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Abstract: A differentiable neural computer (DNC) is analogous to the Von
Neumann machine with a neural network controller that interacts with an
external memory through an attention mechanism. Such DNC’s offer a gener-
alized method for task-specific deep learning models and have demonstrated
reliability with reasoning problems. In this study, we apply a DNC to a
language model (LM) task. The LM task is one of the reasoning prob-
lems, because it can predict the next word using the previous word sequence.
However, memory deallocation is a problem in DNCs as some information
unrelated to the input sequence is not allocated and remains in the external
memory, which degrades performance. Therefore, we propose a forget gate-
based memory deallocation (FMD) method, which searches for the minimum
value of elements in a forget gate-based retention vector. The forget gate-
based retention vector indicates the retention degree of information stored
in each external memory address. In experiments, we applied our proposed
NTM architecture to LM tasks as a task-specific example and to rescoring for
speech recognition as a general-purpose example. For LM tasks, we evaluated
DNC using the Penn Treebank and enwik8 LM tasks. Although it does not
yield SOTA results in LM tasks, the FMD method exhibits relatively improved
performance compared with DNC in terms of bits-per-character. For the
speech recognition rescoring tasks, FMD again showed a relative improvement
using the LibriSpeech data in terms of word error rate.

Keywords: Forget gate-based memory deallocation; differentiable neural
computer; language model; forget gate-based retention vector

1 Introduction

Various deep learning models have been used for a variety of task-specific problems [1]. For
example, convolutional neural networks (CNNSs) are commonly used for image and video tasks.
Recurrent neural networks (RNNs) have been used for speech recognition and language model
(LM) tasks. Deep learning models are usable for specific tasks if they are trained with pertinent
datasets, but deep learning models adapted to specific tasks have difficulties with general-purpose
tasks. General-purpose tasks are those with having different training and test sets. For example, in
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a question-answering task, a story composed of multiple sentences is used to train deep learning
models, with these models then able to predict the next word or sentence. In the test stage (i.e.,
actual application), presenting a question to the trained model results in the deep learning model’s
inability to predict an answer. Despite various pre-training methods, the performance of deep
learning models does not achieve the best available performance on general-purpose tasks [2].

A differentiable neural computer (DNC) has been proposed for general-purpose tasks [3].
A DNC comprises a controller and an external memory. The controller is equivalent to a deep
learning model. The external memory is a matrix comprising M-dimensional vectors. On general-
purpose tasks, the DNC stores information about the training data into the external memory.
The controller writes its output vector to the external memory and reads the information therein.
When the DNC performs read and write operations, attention vectors are generated using both a
content-based addressing and temporal linking methods [4]. In the testing stage, the DNC predicts
the answer using information stored in the external memory. Previous work [5] showed that the
DNC achieves performance close to that of the best available performance on approaches to the
question-answering bADbI task [6].

However, DNCs exhibit a problem with memory deallocation during write operations. During
each write operation, the external memory at time (z — 1) is multiplied with an erase vector, with
the attention vector generated from the current external memory. If the i-th address of the external
memory must be deallocated, the i-th element of the erase vector should be 1 during the write
operation. However, the erase vector is generated with a sigmoid function. Therefore, the erase
vector can only be 1 when the input is infinity. For example, in a question-answering task, if
a new story is used as training data to a pre-trained DNC, information unrelated to the story
should be erased from external memory. However, the DNC does not do so reliably. It becomes
a garbage value and that affects the attention vector. This causes performance degradation on
general-purpose tasks.

In this study, we propose a DNC using forget gate-based memory deallocation (FMD). The
FMD method searches for the minimum value of elements in a forget gate-based retention vector,
a vector indicating the retention degree of information stored in each external memory address.
Elements of the forget gate-based retention vector with a value of 0 imply that a read operation
has already been performed on external memory addresses related to these elements, and these
addresses are to be deallocated. The minimum value of the elements is converted to 0, and the
values of the external memory at time (¢ — 1) are multiplied by the converted forget gate-based
retention vector.

We evaluate our proposed DNC on benchmark LM tasks. Previous studies have discovered
that DNCs are reliable when used with reasoning problems such as LM, which predicts the
next word using the previous word sequence. Although previous studies on Transformer have
demonstrated performance competitive with the best available performance for LM tasks, we
evaluate our proposed DNC on the Penn Treebank (PTB) and enwik8 LM tasks. In all our tests,
our proposed DNC outperforms the unmodified DNC.

