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Abstract: The advancement of information technology has improved the
delivery of �nancial services by the introduction of Financial Technology
(FinTech). To enhance their customer satisfaction, Fintech companies leverage
arti�cial intelligence (AI) to collect �ne-grained data about individuals, which
enables them to provide more intelligent and customized services. However,
although visions thereof promise to make customers’ lives easier, they also
raise major security and privacy concerns for their users. Differential privacy
(DP) is a common privacy-preserving data publishing technique that is proved
to ensure a high level of privacy preservation. However, an important concern
arises from the trade-off between the data utility the risk of data disclosure
(RoD), which has not been well investigated. In this paper, to address this
challenge, we propose data-dependent approaches for evaluating whether the
suf�cient privacy is guaranteed in differentially private data release. At the
same time, by taking into account the utility of the differentially private
synthetic dataset, we present a data-dependent algorithm that, through a
curve �tting technique, measures the error of the statistical result imposed
to the original dataset due to the injection of random noise. Moreover, we
also propose a method that ensures a proper privacy budget, i.e., ε will be
chosen so as to maintain the trade-off between the privacy and utility. Our
comprehensive experimental analysis proves both the ef�ciency and estimation
accuracy of the proposed algorithms.
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1 Introduction

Financial Technology (FinTech) concept has evolved as a result of integrating innovative
technologies into �nancial services, e.g., AI and big data, Blockchain and mobile payment tech-
nologies, to provide better �nancial services [1]. Investments in FinTech industry is trending
upward, such that by September 2020 the global investment in Fintech was $25.6 Billion, reported
by KPMG [2]. However, security and privacy of the users’ data is among the main concerns
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of the FinTech users [3]. Data governance and user data privacy preservation are reported as
the most important challenges in FinTech due to the accessibility of user data by suppliers and
third parties [3]. Some �nancial institutions rely on honest but curious FinTech service providers
which might be interested in accessing sensitive attributes of users’ data. Specially, in the case
of small and medium businesses, which provide personalized �nancial services to their customers,
with no background knowledge in security and data privacy, protection of users’ data becomes
even more challenging.

The “open data” concept and data sharing for banking industry has been promoted by several
countries, including the UK. A report by the Open Data Institute, discusses the bene�ts of
sharing anonymized bank account data with the public and suggests that such data release could
improve customers decision making [4]. User data are usually shared with the data consumers
via data release; herein, we consider scenarios in which data are released, i.e., where tabular data
with numeric values (which could be related to user’s bank transactions, stock investments, etc.)
are to be published (or shared) by the data owner. However, data release often presents the
problem of individual privacy breach, and there has always been a debate between data privacy
and openness, reported by Deloitte [5]. A real-world example thereof is that, by using publicly
available information, researchers from the University of Melbourne were able to re-identify seven
prominent Australians in an open medical dataset [6]. Furthermore, researchers from Imperial
College London found that it would be possible to correctly re-identify 99.98% of Americans in
any dataset by using 15 demographic attributes [7]. Other relevant privacy incidents were also
reported [8,9]. All of these incidents provide evidence of privacy leakage because of improper
data release.

Recently, the United States and Europe launched new privacy regulations such as the Califor-
nia Consumer Privacy Act (CCPA) and General Data Protection Regulation (GDPR) to strictly
control the manner in which personal data are used, stored, exchanged, and even deleted by
data collectors (e.g., corporations). Attempts to assist law enforcement have given rise to a strong
demand for the development of privacy-preserving data release (PPDR) algorithms, together with
the quantitative assessment of privacy risk. Given an original dataset (the dataset to be released),
PPDR aims to convert the original dataset into a sanitized dataset (or a private dataset) such
that privacy leakage by using the sanitized dataset is controllable and then publish the sanitized
dataset. In the past, the former demands could be satis�ed by conventional approaches such as
k-anonymity, l-diversity, and t-closeness. However, these approaches have shortcomings in terms
of syntactic privacy de�nition and the dif�culty in distinguishing between quasi-identi�ers and
sensitive attributes (the so-called QI fallacy), and therefore are no longer candidates for PPDR.
In contrast, differential privacy (DP) [10] can be viewed as a de-facto privacy notion, and many
differentially private data release (DPDR) algorithms [11] have been proposed and even used in
practice. Note that DPDR can be considered as a special type of PPDR with DP as a necessary
privatization technique.

Although it promises to maintain a balance between privacy and data utility, the privacy
guarantee of DPDR is, in fact, only slightly more explainable. Therefore, in the case of DPDR,
it is dif�cult to choose an appropriate con�guration for the inherent privacy parameter, privacy
budget ε. More speci�cally, DP uses an independent parameter ε that controls the magnitude
of the injected noise, yet the selection of ε such that the data utility is maximized remains
problematic. On the other hand, although the value of ε affects the magnitude of noise, it
has no direct relevance to the risks of data disclosure, such as the probability of re-identifying
a particular individual. In other words, the choice of ε such that the privacy is meaningfully
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protected still needs to be investigated. In practice, there is no clear recommendation by the
regulatory institutions in Fintech industry on the preferred anonymization technique which could
address the challenge of preserving privacy while providing openness. This might be due to the
unclarity of privacy guarantee versus utility in the existing DPDR algorithms. Thus, a strong
demand exists to develop novel measures for the risk of disclosure (RoD) and utility for DPDR.

1.1 Related Work
In this section we present a brief review of studies on the differentially private data release

and the risk of disclosure.

1.1.1 Differentially Private Data Release (DPDR)
Privacy-preserving data release (PPDR) methods have been introduced to address the chal-

lenge of the trade-off between privacy and utility of a released dataset. Several anonymization and
privacy-enhancing techniques have been proposed in this regard. The most popular technique is
k-anonymity [12], which uses generalization and suppression to obfuscate each record between at
least k−1 other similar records. Due to vulnerability of the k-anonymity against sensitive attribute
disclosure where attackers have background knowledge, l-diversity [13] and t-closeness [14] are
proposed to further diversify the record values. However, all of these techniques are proven to be
theoretically and empirically insuf�cient for privacy protection.

