contrast, and the CGA authentication automatically
becomes unsuccessful.

e. Add the modifier with 64 + 8 zero bits and preset public-key. Then, run the H algorithm
on these combined character strings. The outcome is Hash2 with 112 bits on the left side.

f. The security feature is obtained by the sec 3-bit on the leftmost side of the address
interface identifier. Then, equate 0 with 16_sec bits on the left side of Hash2. If the bits are
not zero, the CGA authentication will be unsuccessful. Otherwise, the verification will be
successful if sec= 0 verification never fails at this step. Fig. 1 illustrates the CGA creation
and authentication process [33].
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Figure 1: CGA creation and authentication process

3 CGA Deficiencies

The CGA security technique is quite promising in the IPv6 protocol. Nevertheless, it still has
some limitations and disadvantages. One of the limitations is that CGA generates addresses with
relatively higher computational time [26,34]. Moreover, although CGA provides security to IPv6, it
is still vulnerable to threats, and it is not a complete solution for NDP security [27]. For instance,
CGA does not assure that the address provided is for a node. Attackers use this drawback by
compromising a new and valid CGA address, which is created with its own public key. This new
address also captures the messages of Neighbor Discovery (ND) by which attackers can alter the
CGA parameters of the sender. This limitation is causing failure in the CGA verification process
at the receiver’s end. Thus, the communication between the sender and the receiver becomes
insecure. A DAD DoS Attack can be conducted by an attacker in various ways, For instance, it
disallows a new node from joining the link. The attackers can also use the techniques wherein
the CGA parameters and signatures are copied and issued with a Neighbor Advertisement (NA)
message, which contains similar security parameters. Through this process, the attackers prevent
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the CGA address for all nodes from being configured and from being attached to a local link. In
another example, attackers continue the verification process. This action ensures that the node is
always busy verifying valid and invalid messages of CGA.

The time required to accomplish the Hash2 demand is stated in Tab. 2 [35] and the outcome
performance is matched [36]. The table shows that effective addressing is impossible with an
increase in safety parameter sec.

Table 2: CGA generation time for different sec values

Specification of setup sec= 0 sec= 1 sec= 2 sec= 3

Pentium 4.3 GHz, memory 1 GB
Linux (Kernel 2.4)

15.57 μs just over 0.1 s 100 s more than 200 h

Machine with moderate
processing power

n/a 1 min 16 days) n/a

A modern PC (AMD64) n/a 0.2 s 3.2 h 24 years

3.1 CGA Attacks
In this section, we discuss various attacks, such as (1) discovery of an alternative key pair

hashing of a victim’s node address, (2) detection of a victim node’s private key, (3) a global
time/memory tradeoff (TMTO) attack, (4) DoS attacks against the CGA verification process,
and (5) CGA privacy implication. Attackers use the aforementioned methods to compromise the
security of the CGA node [37].

3.1.1 Discovery of an Alternative Key Pair Hashing of a Victim’s Node Address (Second Preimage
Attacks)

In such attacks, an attacker discovers a victim’s alternative key pair hashing address, and the
success of the attack may depend on the hash function security properties. That is, an attacker
will attempt to break the preimage hash function resistance. According to the RFC 3972 CGA
standards, this is vulnerable to collision attacks when used in SHA-1 [38]. RFC 4982 is used
to analyze the implications of attacks for the hash function and to propose implementation
supporting multiple hash algorithms.

3.1.2 Detection of a Victim Node’s Private Key
In this case, an attacker uses a private key in lieu of a public key, copies the CGA, and forges

its signature.

3.1.3 Global TMTO Attacks
A CGA is extremely vulnerable to global TMTO attacks, as shown in [27]. In such attacks,

an attacker performs a search for hash collisions or a match to numerous addresses using the
interface IDs of its public key(s) created from an extensive precomputed database.

3.1.4 DoS Attacks Against the CGA Verification Process
In the CGA verification process, DoS attacks can be executed in specific steps against the

DAD and verification of CGA parameters [14].
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a) DoS Attacks Against DAD-CGA

According to RFC 3756, IPv6 is highly susceptible to DoS attacks in the DAD algorithm.
When DAD is applied to a tentative address by a victim’s node, in a reply, an attacker will respond
as if the address is in use. As a result, the victim will not be able to configure itself and join
a network.

b) DoS Attacks by Replaying the Sender CGA Parameters

A CGA is susceptible to repeated attacks when an attacker tries to steal and store a victim’s
node messages. Moreover, an attacker can repeat attacks by using a sender’s CGA parameters.
Generally, this process calculates the Hash1 required by a CGA-enabled receiver, which involves
the verification of a sender’s interface ID. This verification is required to send the CGA param-
eters from a sender to a receiver. If a modification is executed for the CGA parameters by an
attacker, then Hash1 will fail. If failure exceeds more than two, then the verification process
will fail. Thus, it will interrupt the attacker communication between a CGA-enabled sender
and receiver.

c) DoS Attacks to Kill a CGA Node

An attacker can keep a node busy with the verification process and send high-frequency signed
valid or invalid CGA messages across a network. This technique is a type of DoS attack applied
to the request–response protocol and not specific to CGAs.