We organize our article as follows. Section 2 presents other works related to deep learning-
based LMs. Section 3 provides a brief description of the DNC. Section 4 analyzes our proposed
FMD method in detail. Finally, we present our experimental results and conclusions in Sections 5
and 6, respectively.
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2 Related Works

The LM process assigns the probability of the next word or character based on the previous
word or character sequence. Modeling LM uses an n-gram LM, a conventional LM based on
the Markov assumption, is used. However, n-gram LM has two drawbacks. First, it assigns a
probability of 0 to an unseen n-gram. If an n-gram is not found in the training text, this n-gram
becomes the unseen n-gram. Second, the value of # is limited. If # is 10 and the vocabulary size is
1000, then the number of n-grams is 1000'°. Thus LM is affected by the curse of dimensionality,
limiting its modeling ability on large-scale datasets [7].

A deep neural network (DNN) was applied to the LM to solve the unseen n-gram problem [§].
The DNN-based LM represents each word or character in a high-dimensional vector space. The
probability of the unseen n-gram can be calculated on a high-dimensional vector space generated
by the DNN-based LM. Continuous bag-of-words and skip-gram are both representative DNN-
based LMs [9]. However, DNN-based LMs present a few disadvantages. As n increases, the
number of input layers increases as well. This causes the weight parameters to be trained in
proportion to the number of input layers. The DNN can only be trained within a limited context
of length n [10]. Therefore, the DNN-based LM cannot solve the curse of dimensionality.

To address the limited context size, RNNs have been used to train the LM [10]. The RNN
can be modeled long range sequences because of recurrent hidden layers. In RNN-based LM,
the input of a recurrent hidden layer is one word or character at time ¢ and an output vector
of the recurrent hidden layer at time (¢ — 1). Therefore, theoretically, RNN-based LM solves
the problem of a limited context size. Previous studies proposed a bidirectional RNN-based LM
that demonstrated improved performance compared with unmodified RNN-based LM [11]. The
bidirectional RNN-based LM is trained not only with the forward context but also with the
backward context. However, it is affected by the problems of vanishing gradients and exploding
gradients. The vanishing gradient problem occurs when the gradients of an activation function
become 0, whereas the exploding gradient problem occurs when the gradients of the activation
function become infinite [12].

To address the vanishing gradient problem, RNN-based LM uses a long short-term memory
(LSTM) [13]. The LSTM comprises one or more memory cells, an input, an output, and a forget
gate and controls the amplification and reduction of information. The LSTM RNN-based LM
achieved a higher performance than the RNN-based LM [14]. However, training the LSTM RNN
is time-consuming as each of the tree gates has to be trained. In addition, the LSTM RNN-based
LM uses gradient clipping to prevent the exploding gradient problem [15]. The clipping factor for
the gradient clipping technique is chosen by the developers, with the clipping factor depending
on the training datasets. In particular, recent studies have shown that an LSTM RNN-based LM
cannot be trained with more than 200 words or character sequences as its input [16].

To address the problem of limited context size, attention mechanisms have also been used
in the LM [17]. The next word or character is related to words or characters in context, but
not to all words or characters. The attention mechanism determines the words or characters that
must be addressed by the attention vector generated from the input sequence [I8]. Transformer is
the most common model using an attention mechanism [19]. This is an encoder-decoder model
that also uses a multi-head self-attention mechanism and positional encoding. The multi-head
self-attention mechanism allows Transformer to address context information on different high-
dimensional vector spaces in the input sequence [20]. Positional encoding applies the sine and
cosine functions to the input sequence for long-context dependency [21]. Although Transformer
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encodes a longer context into a fixed size chunk, variable Transformer-based models have also
been proposed [22].