Differential privacy (DP) [10] is another mainstream privacy preserving technique which aims
to generate an obfuscated dataset where addition or removal of a single record does not affect
the result of the performed analysis on that dataset. Since the introduction of DP, several DPDR
algorithms have been proposed. Here, we place particular emphasis on the synthetic dataset
approach in DPDR. Namely, the data owner generates and publishes a synthetic dataset that is
statistically similar to the original dataset (i.e., the dataset to be released). It should be noted
that, since 2020, the U.S. Census Bureau has started to release census data by using the synthetic
dataset approach [15]. DPDR can be categorized into two types: Parametric and non-parametric.
The former relies on the hypothesis that each record in the original dataset is sampled from a
hidden data distribution. In this sense, DPDR identi�es the data distribution, injects noise into
the data distribution, and repeatedly samples the noisy data distribution. The dataset constructed
in this manner is, in fact, not relevant to the original dataset, even though they share a similar
data distribution, and can protect individual privacy. The latter converts the original dataset
into a contingency table, where i.i.d. noise is added to each cell. The noisy contingency table is
then converted to the corresponding dataset representation. This dataset can be released without
privacy concerns because each record can claim plausible deniability.

Two examples in the category of parametric DPDR are PrivBayes [16] and JTree [17]. In
particular, PrivBayes creates a differentially private but high-dimensional synthetic dataset D
by generateing a low-dimensional Bayesian network N. PrivBayes is composed of three steps:
1) Network learning, where a k-degree Bayesian network N is constructed over the attributes in
the original high-dimensional dataset O using an (ε/2)-DP algorithm; here k refers to a small
value dependent on the affordable memory size and computational load. 2) Distribution learning:
an (ε/2)-DP algorithm is used to generate a set of conditional distributions, such that each
attribute-parent (AP) in N has a noisy conditional distribution. 3) Data synthesis: N and d noisy
conditional distributions are used to obtain an approximation of the input distribution, and then
from the approximate distribution, we sample tuples to generate a synthetic dataset D.
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JTree [17] proposes to use Markov random �eld, together with a sampling technique, to
model the joint distribution of the input data. Similar to PrivBayes, JTree consists of four steps:
1) Generate the dependency graph: The goal of this step is to calculate the pairwise correlation
between attributes through the sparse vector technique (SVT), leading to a dependency graph.
2) Generate attribute clusters: Once the pairwise correlation between attributes is computed, we
use junction tree algorithm to generate a set of cliques from the above dependency graph. These
attribute cliques will be used to derive noisy marginals with the minimum error. 3) Generate
noisy marginals: We generate a differentially private marginal table for each attribute cluster. After
that, we also apply consistency constraints to each differentially private marginal table, as a post-
processing, to enhance the data utility. 4) Produce a synthetic dataset: From these differentially
private marginal tables, we can ef�ciently generate a synthetic dataset while satisfying differ-
ential privacy. Other methods in the category of parametric DPDR include DP-GAN [18–20],
GANObfuscator [21], and PATE-GAN [22].

On the other hand, Priview [23] and DPSynthesizer [24] are two representative examples in
the category of non-parametric DPDR. Priview and DPSynthesizer are similar in that they �rst
generate different marginal contingency tables. The main difference between parametric and non-
parametric DPDR lies in the fact that the former assumes a hidden data distribution, whereas
the latter processes the corresponding contingency table directly. Speci�cally, noise is applied to
each cell of the contingency tables to derive the noisy table. Noisy marginal contingency tables
are combined to reconstruct the potentially high-dimensional dataset, followed by a sophisticated
design of the post-processing step for further utility enhancement. Other methods in the category
of non-parametric DPDR include DPCube [25], DPCopula [26], and DPWavelet [27].

1.1.2 Risk of Disclosure (RoD) Metrics
Not much attention has been paid to develop RoD, although DP has its own theoretical

foundation for privacy. The research gap arises because the privacy of DP has been hidden in the
corresponding de�nition, according to which the query results only differ negligibly from those of
neighboring datasets. However, in the real world setting, the user prefers to know whether (s)he
will be re-identi�ed. Moreover, the user wants to know what kind of information is protected,
what the corresponding privacy level is, and the potentially negative impact of the perturbation for
the statistical analysis tasks. On the other hand, although many DPDR algorithms have emerged,
because of the lack of a clear and understandable de�nition of RoD, we know that the choice of
ε is critical but it hinders the practical deployment of DPDR systems. Thus, we eager to develop
an RoD to quantitatively answer questions such as what kind of information is protected, what
the corresponding privacy level is, and the potentially negative impact of the perturbation for the
statistical analysis tasks properly.

To make the privacy notion easy to understand by layperson, Lee et al. [28] made the �rst
step to have a friendly de�nition of the RoD. They adopt the cryptographic game approach de�ne
the RoD. Speci�cally, given a dataset O with m records, the trusted server randomly determines,
by tossing a coin, whether a record r ∈ O will be deleted. Let D be the resulting dataset after
the deletion of the chosen record. The attacker’s objective is to determine whether the record r
exists. Here, the attacker is assumed to be equipped with an arbitrary knowledge of the datasets
O and D. In this sense, Lee and Clifton formulated the attacker as a Bayesian attacker, which
means that the attacker is aimed to maximize the probability of guessing correctly by using both
the prior and posterior knowledge of O, D, and r.
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Hsu et al. [29], on the other hand, propose to choose the parameter ε based on an economic
perspective. The idea behind their work is based on the observation that a normal user has a
�nancial incentive to contribute sensitive information (if the third party or even attacker provide
the �nancial compensation). Their economics-inspired solution [29] can calculate an proper ε by
striking a balance between the accuracy of the released data and ε. In addition, Naldi et al. [30]
calculated the parameter ε according to estimation theory. More speci�cally, Naldi et al. put their
emphasis only on the counting query (as the counting query leads to the minimal sensitivity) and
de�ne their RoD. Their solution is similar to the solution in this paper. Nonetheless, the restriction
on the counting query implies the limited practicality. Tsou et al. [31] also presented an RoD
and their RoD is de�ned by restricting the con�dence level of the magnitude of Laplace noise.
With an observation that the data owner who wants to evaluate the RoD is only in possession
of an original dataset O and a candidate differentially private synthetic dataset D. With another
observation that the magnitude of Laplace noise can be bounded with high probability, the value
range of the Laplace noise can then be estimated with a certain con�dence level. As a result, the
estimated value range of the Laplace noise can be used to determine the level of distortion for
the record values, and this also implies the privacy level.