3.1.5 CGA Privacy Implication
CGA generation requires high computational complexity. If an acceptable CGA is generated

once, then it will be continuously used in the subnet, thereby becoming highly susceptible to
privacy-related attacks. Utilization of the same address repeatedly over a long period of time
increases threats, and an attacker can track and violate a user’s online privacy in devices such as
cellphones, laptops, and so on.

3.2 Solutions
To develop and enhance CGA, the authors in [39] have proposed an approach that detects the

processors automatically on a machine and generates the number of equivalent working threads
to calculate the Hash2 condition. In all the cores, the computation of CGA is implemented by
assigning a parallel mechanism. In general, when one condition of CGA Hash2 thread is satisfied,
the other will stop. In the identical approach, the speedup time will also increase if the number
of cores in the computing devices increases. In [40], the CGA mechanism proposed requires less
than 10 modular multiplications. This mechanism accomplishes pickup executions through two
steps. (1) It selects the productive signature scheme with little variation in the Feige–Fiat–Shamir
scheme. (2) Then, the crypto parameters scheme of the signature are tuned to secure the CGA
quality. The only concern in this approach is that it calls for additional fitting assets (processors),
which influence and restrict the abilities of devices, node versatility, and adversely.

The enhanced version of the protocol of CGA is known as CGA++ [41]. This protocol
enhances the general security, and many attacks related to CGA are disposed. Initially, the
alteration is made by considering the subnet prefixes of Hash2 calculations that could avoid the
attacks. The verifier not only checks the link-local addresses but also verifies full IPv6 addresses.
In [42], the utilization expansions and upgrades are also suggested to verify CGA in the annihila-
tion of the DAD algorithm against the DoS attack. The TS used is additionally proposed as CGA
inside option when it runs single. In addition, it is not considered a part of SEND. This CGA
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is affected more by privacy-related attacks and can be resolved by tagging a CGA address for a
lifetime. In this case, a tradeoff in the method occurs, and this arrangement between privacy and
security is practical. In [43], the standard CGA is suggested with few alterations. It is proposed
because it is mostly used to generate CGA. The running time of the upper bound of CGA is
taken as input in the adjusted CGA generated algorithm, and revoking brute force is resolved by
the yield of the sec value. The running time of the Hash2 value is changed in this altered CGA.
This proposed algorithm is called Time-based CGA (TB-CGA).

Enhanced CGA [44] is presented as Elliptic Curve Cryptography (ECC) and Elliptic Curve
DSA (ECDSA) in which RSA is first supplemented. Later on, it uses Graphical Processing
Units (GPGPU) with general-purpose calculations. The alterations in the CGA generation method
thus provide permission to the connected node that recently joined the link to generate the
CGA address rapidly [45]. The processing is included in the CGA method ahead of time to
perform the key-pair server node operation. The generation time decreases gradually as lengthy
and time-consuming computation is performed on a server. This proposed method shows better
performance. However, it relies more on an external server. If different server nodes are attacked,
then the new nodes will not be able to join the network. To improve the computational speed
of CGA, a parallelized CGA generation process is used with available resources in a trusted
server [46]. It is also focused on malicious nodes on overload that influence the existing network.
Here, trusted management is used, which is capable of finding and isolating the malicious nodes
to remove possible incentive malicious behavior. Tab. 3 listed below summarizes the authors’ work
to improve CGA.

Table 3: CGA countermeasures summary

Solution Strengths Weaknesses

[39] Speedup generation time. Parallelization needs more processors
[40] More efficient and lighter than

original CGA
Call for more processors

[41] Have higher security compare to
standard CGA

More cost, as it incorporates subnet
prefix in Hash2 calculation

[42] The time needed is significantly
decreased
Generate the key pair for the CGA
algorithm on-the-fly enhance the
security and protect privacy

Tradeoffs between privacy and
security.
More work and arrangements
needed to practice it.
Platform limited.