The most widely used Transformer-based models are the bidirectional encoder representations
from Transformers (BERT), generative pretrained Transformer 2 (GPT-2), and Transformer extra-
long (Transformer-XL). BERT, which is a multi-layer bidirectional encoder of Transformer, is
often functions as a pre-training model in natural language processing tasks [23]. The deep
bidirectional encoder can be trained with the left and right context of the input sequence in all
layers. BERT also demonstrates the best available performance on question-answer and named
entity tasks. GPT-2 differs from BERT by using a multi-layer decoder with Transformer [24]. In
LM tasks, GPT-2 achieves the best available performances in terms of bits-per-character (BPC):
0.93 with 1.5 B weight parameters. The study used 12-layer decoder blocks with 12 heads. In
contrast, Transformer-XL maintains a longer context using hidden states computed at the previous
time step [22]. These hidden states represent the previous context. Transformer-XL demonstrated
a high perplexity of 54.52 on a word-level PTB LM task and a BPC of 0.99 on a character-level
enwik8 LM task.

3 Differentiable Neural Computer

The DNC consists of a controller and an external memory, as shown in Fig. 1 [3]. A deep
learning model C acts as the controller. The controller performs read and write operations on the
external memory EM, which is a fixed matrix and an element of R”*W  where H is the number
of memory vectors, and W is the dimensionality of the memory vector. The DNC is equivalent
to a deep learning model with external memory. The input of the DNC is a concatenated
vector containing the input vector x; and read vectors rﬁ(i =1,2,...,R). Read vectors rﬁ with W
dimensions are generated by a read operation. The controller emits a controller output vector
co; and an interface vector IF;. The elements of the interface vector IF; are used for read and
write operations. The DNC performs the write operation first and then read operations. After the
read operations, read vectors rﬁ are generated and projected using a deep learning model P. The
dimensions of P (r!,r?,...,rR) is the same as that of co,. P(rl,r?,...,rR) is added to co, and then
projected into an output vector y,, which is equivalent to the output of the deep learning model.

Read and write operations on the external memory require read and write weighting vec-
tors. The DNC treats the read and write weighting vectors as attention vectors. Content-based
addressing method has been used in previous studies to generate these vectors. This method
calculates the cosine similarity between every memory vector and a key vector k;. k(e R") is
one of elements of IF;. The cosine similarity values are normalized using the softmax function.
The DNC uses not only the content-based addressing method, but also two addressing methods,
a temporal linking addressing method and a memory allocation-based addressing method. The
temporal linking addressing method uses a temporal link matrix TLM, (€ R¥*H) to determine
the memory vector to be written after or before the read operation in the previous time step.
This method is used to generate the read weighting vector. The memory allocation-based method
employs usage vectors for every memory vector. The values of usage vectors are incremented on
write operations and decremented on read operations. The memory address shows the lowest value
of the usage vector and the location of new information. The memory allocation-based method
is used to generate the write weighting vector.
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Figure 1: Simplified diagram of DNC. In this figure, the external memory has four memory
vectors, and the dimension of each memory vectors is eight. The temporal link matrix is a 4 x
4 matrix

During the read operation, a specific memory area is identified by the read weighting vector,
and the DNC generates read vectors. The read vector r} is defined as a weighted summation of
all external memory vectors. The i-th read vector at time ¢ is defined as

r =EM,TW;’i, (1)

where EM,T and w;’i(e RH) are the transposed external memory and i-th read weighting vector
at time ¢, respectively.

During the write operation, the DNC generates the write weighting vector, which is used in
the write operation as

EM;=EM, o (OM —wy'el ) + ], )

where o is the element-wise product and OM is a matrix with all values equal to 1. The size
of the OM is the same as that of the external memory. w)(e R) is the write weighting vector
at time ¢, e,T(e R") is the transposed erase vector at time ¢, and ti,T(e R") is the transposed
converted input vector of the controller at time z. In Eq. (2), the term (OM —w}”e?) determines

the ratio at which information in the external memory is deallocated.

4 Differentiable Neural Computer Using Forget Gate-Based Memory Deallocation

During the write operation, the DNC uses a retention vector (e [0, 11) to determine
whether the usage of information stored in the external memory should be increased or decreased.
Thus, ¥, indicates the retention degree of information stored in each memory address. The
following definition of i, is used in an actual computer.