1.2 Problem Statement
The assessment of the RoD and data utility of the DP synthetic dataset presents the following

two dif�culties.

• RoD requires good explainability for layman users in terms of a privacy guarantee, while
simultaneously allowing quantitative interpretation to enable the privacy effect of different
DPDR algorithms to be compared. In particular, although the privacy budget ε in DP
has a mathematical explanation, it is dif�cult for layman users to comprehend the meaning
behind the de�nition. Moreover, the privacy budget is inconsistent with the requirements in
the current privacy regulations such as GDPR and CCPA, because the relation between ε

and legal terms such as “single-out” remains to be investigated.
• Usually, it is necessary to generate a synthetic dataset and then estimate the corresponding

privacy level by calculating the RoD. Nonetheless, this process requires an uncertain number
of iterative steps until the pre-de�ned privacy level is reached, leading to inef�ciency in
synthetic dataset generation. Thus, the aim is to develop a solution that can ef�ciently
estimate the privacy level of the DP synthetic dataset.

Though the methods in Section 1.1 can be used to determine ε (or to quantify the privacy
level), all of them have inherent limitations as mentioned previously. In particular, two of these
studies [28,29] can apply only in the case of interactive DP, where the data analyst keeps inter-
acting with the server and receives query results from the server. Nevertheless, as interactive DP
suffers from the privacy budget completion problem, the DPDR in this paper only considers
non-interactive DP (see Section 2.1), which results in the publication of the differentially privacy
dataset allowing an arbitrary number of queries. Thus, the studies [28,29] are not applicable to the
assessment of RoD. Moreover, though the method in [30] is somewhat related to non-interactive
DP, its application is limited to the counting queries. Sarathy et al. [32] also have a similar
limitation since their work only applies to numerical data. Lastly, Tsou et al. [31] method works
only when the synthetic dataset is synthesized with the injection of Laplacian noise. Unfortunately,
this is not always the case, because Laplacian noise leads to synthetic dataset with awful utility
and therefore the data owner might choose alternatives. The design of PriBayes, JTree, Priview,
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and DPSynthesizer (in Section 1.1.1) similarly indicate that a more sophisticated design is used
for DPDR, further limiting the applicability of this work [31].

1.3 Contribution
Our work makes the following two contributions:

• We de�ne a notion for evaluating the risk of disclosure (RoD) particularly for the DP
synthetic dataset. The state-of-the-art DPDR algorithms decouple the original dataset from
the synthetic dataset which makes it dif�cult to evaluate the RoD. However, we strive to
quantify the RoD without making unrealistic assumptions.
• We propose a framework for ef�ciently determining the privacy budget ε in DP, using the

curve �tting approach, taking into consideration the desired trade-off between the data
utility and privacy.

2 Preliminaries

2.1 Differential Privacy (DP)
The scenario in our consideration is a trusted data owner with a statistical database. The

database stores a sensitive dataset. The database constructs and publishes a differentially private
synthetic dataset for the public. In this sense, DP has been a de facto standard for protecting
not only the privacy in the interactive (statistical database) query framework but also the (non-
interactive) data release framework (see below).

There are two different kinds of DP scenarios, interactive and non-interactive. In the former,
a dedicated and trusted server is located between the data analyst, who issues queries to the server
(the data owner), and server (data owner). The server is responsible for answering the queries
issued by data analyst. However, to avoid information leakage from query results, before forward-
ing the query result, the server will perturb it. Obviously, the interactive setting is cumbersome
because in reality the data owner needs to setup a dedicated server. On the contrary, in the latter,
the server (data owner) simply releases a privatized dataset to the public after the sanitization of
dataset. During the whole process, no further interaction with anyone is needed. The synthetic
dataset approach is a representative for non-interactive DP. Throughout the paper, we consider
the non-interactive setting of DP (i.e., DPDR) unless stated otherwise.

Let ε and M be a positive real number and a randomized algorithm with the dataset as the
input, respectively. We claim that M is ε-DP if, for all neighboring datasets D1 and D2 that differ
at most one single record (e.g., the data of one person), and all subsets S of the image of M,

Pr[M(D1) ∈ S]≤ eε ×Pr[M(D2) ∈ S], (1)

where the parameter ε can be adjusted according to the tradeoff between utility and privacy;
a higher ε implies lower privacy. Therefore, ε is also called the privacy budget because, the number
of query responses is positively proportional the privacy loss. From the above de�nition, we can
also know that DP provides a cryptographic privacy guarantee (from indistinguishability point of
view) that the presence or absence of a speci�c record will not affect the algorithm signi�cantly.
From attacker’s point of view, (s)he cannot tell whether a speci�c record exists given the access
of the algorithm output.

DP can be achieved by injecting a zero-mean Laplace noise [33]. Speci�cally, the noise
sampled from a zero-mean Laplace distribution is added to perturb the query answer. Then, the
data analyst only receives the noisy query answer. With two parameters on the mean and variance,
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Laplace distribution is determined jointly by ε and global sensitivity,

1q = max
D1,D2

‖q(D1)− q(D2)‖, (2)

of the query function q; that is, for any query q and mechanism M,

M(D)= q(D)+Lap
(
1q

ε

)
(3)

is ε-DP, where Lap
(
1q

ε

)
is a random variable that follows a zero-mean Laplace distribution.

Apparently, as stated above, ε determines the tradeoff between privacy and data utility. DP
features the sequential composition theorem, which states that by querying the dataset k times,
if each noisy response satis�es ε-DP, then all the k queries achieve kε-DP together. In addition,
DP involves post-processing, which states that any kind of data-independent processing of a noisy
answer (ε-DP) does not compromise its privacy guarantee.