[43] CGA is the vulnerability of attacks It involves tradeoffs between privacy
and security

[44] Reduce the generation cost of CGA Re-design the structure of CGA
from standards

[45] Reduced CGA generation cost Rely on the outer server.
Single point of failure to joined and
new nodes.

[46] Detect and isolate malicious nodes
efficiently.

Software management system based
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4 Methodology and Results

This section describes the steps and methodology to derive two models that tradeoff between
SEND-based CGA security and performance. The two models are the CGA-Lighter and Locked-
CGA models. Two main computational programs are used to develop the two models, namely,
Open Secure Sockets Layer (OpenSSL) and Waikato Environment for Knowledge Analysis
(Weka). OpenSSL is utilized to implement the CGA-Lighter model and reduce CGA generation
costs using a light hash function, namely, MD5. Weka is used to implement the Locked-CGA
model, including various components and functions, which are explained in the succeeding sec-
tion. Moreover, components of the Locked-CGA model, such as the monitor, processor, and
response controller, are likewise explained. The operation stages and workflow of the Locked-
CGA model during its lifespan are also illustrated. The operation stages include the CGA traffic
monitoring stage, collection stage, processing stage, and response control stage. Details on how
the CGA-Lighter model can improve CGA performance are presented below.

4.1 CGA-Lighter Model
This model aims to minimize CGA generation costs to address the deficiency of the SEND

protocol. MD-5 is a message digest-designed algorithm that takes an arbitrary length message
as input to output a 128-bit input message digest or fingerprint. Yielding two messages with a
similar message digest or generating a message that entails a predetermined message digest may
be impossible. In 32-bit machines, the MD-5 algorithm is well designed to work efficiently and
rapidly. Furthermore, the MD-5 algorithm can be coded compactly, as it does not require any
extra substitution tables. According to the literature [47,48], the MD-5 hash function is fast and
consumes less time to hash a construct.

Replacing the SHA-1 hash function with the MD-5 hash function in CGA generation can
help reduce costs [49]. Although SHA-1 is more secure than MD-5, the latter should be con-
sidered. For instance, user mobility and mobile data demands increased recently [50–52]. In a
mobile environment, when nodes have limited resources, using a heavy hash function to generate
cryptographic addresses will limit the performance of a network and affect it negatively. The
MD-5 and SHA-1 algorithms are considered secure, as no known methods have the ability to
locate collisions except with brute force, which requires many years of breakthrough for one big
message digest.

Although SHA-1 is more secure than MD-5, computing a message digest with SHA-1
costs more. In terms of security issues, SHA-1 is ideal. However, when speed is the primary
concern, MD-5 is ideal and adequately secure in multiple applications [48]. CGA sequence gen-
eration is conducted normally in this proposed method except for the hash function construction
using MD-5.

OpenSSL is used to implement the CGA-Lighter model, which is a software library used in
applications that require secure communications over computer networks against eavesdropping
or need to ascertain the identity of a party at the other end. OpenSSL is used extensively in
Internet web servers and the majority of websites. OpenSSL contains SSL open-source imple-
mentation and transport layer security (TLS) protocols. The core library, which is written in
the C programming language, implements essential cryptographic functions and provides various
utility functions. Wrappers allowing the use of the OpenSSL library in various computer languages
are available. Versions are available for most Unix and Unix-like operating systems (including
Solaris, Linux, macOS, QNX, and various open-source BSD operating systems); OpenVMS; and
Microsoft Windows [53].
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4.2 Testing Scenario
In practice, a standard CGA considers a single hash value, which computes Hash1 and Hash2

in CGA specifications as two independent one-way hash values. The second Hash2 extension
increases brute-force attack costs but reflects an increase in the hash output value length required
for an IPv6 address, which is written into the interface ID portion. The sec value depends mostly
on the Hash2 computational complexity. The address generated against the brute-force attack is
used to indicate the security level of the sec using unsigned 3-bit integer values between 0 and 7
(0 being the least secure and 7 being the most secure).

Scenarios for three different CGA sec parameter values (i.e., sec = 1, sec = 2, and sec = 3)
are implemented with five different computer specifications and processor speeds. The average
of five runs with different computer specifications is collected and compared with that of a
standard CGA. The scenarios are conducted for three different CGA sec security scale values with
processor speeds ranging from 2.0 GHz to 3.2 GHz. Three charts for sec values 0, 1, and 2 for
five rounds are presented below. In general, the three different outputs for sec values 0, 1, and 2
using five different processors demonstrate a fast generation time when the CGA-lighter model
is used. Consequently, computer resources and processor cycles are saved. A comparison between
the standard CGA and CGA-Lighter results is shown when the sec value is set to 0 (Fig. 2),
1 (Fig. 3), and 2 (Fig. 4), as illustrated below.
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4.3 Locked-CGAModel
The Locked-CGA model is designed to deal with the CGA DoS attacks described below.