w,=1§[(1 —w). 3)

i=1
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Read weighting vectors W;’_il can only have a value of 0 or 1 in an actual computer. Assuming

that only one read vector is used, if w;’_ll[]'] corresponding to the j-th memory address is 1 or 0
(i.e., if the read operation was or was not performed, respectively, on the j-th memory address),
then ¥, [j] =0 or 1, respectively. Thus, in an actual computer, v, is limited to only the j-th memory
address on which the read operation was performed in time (¢ — 1). However, if v, is determined
by Eq. (3), when information stored in the j-th memory address is immediately freed after the read
operation on the j-th memory address, the read operation becomes impossible to perform on the
already freed memory address in a future time step. To address this issue, a free gate fg;(€[0,1])
is used. This gate is a scalar value and an element of the interface vector, IF,. fg, guarantees
the possibility that information stored in the memory address can be retained even after the read
operation is performed. Accordingly, ¥, with fg, is defined as

v=T1 (1 —reiwi)- ©

i=1

In Eq. (4), if w;’_il exists for each read vector, fg! also exists for each read vector. If all values

of fg! in the j-th memory address are close to 0, then [j] for the j-th memory address is close
to 1. Therefore, regardless of whether the read operation was performed on the j-th memory
address in time (¢ — 1), the j-th memory address in time ¢ is not freed.

However, v, is only used to determine whether to increase or decrease the usage of infor-
mation stored in the external memory, but not the information stored in the external memory.
Assuming that v,[0] =0, memory deallocation must be performed in the first external memory
address. However, in Fig. 2, the first external memory address is not deallocated becuase v, only
affects the generation of the write weighting vector. Therefore, the value of the first external
memory address is maintained until the training is complete.

EM, =|EM;_ o (OM — w¥el )+ w¥v]

0.2 0.1 0.02
0.7 0.2 0.14
—0.3 ° 0.9 — -0.27
0.4 0.5 0.2
-05 0.5 —-0.25

EM,_, (OM — w'ef)

Figure 2: Example of memory deallocation in the write operation of DNC

Hence, we introduce a DNC using an FMD. A similar memory deallocation method as
that shown in Eq. (5) has been proposed previously [4]. However, to deallocate the i-th external

memory address with certainly, ¥,[i] must be 0. In Eq. (3), fg! or w;fl has to be 0, but fg! is
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generated using the sigmoid function. Therefore, fg' can be 0 when its input is negative infinity.

In addition, because w;fl is generated using the softmax function, 0 is difficult to obtain.
EM, = EM,_, o <0M — w}%f) o+ wtiT. (5)

In the proposed FMD, to obtain 0 in v, the FMD searches for the minimum of elements in
Y, and then converts v, to 0. This process is the main difference between the previous methods
and our proposed method, as the unmodified DNC does not select the minimum value of v, for
memory deallocation. We define the FMD as

EM,=EM,_; o <0M - w}%f) o Y0 +w T, 6)

where ;7"

zero {w’zem []=0, if Y[l <¥,[j] and Vj#i

is defined as

()

" Y [i)= ¢ [i], otherwise

We assume that ¢7“?[0] =0. In Fig. 3, the first external memory address is deallocated as

Y7 affects the external memory. Therefore, the value of the first external memory address is not
maintained and deallocated.

EM, = EM,_, o (OM — w}’el) o + Wl

0.2 0.1 0.0 0.00

0.7 0.2 0.1 0.014
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EM,_4 (oM — w¥ef) e

Figure 3: Example of forget gate-based memory deallocation in the write operation of DNC

The FMD searches for the minimum value of ;. Because v, is not sorted, the time com-
plexity is O(H), where H is the number of vectors in the external memory. Therefore, the time
complexity of the FMD is O(H).

5 Experiments and Discussion

We evaluated our proposed FMD-DNC using the character-level PTB LM and enwik8 LM
for task-specific tasks. We also evaluated our proposed FMD-DNC-based LM when used as the
rescoring task of speech recognition, a general-purpose task.

5.1 Experimental Environment

The character-level PTB LM task comprises characters collected from the Wall Street Journal
domain [25]. The basic character-level PTB LM task does not contain the beginning of a sen-
tence marker and the space markers between characters, making it difficult to distinguish word
boundaries. Hence, in this experiment, the beginning of a sentence marker and space marker were
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added to the basic character-level PTB LM task. The total number of characters used for the
experiments was 50. The number of characters for the training, validation, and test datasets were
4.88, 0.38, and 0.43 million, respectively. We repeated experiments for the character-level PTB LM
task five times to verify the stability of LMs and test their generalization.

The enwik8 LM task contains 100 million characters of unprocessed Wikipedia text [20].
The enwik8 LM task dataset is split into 90, 5, and 5 million characters, for the training,
validation, and test datasets, respectively, preserving the experimental environment of previous
studies. Experiments for the enwik8 LM task were repeated three times.