2.2 Voronoi Diagram
In our proposed algorithm in Section 3.2.3, we take advantage of the Voronoi Diagram, a

mathematical concept which refers to partitioning a plane into adjacent regions called Voronoi
cells to cover a �nite set of points [34]. The de�nition of a Voronoi diagram is as follows [34,35]:
Let X be a set of n points (called sites or generators) in the plane. For two distinct points x, y ∈X
the Voronoi region/cell associated to x is the set of all points in the plane that are closer to x
than to any other point in the plane (i.e. the nearest neighbor to the point). In other words,
the region associated to x is all the points in the plane lying in all of the dominances of y,
i.e., region (x) =

⋂
y∈X−{x} dominance(x, y), where dominance (x, y) = {p ∈ R2

| l2 (p, x) ≤ l2 (p, y)},
where l2 is the Euclidean distance. Due to speci�c geometrical structure of Voronoi diagrams
and their simplicity in visual perception, they have been used by several research studies, such as
�le searching, scheduling and clustering [34]. Recently, the Voronoi diagram has also been used
for preserving location privacy in various research studies [36–38]. In [36] the authors propose a
privacy preserving model for mobile crowd computing to hide users in a cloaked area based on
the Voronoi diagram. This paper takes advantage of the Voronoi diagram to provide k-anonymity
for users in each Voronoi cell. In another study, Bi et al [38] combine local differential privacy
and Voronoi diagram in order to preserve privacy in edge computing.

Compared to the state-of-the-art, in this paper we adopt Voronoi diagram in a completely
different manner for evaluating the RoD in a differentially private synthetic dataset.

3 Proposed Approach for Evaluating Risk of Disclosure

In the following, we consider the setting of an original dataset O and the corresponding differ-
entially private synthetic dataset D, both sized m× n and with numeric attributes A1, A2, . . . , An.
Each record in O represents personal information; a concrete example of O is a medical dataset,
where each record corresponds to the diagnosis of a patient. We do not assume a particular
DPDR algorithm unless stated otherwise. The DPDR algorithms in Section 1.1.1 are all available
for consideration. Our goal is to develop friendly notions of both RoD and utility, ensuring
that these notions can easily quantify the RoD and utility of D, given the access to O and the
satisfaction of ε-DP.
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First, we discuss a simple metric for RoD in Section 3.1. In Section 3.2, we present four
privacy notions. After that, we claim that the combined notion would be the best by justifying its
self-explainability. Thereafter, we present our solution of how to quickly evaluate the utility of the
synthetic dataset, given a speci�c privacy level, in Section 3.3. At last, we present in Section 3.4
a uni�ed framework of calculating the maximal privacy budget ε by jointly considering utility
and RoD.

3.1 Straightforward Metric for RoD
Irrespective of the approach that was followed to generate the synthetic dataset, each record in

D could be “fake”; i.e., the existence or non-existence of a record in the synthetic dataset does not
indicate the existence status of this record in the original dataset. In theory, even an attacker with
abundant background knowledge cannot infer the individual information in O. Speci�cally, the
privacy foundation lies in the fact that D is no longer a transformed version of O, and one cannot
link O and D. Nonetheless, in reality, layman users are still concerned about the probability of
the attacker re-identifying an individual from the synthetic dataset. We term this phenomenon the
scapegoat effect. In particular, the scapegoat effect states that despite the fact that the information
about an individual x in O will almost certainly not appear in D, because a record x̂ in D could
be suf�ciently similar to x and the attacker only has partial knowledge of x, the attacker will
(falsely) identify x̂ as x. We claim the importance of the scapegoat effect because this is similar
to the skewness attack in l-diversity [14]. In other words, an innocent individual might be accused
of a crime if they are misclassi�ed as either being or not being in the dataset.

Considering that most people may be concerned about the probability of an individual being
re-identi�ed by an attacker, given a synthetic dataset, a straightforward method for assessing the
privacy level of the synthetic dataset would be to calculate the hitting rate, which is de�ned as
the ratio of the number of overlapping records to the total number m of records in both datasets.
Despite its conceptual simplicity, the use of the hitting rate incurs two problems.

• First, because of the curse of dimensionality, the density of the data points in a high-
dimensional space is usually low. This could easily result in a very low hitting rate and an
overestimated level of privacy guarantee.
• Second, such an assessment metric leads to a trivial algorithm for a zero hitting rate.

For example, a synthetic dataset could be constructed by applying a tiny (and non-DP)
amount of noise to each record in the original dataset. Owing to the noise, the records in
the original and synthetic datasets do not overlap, leading to a zero hitting rate and an
overestimated level of privacy.

3.2 Our Proposed Methods for RoD
In this section, we develop friendly privacy notions (or say friendly RoD estimation) from a

distance point of view. More speci�cally, as we know from the literature, in the DPDR scenario,
the original dataset O is already decoupled from the synthetic dataset D. A consequence is that
there is no sense to connect between O and D. This also implies the dif�culty in de�ning the
appropriate RoD. However, the previous work [28–31] sought different ways to create the linkage
between O and D, as the linkage between them is the most straightforward way for human
understanding. Unfortunately, the privacy notion based on the linkage inevitably incurs security
�aw, especially in the sense that such a linkage does not exist.

In the following, taking the scapegoat effect into consideration, a distance-based framework,
(y, p)-coverage, is �rst proposed in Section 3.2.1 to minimize the scapegoat effect and to reconcile
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the privacy level and decoupling of O and D. The idea behind (y, p)-coverage is inspired by the
observation that, even without the knowledge of the linkage between O and D, the only strategy
left for the attacker is still to seek the closest record in O as the candidate original record in D.
However, (y, p)-coverage is not suitable for measuring RoD because it has two parameters and
does not have total order (described in more detail at the end of Section 3.2.1). Subsequently, we
propose RoD metrics to measure the risk of re-identi�cation.

3.2.1 (y, p)-Coverage
Here, we propose the notion of (y, p)-coverage as a framework for evaluating RoD. The idea

behind (y, p)-coverage is that, the attacker would exhaustively search for a candidate matched
record in O, given access to D. In particular, given Di as the ith record of D (ith row of D),
due to the lack of pre-knowledge, the attacker’s research range would be in the neighborhood
of a speci�c record Di. In this sense, the corresponding privacy metric can be formulated as a
minimum weight bipartite matching problem in graph theory. Also from graph theory, we know
that one can use the Hungarian Algorithm to handle minimum weight bipartite matching problem
and so one can conduct the same algorithm to evaluate the RoD with the observation that O and
D would be of the same size. In particular, Algorithm 1 is the pseudocode of the above idea,
whose aim is to test if the distance-based (y, p)-coverage is ful�lled. Given O and D, we construct
a complete weighted bipartite graph G= (V , E, W), where

V =O∪D and E = {(Oi, Dj)}Oi∈O,Dj∈D. (4)

In the graph G, each edge has an edge weight that indicates the dissimilarity between the
respective records; hence, the edge weights are de�ned as

W = {eij} with eij = ‖Oi−Dj‖. (5)

The graph G has 2m vertices, each of which corresponds to a record from O. Thus, each ver-
tex can also be seen as an n-dimensional row vector. Under such a construction, G is completely
bipartite as all the vertices from O are connected to all those from D. No direct edge for any pair
of vertices both of which are for O (and D) exists. We also note that, the notation ‖ · ‖ denotes
the norm. Here, while many norms can be used, an implicit assumption in this paper is that we
always choose to use the Euclidean distance for ‖Oi−Dj‖ = ‖(χ1, . . . , χn)‖ for certain χ1, . . . , χn.
However, the other norm can also be used as an alternative.