4.3.1 DoS Attack Against the DAD CGA
According to RFC 3756, IPv6 is highly vulnerable to DoS attacks in the DAD algo-

rithm [54,55]. A victim node employs the DAD algorithm with a temporary address, and a reply
from an attacker saying that the address is in use is received by the node. This process is how a
victim node is prevented from joining and configuring the IP address of a network.

4.3.2 DoS Attack Against the CGA Parameters
In such attacks, CGA vulnerability is generally high, as replies of signed messages are sniffed

out and stored in a victim’s node for a later reply. A sender’s CGA parameters are used by an
attacker to execute a DoS attack by replying or resending a host-enabled CGA. To verify the
sender interface identifier (IID), Hash1 must calculate the CGA-enabled receiver. This verification
process enables a sender to send the parameters to a receiver. Hash1 fails when the parameters
are modified. This mechanism is employed between a CGA-enabled sender and receiver to prevent
communication from an attacker.

The Locked-CGA model is developed by utilizing an artificial neural network (ANN) and
backpropagation algorithm in the Weka 3.8 suite. Fig. 5 describes the main components of the
Locked-CGA model, and the functions of the model are described in Tab. 4. The data structure
of the Locked-CGA model is explained in Tab. 5.

Weka is used to implement this model, which is a machine learning software suite written
in Java developed at the University of Waikato, New Zealand. Weka contains a collection of
visualization tools and algorithms for data analysis and predictive modeling, with graphical user
interfaces for easy access. Two sets, that is, a training set and test set, are used for the multilayer
perceptron (MLP) neural network training in Weka.

a. Training set: A set of examples used for learning that is to fit the parameters [i.e., weights]
of the classifier.

b. Test set: A set of examples used only to assess the performance [generalization] of a fully-
specified classifier.
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Figure 5: Locked-CGA components

Table 4: Functions of locked-CGA components

Locked-CGA model stage Function

Monitor Monitor messages between two CGA parties.
Monitor the CGA verification timer.

Collector Collect frames TS and sender IID.
Processor Matching collected information against rules.
Response controller Act to the CGA communicated party according to rules.

Table 5: Locked-CGA data structure

Data Notation Length

Subnet prefix SP 64-bit
Interface identifier IID 64-bit
Public-key K_pub Variable-length
Modifier m 128-bit
Collision count CC 8-bit
Time stamp TS Variable-length
Counter c 3-bit
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Back Propagation algorithm is used for the network training. The initialization of all weights
to small random numbers is done until satisfied DO conditions [56] in this algorithm occurred.
For each training example DO

a. Input the training example to the network and compute the training outputs
b. For each output unit k

∂k← ok (1− ok) (tk− ok)
c. For each hidden unit h

∂h← oh (1− oh)
∑

k ∈ outputswh,k∂k
d. Update each network weight

wi, j←wi, j+Δwi− j
4.3.3 Testing Scenarios

For the Locked-CGA model, two testing scenarios, namely, C1 (CGA parameter DoS attack)
and C2 (CGA DAD DoS attack), are implemented using Weka. For scenario C1, a CGA param-
eter DoS attack is executed between CGA parties during the CGA verification procedure. The
recorded performance metric for this scenario is the verification procedure time. For scenario C2,
a CGA DAD DoS attack is executed between CGA parties’ verifier and neighbor nodes. Attacker
detection is based on two parameters, that is, the frame TS and IID. The controller of the Locked-
CGA model takes a decision based on the gained values of this parameter and compares it with
existing ANN rules. Tab. 5 presents the notations for the Locked-CGA model along with the
meaning and length.

Figs. 6 and 7 show the pseudocode of the algorithms used to defend against the CGA DAD
DoS attack and CGA parameter DoS attack, respectively. For the Locked-CGA pseudocode, four
variables, namely, the IID, TS, network synchronized time (T), and IID table (IIDt), are traced
during the verification stage of the CGA algorithm. The algorithm checks whenever a SEND-
based NA message arrives from a neighbor claiming that the solicited CGA address is in use
during the DAD procedure. If the time difference between the TS and T of that packet is less
than five seconds and the address of the NA IID exists in the IIDt, then the sender of that NA
message will be classified as an attacker, and the CGA verifier will configure the claimed address
as its own. The IPv6 self-configuration address includes the newly joined SEND-based node in
the DAD procedure, which typically takes at least three to four seconds, thereby indicating that
it is being investigated [57] by the testbeds. This investigation is why five seconds is chosen as
the threshold. If the aforementioned conditions are not met, then only the DAD counter CC of
the CGA verification will be completed, as it is delayed in the last part of the CGA verification
algorithm rather than at the beginning, similar to a standard algorithm.