For the rescoring task of speech recognition, we used the LibriSpeech corpus to train an
acoustic model (AM) and LM. It consists of 920 h of speech from an audiobook domain. To
train the AM, we used the Kaldi speech recognition toolkit. We used an AM based on a DNN
employing a hidden Markov model. The number of hidden layers and hidden nodes were 6 and
3500, respectively. The learning rate was initialized at 1.5 x 1073. A test set consists of four
data: dev_clean, dev_other, test_clean, and test_other. We generated 100-best lists from the speech
recognition results of each test set. To generate the 100-best lists, we set the acoustic scale to 12.
To rescore the 100-best lists, we used Eq. (8) to calculate the likelihood L in each sentence:

L = ascore + Imscorey,,, ®)

where ascore is an acoustic score generated by the AM, and Ilmscore,, is the language score
generated by neural network-based LMs. All neural network-based LMs were trained with tran-
scriptions of a training set for the AM. It consisted of 40 million characters with 30, 5, and 5
million characters used to construct training, validation, and test sets, respectively.

We used BPC and inference time as the evaluation metrics of the LM tasks. BPC is the
average number of bits for encoding one character, with a bit as the unit of entropy [20]. We
defined BPC as /loss/log(2). We measured the inference time per batch. On the rescoring task of
speech recognition, we used word error rate (WER) as the evaluation metric. Our system used a
3.40 GHz Intel Xeon E5-2643 v4 CPU and four Nvidia GTX 1080 Ti GPUs.

5.2 Character-Level PTB LM Task

5.2.1 Experimental Setup

The baseline LM was the LSTM RNN-based LM, which we trained using PyTorch with the
following hyper-parameters: number of hidden layers, 3; number of hidden nodes for each hidden
layer, 1024; number of nodes in the embedding layer, 50; learning rate initialized at 1 x 10~!;
number of batches, 6; weight decay, 1 x 1079 length of the back-propagation through time
(BPTT), 120. We used the following hyper-parameters for training the Transformer-based LM:
number of hidden layers, 3; number of hidden nodes for each hidden layer, 1024; number of
nodes in the embedding layer, 50; number of heads in the encoder and decoder, 4; learning rate
initialized at 1 x 1073; number of batches, 6; weight decay, 1 x 10~%; length of input chunks, 120.
The experimental results were the same as those of our previous work [26].

On the character-level PTB LM task, the SOTA LMs were the trellis and AWD-LSTM net-
works. We compared the LM based using our proposed DNC with the best available performance
on LMs. The hyper-parameters of the trellis and AWD-LSTM networks were the same as those
used in previous studies. In the experiments, we used a batch size of 6 and a BPTT length of
120. We applied a dropout factor of 0.5, which was not applied in the embedding, input, and
output layers.
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To train the basic DNC-based LM, we used the LSTM RNN for the controller. The following
hyper-parameters were used: number of hidden layers, 3; number of nodes in the embedding layer,
50; numbers of hidden nodes of each hidden layer, 1024, 512, and 512. The external memory used
1024 memory vectors with 512 dimensions each. The learning rate was initialized to 1 x 1073.
In PyTorch, we used a scheduler module to reduce the learning rate when the objective function
plateaued, with a reduction rate of 1 x 10~'. We used a 6 batches, a weight decay of 1 x 1077,
and a BPTT length of 120.

To train the FMD-DNC-based LM, we used the LSTM RNN as the controller. The following
hyper-parameters were used: number of hidden layers, 2; number of nodes in the embedding
layer, 50; number of hidden nodes in hidden layer, 1024. The external memory used 128 memory
vectors with 256 dimensions each. The learning rate was initialized to 1 x 107%. We again used
a scheduler module to reduce the learning rate when the objective function plateaued, with a
reduction rate was 9 x 10~'. The number of batches was 10, the weight decay was 1 x 1077,
and the length of the BPTT was 120. To train the DNC using a memory deallocation (MD)
method [4], we used the LSTM RNN as the controller and the same hyper-parameters as the
FMD-DNC-based LM.