Given a matching M, let its incidence vector be x, where xij = 1 if (i, j) ∈M and 0 otherwise,
and the perfect matching of the minimum weight is a subset of edge weights such that

min
∑
i, j

cijxij, (6)

where cij = wij. Once the Hungarian algorithm is performed, we can derive the perfect matching
and the corresponding edge weight ω, where ω is an m-dimensional vector and the ith entry of
ω denotes an edge weight of the minimum weighted bipartite matching for Di. We then calculate
the number of weights less than or equal to y as a count ζ ,

ξ =

m∑
i=1

Iωi≤y, (7)
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where Iωi≤y denotes an indicator function with Iωi≤y = 1 in the case of ωi ≤ y, and Iωi≤y = 0
otherwise, given a user-de�ned weight y. Subsequently, we calculate p′ = ζ/m. With the probability
p from the user, D is supposed to ful�ll (y, p)-coverage if p′ ≤ p.

Algorithm 1: (y, p)-coverage
Input: User-de�ned weight: y
Input: User-de�ned probability: p
Input: Original dataset: O
Input: DP synthetic dataset: D
Output: (Yes/No) Whether D fu�lls (y, p)-coverage

1: M←HUNGARIAN ALGORITHM(O, D);
2: ξ =

∑m
i=1 Iωi≤y;

3: p′ = ζ/m
4: return (p′ ≤ p) ? ful�lled: not ful�lled;

Despite its conceptual simplicity and theoretical foundation, (y, p)-coverage cannot be used
for assessing RoD because (y, p)-coverage has two parameters y and p and does not have total
order. Note that the purpose of developing the RoD metric is to enable layman users to conve-
niently choose the privacy budget ε in DP. However, when the notion of (y, p)-coverage is used,
it may be dif�cult to determine which of, for example, (3, 0.5)-coverage and (4, 0.4)-coverage,
improves the privacy. Hence, the following sections de�ne additional privacy notions with total
order to enable an RoD comparison.

3.2.2 y-Privacy
An underlying assumption for the (y, p)-coverage that the attacker conducts a search to

look for a bijective matching between O and D by using the Hungarian algorithm. However,
this assumption may fail in reality. To �t the reality setting, one can relax such an assumption,
ensuring that the attacker instead performs an exhaustive search to �nd a matching between O
and D. In this process, two records in D may happen to be matched against the same record
in O. In (y, p)-coverage, we only keep one matching and get rid of another matching, which does
not make sense. Therefore, in this section, we propose to use y-privacy to overcome the above
limitation. While (y, p)-coverage can be seen as an average-case analysis, y-privacy is featured by
its focuses on the worst-case analysis.

Algorithm 2 is proposed to achieve y-privacy; more speci�cally, it is used for verifying whether
a given dataset satis�es y-privacy. In what follows, we consider the case of n = 1 with integral
values in O to ease the representation. We will relax this assumption later. However, our imple-
mentation is a bit different from the above description. Instead, we in Algorithm 2 turn our focus
to �nding the mapping, instead of the matching, between O and D with the minimum incurred
noise. First, we �nd the minimum value y′i for each record Di in D such that [Di ± y′i] contains
one original record in O. This ensures that an original record is within the attacker’s search range.
Then, for each y′i in y′, we calculate

y′ = argmin1≤j≤m
∥∥Di−Oj

∥∥ . (8)

The above equation indicates that, because y can be seen as all of the possibilities, when the
attacker sees a record, it needs to be veri�ed whether this was a brute-force guess. Consequently,
a lower y implies a downgrade privacy. Thus, Eq. (8) can also be seen as the probability that
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the attacker successfully makes a correct guess on an original record in O within the range
[Di − y, Di + y], given that a record Di ∈D is always at most 1/(2y+ 1). One can also choose y′

in such a way that the median of y′ is selected as y to strike a balance between the privacy and
utility. In comparison, the choice of y′ goes back to the average-case analysis, and choosing the
minimum y′ as y has a similar �avor of (y, p)-coverage.

Algorithm 2: y-privacy
Input: Original dataset: O
Input: DP Synthetic dataset: D
Output: y

1: y′i = 0, 1≤ i≤m;
2: for i= 1 to m do
3: y′i = �nd min y′i s.t. [Di± y′i] contains Oj;

4: y= (
{
y′i
}n
i=1)

5: return y;

One can see that Algorithm 2 can also apply to the case of n ≥ 2, once we properly de�ne
the operation [Di± y′i], because Di is n-dimensional. The de�nition can be derived by considering
‖Di−x‖ ≤ y for all n-dimensional vectors x. The same patch can be used in the operation [Di±y′i]
even if the record values are �oating numbers.

Under the framework of (y, p)-coverage, y-privacy considers a general attack strategy and
provides a worst-case guarantee. Compared to (y, p)-coverage, y-privacy has total order, and it is
easy to see that y-privacy is better than y′-privacy when y≥ y′ in terms of the privacy guarantee.
Intuitively, the above argument that y-privacy is better than y′-privacy when y≥ y′ also indicates
that each record in the synthetic dataset satisfying y-privacy will be at least y-far away from the
closest record in the original dataset, in contrast to the synthetic dataset, which satis�es y′-privacy.
However, y-privacy is still not practical when a dense dataset (consisting of a huge number of
records) is considered. Speci�cally, the common weakness of y-privacy and (y, p)-coverage is that
when the records in a dataset are seriously dense, the parameter y in y-privacy and (y, p)-coverage
should be very small. This can be understood by the fact that the records are close to each
other both before and after the noise injection. It turns out that the parameter y becomes less
meaningful as a privacy level.