The most common IID performance metrics are false positive rates and detection accuracy
rates. A low percentage of false positive and false negative rates indicate that the detection mecha-
nism is accurate and trusted. To evaluate and verify the CGA-Locked model, we select a detection
accuracy ratio metric that represents the percentage of success in detecting the aforementioned
CGA DoS attack.
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Figure 6: Locked-CGA algorithm (CGA DAD DoS attack)

Figure 7: Locked-CGA algorithm (CGA parameters DoS attack)

A counter variable (c) is traced whenever the CGA verification algorithm begins between two
CGA parties. A two-second difference threshold is chosen, because the CGA verification time
when the RSA key length is 1024 and the scaling factor sec is 0 or 1 is less than one second in a
moderate Pentium processor with a speed of 2.4 Mh [58]. Moreover, two seconds is a reasonable
threshold, considering limited processor speeds and other RSA key lengths.

The results of scenarios C1 and C2 are compared with the outcome of the standard CGA
verification algorithm under the same attacks. The Locked-CGA model demonstrates superior
security when implemented. The results of the C1 scenario under the CGA DAD DoS attack
are shown in Fig. 8. The figure shows that after a five-second running attack, the DoS attack is
identified, and the CGA verification stops. In the C2 scenario, the Locked-GA model sufficiently
manages to eliminate the verification parameter DoS attack, as shown in Fig. 9. Once an attacker
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reaches the nonlegitimate node behavior threshold, the Locked-CGA model ignores the DAD
replies from a specific IID.
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Figure 8: Results of C1 scenario
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Figure 9: Results of C2 scenario

4.4 Summary
The proposed CGA-Lighter and Locked-CGA model have increased the performance of IPv6

protocol security issues. Both models have the potential to balance between the security and
performance of SEND-based CGA successfully for the following reasons. First, CGA parameters
respond to DoS attacks, and CGA-DAD DoS attacks have become detectable and easy to recog-
nize. Second, the primary drawback of SEND-based CGA has been solved; it became lighter and
more compatible for constrained devices with limited resources and specifications. Third, a security
metric, such as the detection accuracy rate, is examined in this research to check the efficiency of
the second model (Locked-CGA) to detect SEND-based CGA DoS attacks.

5 Conclusion

In this study, we proposed two new CGA models, namely, CGA-Lighter and Locked-CGA.
Given the security issues in the present model, this new model was projected to balance the secu-
rity and performance of SEND-based CGA and IPv6 NDP. The generation times (computation
complexity) of CGA for three different sec values were investigated to verify the efficiency of
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the first proposed model (CGA- Lighter). In these testing scenarios, the model was tested in five
runs with five different machine specifications. For network security, the performance metric was
tested in two scenarios, namely, for verification time and performance metrics. These metrics were
selected because they are affected by the operations of the IPv6 network. We conclude that the
performance of CGA is improved. Moreover, the consumption of resources is reduced, and CGA
is more secured from the time against DoS attacks, as it uses packet TS and senders IID.

6 Limitations and Future Works

The Locked-CGA is limited by a legitimated node that may not cut off the threshold and
become blocked. This limitation increases the possibility of obtaining false-positive rates. Accord-
ing to DAD internal mechanism and programming, this situation rarely occurs because once the
node has passed the DAD check, it will not change the obtained address until it is rebooted
again. Furthermore, the addition of TS in the CGA verification may increase network bandwidth
consumption. However, this amount of consumption is also not considered a serious drawback,
as verification is not frequently performed within a communication link and the bandwidth within
a local link is always not an issue.

The need for more IP addresses has increased with the growth of connected devices to the
Internet and the prevalence of the Internet of Things (IoT) [59,60]. Moreover Mobile Ad hoc
Networks (MANETs) necessitate the deployment of IPv6 [61,62]. Therefore, further work is
needed to address the rest of the CGA attacks and safely migrate the Internet to a native
IPv6 infrastructure. The proposed work has demonstrated a new method to defend two attacks
of CGA. However, subsequent attacks have not been covered. Therefore, this subject could be
addressed in future works.

a. Global Time-Memory Trade-off Attack.
b. Alternate key pair Hashing is discovered of the victim’s Node Address.
c. A private key identification of the victim node.
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