5.2.2 Experimental Results

We evaluated the performance of the FMD-DNC-based LM using the number of read
vectors and the value of the weight decay. The FMD-DNC-based LM with a single read vector
outperformed the other FMD-DNC-based LMs with a BPC of 1.5920. While it did not achieve
the best available performance of the Transformer-based LM, the FMD method showed a relative
improvement of 0.41% compared with the DNC in terms of BPC. We analyzed the performance
of the FMD-DNC-based LM based on the number of read vectors in three ways. First, we
observed that the number of weight parameters increased according to the number of read vectors.
The controller interface layer generated key vectors for the read vectors, with the number of read
vectors equal to the number of key vectors. In the experiments, the key and read vectors were
256-dimensional vectors. In addition, the read vectors generated at time (¢ — 1) affected the size of
the input layer in the controller. Second, the BPC decreased based on the number of read vectors.
We found that the number of read vectors was proportional to the number of weight parameters.
Therefore, the character-level PTB LM task was insufficient for training the FMD-DNC-based
LM. Third, the inference time was proportional to the number of read vectors and related to the
first analysis, because the number of weight parameters increased based on the number of read
vectors. In addition, to obtain the minimum element of ¥;“?, we used a search algorithm for the
FMD. Therefore, the total time complexity for the FMD-DNC-based LM was the summation of
the time complexity of the plain DNC and O(H).

We also evaluated the performance of the FMD-DNC-based LM in terms of weight decay,
which reduces overfitting by adding large penalties as the weight parameters increase [27]. To
explain, we denote the set of weight parameters as P and add %kPPT to the loss function. As
A increases, an increasingly large penalty is added to P. In our experiments, we set A to 1 x
1076 and 1 x 10~7. As shown in Tab. 1, when we used A =1 x 107® with FMD-DNC-based LMs
using one to four read vectors, we obtained a BPC of 1.5934 to 1.5980. The performance of the
FMD-DNC-based LM with weight decay » =1 x 107% was lower than that with 1 =1 x 1077,
Two important findings were observed in experiments. First, the BPC decreased according to the
weight decay. With the FMD-DNC-based LM used A values between 1 x 10~7 and 1 x 1079, the
performance degraded. This means that the LMs were trained to underfit at extremely high A.
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When A was extremely low, the LMs were trained to overfit. Therefore, the FMD-DNC-based
LM with A = 1 x 107® showed underfitting in the experiments. Second, the inference time was
disproportional to A. Even when the FMD-DNC-based LM was trained with A, the inference
time was the same because the number of weight parameters did not change. Tab. 1 shows the
evaluation results of FMD-DNC-based LMs on the character-level LM task.

Table 1: Evaluation results of FMD-DNC-based LMs on the character-level PTB LM task (TF,
the Transformer; Trellis, the trellis network; AWD, the AWD-LSTM network; DNC, the vanilla
DNC; MD, the MD-DNC; FMD, the FMD-DNC; nWP, number of weight parameters; nRV,
number of read vectors; nVEM, number of vectors in the external memory; WD, weight decay;
IT, inference time (ms/batch); u, mean of BPC results; o, standard deviation of BPC results)

Model nWP nRV nVEM WD IT BPC
Validation Test
n o n o
LSTM 132 M - — 1x10°° 141 1.8937  0.0032 1.8254  0.0029
TF 132 M - — 1x10°° 22 1.6042  0.0006 1.5954  0.0004
Trellis 134 M - — 8 x 1077 4915 1.3858  0.0013 1.3578 0.0019
AWD 138 M - - 1.2x107% 61 1.5224  0.0039 1.4720 0.0036
DNC 36.0 M 1 32 1x 1077 1185 1.6938  0.0004 1.6687 0.0012
MD 138 M 1 32 1x 1077 1183  1.6907 0.0011 1.6625 0.0005
FMD 328M 1 128 1x10°° 1192 1.6891  0.0005 1.6584  0.0003
1 x 1077 1189  1.6832  0.0010 1.6521  0.0009
352M 2 1x10°° 1213 1.6902  0.0004 1.6597  0.0003
1 x 1077 1215  1.6858  0.0005 1.6582  0.0006
37.6 M 3 1x 1076 1233 1.6922  0.0008 1.6620  0.0004
1x 1077 1239  1.6881  0.0007 1.6596  0.0005
400M 4 1x10°° 1247  1.6941  0.0008 1.6646  0.0008

1x1077 1248 1.6907 0.0009 1.6613  0.0008

We used BPC and inference time as the evaluation metrics of the LM tasks. BPC is the
average number of bits for encoding one character, with a bit as the unit of entropy [20]. We
defined BPC as loss/log(2). We measured the inference time per batch. On the rescoring task of
speech recognition, we used word error rate (WER) as the evaluation metric. Our system used a
3.40 GHz Intel Xeon E5-2643 v4 CPU and four Nvidia GTX 1080 Ti GPUs.