3.2.3 Voronoi Privacy
The notion of y-privacy can also be generalized to consider its extreme condition. In other

words, because y-privacy considers a y-radius ball centered at each data point and considers the
number of data points in O covered by this y-radius ball, we can follow this perspective and
consider the y-radius balls centered at all data points in O. The rationale behind the above consid-
eration is to determine the arrangement of the dataset with the optimal y-privacy. Expanding the
radius of all y-radius balls ultimately leads to a Voronoi diagram [39]. As explained in Section 2.2,
this diagram is a partition of a multi-dimensional space into regions close to each of a given set of
data points. Note that a Voronoi diagram can be ef�ciently constructed for two-dimensional data
points, but for high-dimensional data points this would only be possible by using approximation
algorithms [40,41]. The Voronoi diagram is characterized by the fact that, for each data point, a
corresponding region consisting of all points of the multi-dimensional space exists closer to that
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data point than to any other. In other words, all positions within a Voronoi cell are more inclined
to be classi�ed as a particular data point.

From the perspective of RoD, we then have an interpretation that, in terms of y-privacy,
each record in D cannot be located at these positions within the Voronoi cell; otherwise, an
attacker who �nds such a record in D is more inclined to link to a particular record in O.
The above argument lies in the theoretical foundation of Voronoi privacy. Algorithm 3 shows
the calculation of Voronoi privacy, given access to O and D. In particular, the rationale behind
Voronoi privacy is to derive the optimal privatized dataset D̂ (in terms of privacy) �rst, and then
calculate the distance between D and D̂ as an RoD metric. A larger distance implies a higher level
of dissimilarity between D and D̂ and therefore a lower risk of data closure.

Algorithm 3: Voronoi-privacy
Input: Original dataset: O
Input: DP Synthetic dataset: D
Output: Distance d

1: Setup D̂ as an empty dataset;
2: Construct Voronoi diagram from O;
3: for i= 1 to m do
4: Calculate D̂i as the closest point on Voronoi edges;

5: D̂= D̂∪
{
D̂i
}

;

6: d =Distance(D, D̂);
7: return d;

In this sense, �rst, Algorithm 3 constructs an empty dataset D̂. The subsequent procedures
gradually add records to D̂, making it optimal in terms of privacy. Then, Algorithm 3 constructs
a Voronoi diagram from O because the data owner would like to know the corresponding optimal
privatized dataset. As mentioned previously, approximation algorithms [40,41] might be candidates
for this task. Once the data owner has a Voronoi diagram from O, the collection of data points
on the Voronoi diagram constitutes the optimal privatized dataset. Thus, an in�nite number of
optimal privatized datasets are available. Here, we aim to �nd the optimal privatized dataset with
the optimal data utility. Considering that more perturbation on the record in O implies lower data
utility, for each data point in O, the closest point on Voronoi edges would have been identi�ed.
The data owner collects all these data points as D̂. Thereafter, the data owner calculates the
distance between D and D̂ as an RoD metric. We particularly mention that different choices of
the Distance function are possible in the implementation, depending on the domain of the dataset.
In general, the l2 distance (Euclidean distance) can be used, whereas the earth mover distance
(EMD) could also be used if the data owner was interested in quantitatively measuring the data
utility in terms of machine-learning applications.

3.2.4 p-Privacy
Based on the observation that dependency among attributes of the dataset can be a charac-

teristic of the privacy, Algorithm 4 de�nes a novel privacy metric, called p-privacy. This is due to
the fact that, in reality, the attacker will not perform a pure random guess; instead, the attacker
would make educated guesses according to the distribution of O. The dif�culty for the attacker is
that (s)he does possess O. However, because D and O have the similar distribution according to
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the DPDR, the attacker can still make educated guesses by considering only the distribution of D.
Inspired by this observation, we know that further reducing the futile combinations in the general
case of n ≥ 2 would be necessary. Thus, by computing the correlation among attributes (similar
to JTree), our �rst step is to construct the dependency graph G. This step would be different
from the exhaustive search in y-privacy and (y, p)-coverage. After deriving a dependency graph,
we consider each linked part as a clique and obtain a clique set C. We calculate DCi , where DCi
are records with values only for the attributes in Ci for each clique Ci in C. Let U be the set of

DCi . Then, we produce a candidate table F with
∏|U|

i=1

∣∣DCi

∣∣ combinations by merging each DCi in
U to. The candidate table F can be seen as the records that more likely to be the records in O.
Subsequently, after a comparison between F and O, one can �nd a count ξ , where the records of
F belong to O, and then obtain the attack probability p,

p=
ξ

|F |
·
ξ

|O|
. (9)

Algorithm 4: p-privacy
Input: Original dataset: O
Input: DP dataset: D
Output: Attack probability p

1: Construct the dependency graph G of D;
2: Make the linked part of the clique and the set of cliques is C;
3: for i= 1 to |C| do
4: Ui←Unique(DCi);

5: F= {
∏|U|

i=1Ui};

6: ξ =
∑|F |

j=1 IFi∈O;

7: p=
ξ

|F |
·
ξ

|O|
;

8: return p;

In the table below, we assume an exemplar original dataset O and synthetic dataset D. Based
on this assumption, we show how p-privacy works to serve as a friendly privacy notion.

A1 A2 A3 A4 A5 A1 A2 A3 A4 A5

3 5 1 2 3 4 5 1 2 3
8 1 2 3 4 8 7 2 3 4
2 2 3 4 5 3 1 2 3 4

O D

We have C = {A1, A2, (A3, A4, A5)} after the lines 1 and 2 of Algorithm 4. Next, in the line 3
of Algorithm 4, we obtain U = {(3, 4, 8), (1, 5, 7), [(1, 2, 3), (2, 3, 4)]}. In the line 4, we derive the
following table F .
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A1 A2 A3 A4 A5

3 1 1 2 3
3 1 2 3 4
3 5 1 2 3
3 5 2 3 4
3 7 1 2 3
3 7 2 3 4
4 1 1 2 3
4 1 2 3 4
4 5 1 2 3
4 5 2 3 4
4 7 1 2 3
4 7 2 3 4
8 1 1 2 3
8 1 2 3 4
8 5 1 2 3
8 5 2 3 4
8 7 1 2 3
8 7 2 3 4

F

In Table F , both (3, 5, 1, 2, 3) and (8, 1, 2, 3, 4) exist in O. Therefore, in step 5, ξ will be 2.

Finally, in the line 6 of Algorithm 4, p=
2
18
·

2
3
=

2
27

.

3.2.5 Data-Driven Approach for Determining ε
Although how to determine a proper privacy level (notion) is presented in Section 3.2.1∼3.2.4,

we still eager to develop a method for choosing an proper ε in DP for a given privacy level. In
other words, in the previous sections, we only have a friendly explanation on the privacy but still
need a concrete method to determine ε. In the following, based on the curve �tting technique, we
propose algorithms to obtain satisfactory values for ε.

Baseline Approach for Determining ε. Inspired by JTree [42], Algorithm 5 adopts a similar
strategy from JTree to determine the ε that satis�es the user’s risk and utility requirements.
Apparently, if the O is uniformly distributed, only a small amount of noise will be needed to
reach the desirable privacy level, because each record has the low sensitivity. However, if the
data distribution of the original dataset is not uniform, additional noise is needed to protect the
sensitive records, as stated in Section 2.1.

More speci�cally, the data owner can determine the sensitive records and the variance of
Laplacian noise, given the marginal tables in JTree. Thus, we construct the corresponding depen-
dency graph and calculate the marginal tables. Then, once we have a user-de�ned probability
p that represents the preferable utility and privacy levels, the value of ε can be derived from
the equation

noise=Lap
(
1(f )
ε

)
. (10)
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The above procedures are similar to those in JTree, except that some operations are ignored.
Moreover, as count queries are the fundamental operation that can have minimal impact on the
function output, the global sensitivity 1(f ) is 1. So, the 95% con�dence interval (µ + 2σ) of
Lap(1

ε
) is used in our consideration as the maximum value that represents p. This choice enables

us to determine a satisfactory ε via Algorithm 5.

Algorithm 5: Baseline Approach for Determining ε
Input: User de�ned probability: p
Input: Original dataset: O
Output: ε, the user-de�ned privacy

1: Construct the dependency graph G of O;
2: Calculate the marginal tables M of G

3: noise=Lap
(
1(f )
ε

)
;

4: 1(f )= 1

5: p=max
{
Lap

(
1
λ

)}
= 2

√
21
ε

and thus ε = 2
√

21
ε

6: return ε;

Unfortunately, Algorithm 5 poses certain problems, such as the possibility that, because
different kinds of DP noise injection mechanisms could be used, one cannot expect that the ε
retrieved from Algorithm 5 can be suitable for all of DP noise injection mechanisms. On the other
hand, as the utility is closely related to ε, the choice of ε is also critical in improving the data
utility. This makes it necessary to develop a more accurate method for estimating ε.

Data-Driven Approach for Determining ε. The simplest idea to determine ε is an iterative
algorithm; i.e., we generate a synthetic dataset with a chosen ε and see whether the utility goes
to be what we want. This is a theoretically feasible solution but is very inef�cient, especially in
the case of an uncertain number of iterations. Therefore, curve �tting, a data-driven approach, is
proposed to learn the correlation between privacy level and ε. The curve bridges between privacy
and utility. So, once we derive the curve, ε can be calculated instantly, given the desired level of
utility. The remaining question is how we can derive the curve. The corresponding privacy levels
can indeed be obtained after generating a large number of differentially private synthetic datasets
with different ε values. Thereafter, the curve can be learned on the basis of the learned privacy
levels. However, when learning the curve, although this process enables the best �tted coef�cients,
we still need to determine the type of curve. Initially, we choose exponential and polynomial
curves. After that, we also choose reciprocal curves as an alternative.

One can see from Fig. 1 that the reciprocal curve of degree 2 results in the best �t. The
predictions in Tab. 1 are quite close to the real risk distances.

3.3 Evaluating Utility
3.3.1 Baseline Method for Evaluating Utility

As mentioned in the previous sections, even though the synthetic dataset has already achieved
the required privacy level, usually the data utility will be sacri�ced. So, the objective of data owner
is to maximize the data utility subject to the required privacy. Deriving an explicit formulation
for privacy and utility is complex; instead, we resort to data-driven approach. A simple idea for
deriving the utility is to iteratively generate different synthetic datasets and then determine the
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corresponding utility. This operation is very time-consuming. In the worst case, one needs an
in�nite amount of time to try an in�nite number of combinations of parameters. As a result, an
algorithm capable of ef�ciently learning the utility of a given synthetic dataset is desired.

Figure 1: Curve �tting for RoD estimation

Table 1: Predicted RoD and the real RoD

ε Predicted risk distance Real risk distance

0.02 37 37
0.05 28 34
0.1 18 18
0.5 7 6
1 6 6
5 5 5
10 5 5

The statistics such as the mean, standard deviation, and variance can be seen as the most
popular statistics used by the data analysts and so the metrics for evaluating data utility. In what
follows, for fair comparison, after the use of synthetic dataset D, we also used these metrics to
estimate the error of the result. The error of variance introduced by the synthetic dataset D can
be formulated as

εvarAi =

∣∣var(OAi)− var(DAi)
∣∣

var(OAi)
× 100% (11)
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As a whole, to evaluate the variance error of the entire dataset, what we can do is to sum
up the errors for each record,

εvar =

n∑
i=1

εvarAi /n. (12)

Obviously, when the synthetic dataset has smaller estimation error, it also leads to better
data utility. The analysis of other statistical measures is also consistent to the ones derived from
the above formulas. As a result, we used these statistical measures because of the following two
reasons. First, it is because of their popularity and simplicity. Second, we can also learn an
approximate distribution from these measurements. Moreover, when there are huge errors for
these simple statistics, it would de�nitely lead to catastrophic utility loss for the other complex
statistical measures.

3.3.2 Data-Driven Method for Evaluating Utility
Usually, calculating the estimation error from the synthetic dataset is to calculate Eqs. (11)

and (12) over the differentially private synthetic datasets with ε = {0.01, 0.1, 1, 10} is the most
straightforward method that we start to try. For example, Fig. 2 where the input dataset is a
5×1e6 health dataset with �ve attributes HEIGHT, WEIGHT, BMI, DBP, SBP1 shows the errors
incurred by different settings of ε.