5.3 enwik8 LM Task

5.3.1 Experimental Setup

For the enwik8 test, we again used LSTM RNN-based LM as the baseline, but we used the
previous experimental result of that model [28]. In addition, we used the previous experimental
results of the Transformer-based LM [22]. To train the plain DNC-based LM, we used the
LSTM RNN as the controller. The number of hidden layers was 3, and the number of hidden
nodes of the hidden layers was 1024. The number of nodes in the embedding layer was 128.
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The external memory consisted of 128 memory vectors with 256 dimensions each. The learning
rate was initialized to 1 x 10~3. We again used a PyTorch scheduler module to reduce the learning
rate based on the objective function’s plateau, with a reduction rate of 1 x 10~!. The weight decay
was 1 x 1077, the length of the BPTT was 120, and the batch size was 5.

To train the FMD-DNC-based LM, we used the LSTM RNN for the controller. In experi-
ments, we used the following hyper-parameters for the FMD-DNC-based LM: number of hidden
layers, 3; number of nodes in the embedding layer, 128; number of hidden nodes for hidden
layer, 1024. The external memory consisted of 128 memory vectors with 256 dimensions each.
The learning rate was initialized to 1 x 1073, The scheduler function was used again to reduce
the learning rate, with a reduction rate of 9 x 10~!. The number of batches was 5, the weight
decay was 1 x 1077, and the length of the BPTT was 120. To train the MD-DNC [4], we used
the LSTM RNN as the controller and the same hyper-parameters as the FMD-DNC-based LM.

5.3.2 Experimental Results

Tab. 2 shows the evaluation results of the FMD-DNC-based LMs on the enwik8 LM task.
We evaluated the performance of the FMD-DNC-based LM based on the number of read vectors
and the weight decay value. The FMD-DNC-based LM using four read vectors outperformed the
other FMD-DNC-based LMs, with a BPC of 1.3860. Although it does not match the results of
the Transformer-based LM, the FMD method showed a relative improvement of 0.45% compared
with the DNC in terms of BPC.

Table 2: Evaluation results of FMD-DNC-based LMs on the enwik8 LM task (TF, the Trans-
former; DNC, the vanilla DNC; MD, the MD-DNC; FMD, the FMD-DNC; nWP, number of
weight parameters; nRV, number of read vectors; nVEM, number of vectors in the external
memory; WD, weight decay; IT, inference time (ms/batch); u, mean of BPC results; o, standard
deviation of BPC results)

Model nWP nRV nVEM WD IT BPC
Validation Test
7 o 7 o
LSTM I8.1 M - — - — — - 1.4610 —
TF 41 M - — - — — - 1.1120 -
DNC 425M 4 128 1x 1077 5025 1.3970  0.0008 1.3922  0.0009
MD 425M 4 128 1x 1077 5017 1.3908  0.0009 1.3893  0.0006
FMD 3839 M 1 128 1x 1077 4549 1.3945  0.0010 1.3906  0.0005
40.1 M 2 1x 1077 4672 1.3918  0.0005 1.3902  0.0005
414 M 3 1x107% 4750 1.3927  0.0003 1.3916  0.0004

1x1077 4938  1.3892  0.0007 1.3871  0.0002
425M 4 1x107° 4931  1.3905 0.0006 1.3896  0.0007
1x1077 5016 1.3872  0.0004 1.3860  0.0004

Our general notes about the performance of the FMD-DNC-based LM based on the num-
ber of read vectors are as follows. First, the number of weight parameters was twice that of
Transformer. We assumed that more weight parameters were involved and better performance
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was demonstrated because the enwik8 LM task dataset is a large-scale dataset. However, in the
experiments, the Transformer-based LM showed the best available performance. Second, we found
that the BPC was higher when using more read vectors. Although it was difficult to train the
FMD-DNC-based LM using 5 and more read vectors, the FMD-DNC-based LM using four read
vectors outperformed the plain DNC-based LM in terms of BPC. Third, BPC decreased with
the weight decay. When A used in the FMD-DNC-based LM ranged from 1 x 10~7 to 1 x 107,
the performance degraded. Furthermore, we obtained these performance results from experiments
involving the PTB LM task. This means that the LMs were trained to overfit at extremely low A,
although we used a large-scale LM task dataset.