Iterating the above process of choosing a ε, generating a synthetic dataset, and then calculat-
ing the utility would be highly inef�cient. This is due to the fact that the data owner might want
to further improve the utility of the current version of the synthetic dataset. Thus, the data owner
will iterate the above process again and again until a satisfactory version appears. As a whole, we
decided to generate synthetic datasets for pre-determined ε, and then estimate their errors only.
After that, our plan is to use these information to �t a curve bridging the privacy and utility.
In particular, we propose using a curve �tting, a data-driven approach, as a surrogate method
to learn the correlation between ε and utility measures such as the error of the mean, standard
deviation, and variance. Once we have such a curve from curve �tting, we can indeed calculate ε
very quickly, given the desired level of utility or vice versa.

Speci�cally, in the case of εvar, εvar can be obtained after generating a large number of
synthetic datasets with different values of ε. Thereafter, the curve could be learned using the
obtained values of εvar.

However, when performing curve �tting, although this could be used to learn the coef�cients
that best �t the chosen curve, one factor that we can have freedom to choose is the type of curve.
Initially, the two intuitive choices are exponential and polynomial. A more counterintuitive one
would be reciprocal curves. We, however, found that the reciprocal curve with the following form:

ε̂var =
a
ε
+ b, a,b ∈R, (13)

where ε̂var denotes the estimator of εvar, leads to the best �t in almost all cases. Here, for
completeness, we also present exponential and polynomial curves that correspond to the error of

1 DBP is diastolic blood pressure and SBP is systolic blood pressure. The height and weight are generated by sampling from
a normal distribution manually. Meanwhile, the BMI is calculated from the height and weight. Eventually, DBP and SBP are
generated from BMI with some noise with small magnitude.
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other statistical measures in Fig. 3, in addition to the reciprocal curves. The reciprocal curve �ts
almost perfectly, as shown in the �gure. In our experiments, after averaging all the coef�cients
from the formulas, we conclude the estimated of εvar will be

ε̂var =
1
5ε

. (14)

In fact, Eq. (14) has room to be improved so as to offer better prediction results. In our
consideration, we aim to calculate the errors in the cases of ε = {0.01, 0.05, 0.1, 0.5, 1, 5, 10}.
Nevertheless, only three errors are calculated for the cases of ε = {0.01, 0.5, 10}. Afterwards, we
learn the curve based on these three errors. These results are shown in Fig. 4, where the real
statistics and predicted statistics in Tab. 2 are matched almost perfectly.

(a) (b)

(c)

Figure 2: Different methods for the analysis of the error of variance. (a) Each attribute, (b) Log10,
(c) average
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(a) (b)

(c)

Figure 3: Curve prediction for statistical measures including mean, standard deviation, and
variance. (a) Mean (b) standard deviation (c) variance

Despite the seemingly satisfactory results in Fig. 4, once we scrutinize Tab. 2, we will �nd that
there are negative predicted values of ε = {5, 10}, and this result is not pleasing. Once �xing the
shape of the curve �tting and reciprocal curve, we found that the main reason for predictability
degradation of the �tted curve can be attributed to the insuf�cient degree of the reciprocal (or
the other used) curve. Consequently, when we slightly increase the degree of the reciprocal curve,
we obtain

ε̂var =
a
ε2 +

b
ε
+ c, a, b, c ∈R. (15)

Here, after the comparison among the results in both Tab. 3 and Fig. 5, one can know
immediately that the predicted errors are matched against the real error values, with a curve newly
learned from the data.
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(a) (b)

(c)

Figure 4: Curve prediction for statistical measures including mean, standard deviation, and
variance. (a) Mean (b) Standard deviation (c) variance

Table 2: Comparison between the predicted and real variance errors

ε Predicted variance error (%) Real variance error (%)

0.01 91.1805406 91.1924361
0.05 17.7786689 9.1253869
0.1 8.6034350 3.1175912
0.5 1.2632478 0.6377946
1 0.3457244 0.4102599
5 −0.3882943 0.1385792
10 −0.4800466 0.1335111
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Figure 5: Difference between �tted reciprocal curves with the degree 1 and 2

Table 3: Comparison of the predicted and real variance errors after applying Eq. (15)

ε Predicted variance error (%) Real variance error (%)

0.01 91.1924361 91.1924361
0.05 7.7767367 9.1253869
0.1 3.2832387 3.1175912
0.5 0.6377946 0.6377946
1 0.3664488 0.4102599
5 0.1588656 0.1385792
10 0.1335111 0.1335111

3.4 Jointly Evaluating RoD and Utility
The data utility results when varying d in the Voronoi privacy, y in the y-privacy, and p in

the p-privacy, are provided in Figs. 6–8, respectively. Obviously, as the RoD increases, the data
utility is not maintained. This is because additional perturbation is added to the original dataset
and therefore the synthetic dataset is generated from a data distribution with more noise.
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(a) (b)

(c)

Figure 6: Voronoi privacy vs. accuracy (a) SVM (b) LR (c) MLP

One can know that the extension from the aforementioned data-driven approaches for evaluat-
ing both the utility and RoD to a data-driven approach for determining the privacy budget ε with
a joint consideration of the utility and RoD can be easily achieved. In essence, from Sections 3.2
and 3.3 we will learn different (reciprocal) curves; one for the privacy level and another for utility.
While the curves for the privacy and utility are unrelated at the �rst glance, if we consider the
DP de�nition and the way of how to achieve DP, they, in fact, are correlated to each other. In
this sense, multidimensional curve �tting will be an alternative for a more complex setting; i.e., it
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would be a candidate to be used over the curves learned from Sections 3.2 and 3.3 so as to learn
a higher dimensional curve for the privacy level and utility. Since the resulting higher dimensional
curve will have a parameter ε, after a simple calculation when the other parameters are �xed, the
privacy budget ε can be determined with a joint consideration of the utility and RoD.

(a) (b)

(c)

Figure 7: y-privacy vs. accuracy (a) SVM (b) LR (c) MLP
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(a) (b)

(c)

Figure 8: p-privacy vs. accuracy (a) SVM (b) LR (c) MLP

4 Conclusion

In this paper, we proposed a number of friendly privacy notions to measure the RoD. We
also developed curve �tting-based approach to determine the privacy budget ε in a data-driven
manner with the joint consideration of the RoD and utility. This approach enables novice users
to grab the idea behind the level of privacy protection and the data utility. As a result, these
users would be able to determine an appropriate privacy budget ε for DPDR, depending on the
amount of privacy risk they would be prepared to tolerate and the desired utility.
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