5.4 Rescoring Task of Speech Recognition

5.4.1 Experimental Setup

We calculated the Imscore,, in Eq. (8) for the LSTM RNN, Transformer, plain DNC, MD-
DNC, and FMD-DNC. The number of weight parameters for the LSTM RNN was 10.2 mil-
lion, producing BPC values of 1.6428 and 1.6437 for the validation and test sets, respectively.
The number of weight parameters for the Transformer-based LM was 10.4 million, producing
BPC values of 1.3179 and 1.3184 for the validation and test sets, respectively. The number
of weight parameters for the plain DNC, MD-DNC, and FMD-DNC were also 10.4 million.
Plain DNC showed BPC values of 1.5825 and 1.5813 for the validation and test sets, respec-
tively. MD-DNC showed BPC values of 1.5722 and 1.5729 for the validation and test sets,
respectively. FMD-DNC showed BPC values of 1.5687 and 1.5690 for the validation and test
sets, respectively.

5.4.2 Experimental Results

Tab. 3 presents the 100-best rescoring results using the neural network-based LMs trained
with transcriptions of the AM for the LibriSpeech dataset. The experimental results of the AM
were the rescoring result using the acoustic score alone. The FMD-DNC-based LM showed 11.16,
33.02, and 34.58 WER according to the dev_clean, dev_other, and test_other tests, respectively.
This was a relative improvement of 0.18, 0.24, and 0.03% compared with Transformer accord-
ing to the dev_clean, dev_other, and test_other tests. However, with the test_clean dataset, the
Transformer-based LM exhibited a relative improvement of 0.08% compared with FMD-DNC.

Table 3: 100-best rescoring results using the neural network-based LMs

Model dev_clean(WER, %)  dev_other(WER, %) test_clean(WER, %  test_other(WER, %)
AM (ascore) 30.85 62.47 35.08 69.29
LSTM RNN  13.28 35.72 14.81 36.42
Transformer 11.18 33.10 12.24 34.59
Vanilla DNC  12.47 34.86 13.52 35.91
MD-DNC 11.95 33.79 12.81 35.17
FMD-DNC 11.16 33.02 12.25 34.58

We summarize our performance findings as follows. First, although the Transformer-based
LM showed a relative improvement of 19.03% compared with the FMD-DNC-based LM in terms
of BPC, the FMD-DNC-based LM exhibited better performance than the Transformer-based LM
on rescoring tasks. We originally anticipated that Transformer would show better performance
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in rescoring tasks based on it’s the best available performance on LM tasks. However, in the
actual experiments, FMD-DNC showed the bset performance in rescoring tasks. Second, the
FMD-DNC-based LM outperformed the MD-DNC-based LM in rescoring tasks. Therefore, our
proposed FMD method outperformed the MD-DNC.

6 Conclusions and Future Work

As the basic DNC has disadvantageous due to memory deallocation, we proposed an LM
using FMD-DNC to address this problem. The FMD method searches for the minimum value
of elements in a forget gate-based retention vector, which is a vector that indicates the retention
degree of information stored in each external memory address. Our method converts the minimum
value of elements to 0 and subsequently multiplies the values of the external memory at time
(t—1) by the converted forget gate-based retention vector. In experiments, we applied our proposed
NTM architecture to LM tasks as a task-specific domain and the rescoring of speech recognition
as a general-purpose domain. On LM tasks, tests with our proposed DNC using the Penn Tree-
bank and enwik8 LM tasks did not achieve the best available results. However, the FMD method
showed a relative improvement of 0.41%-0.45% compared with DNC in terms of BPC. For
testing rescoring ability in speech recognition, we evaluated our proposed DNC-based LM on the
LibriSpeech task. The FMD method showed a relative improvement of 0.03%-0.24% compared
with Transformer in terms of WER. For the future work, we will improve the extremely long
inference time of the FMD-DNC-based LM. Furthermore, we will evaluate the FMD-DNC-based
LM on WikiText-103 and One Billion Word LM tasks.
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