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Abstract: Detecting malicious Uniform Resource Locators (URLs) is cru-
cially important to prevent attackers from committing cybercrimes. Recent
researches have investigated the role of machine learning (ML) models to
detect malicious URLs. By using ML algorithms, �rst, the features of URLs
are extracted, and then different ML models are trained. The limitation of this
approach is that it requires manual feature engineering and it does not consider
the sequential patterns in the URL. Therefore, deep learning (DL) models are
used to solve these issues since they are able to perform featureless detection.
Furthermore, DL models give better accuracy and generalization to newly
designed URLs; however, the results of our study show that these models, such
as any other DL models, can be susceptible to adversarial attacks. In this paper,
we examine the robustness of these models and demonstrate the importance
of considering this susceptibility before applying such detection systems in
real-world solutions. We propose and demonstrate a black-box attack based
on scoring functions with greedy search for the minimum number of pertur-
bations leading to a misclassi�cation. The attack is examined against different
types of convolutional neural networks (CNN)-based URL classi�ers and
it causes a tangible decrease in the accuracy with more than 56% reduction
in the accuracy of the best classi�er (among the selected classi�ers for this
work). Moreover, adversarial training shows promising results in reducing
the in�uence of the attack on the robustness of the model to less than 7%
on average.

Keywords: Malicious URLs; detection; deep learning; adversarial attack;
web security

1 Introduction

Recent cyber-attacks have spurred an increased interest in devising security solutions to cir-
cumvent the threats posed by cyber attackers. It is, at least in part, due to the critical information
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leakage as a result of attacks such as identity theft, Denial of Service (DoS), masquerading,
impersonation, and so on. The attackers attempt to impersonate authorized users to steal impor-
tant and critical information such as passwords, secret keys, and other personal information
including bank account details. These attackers use any possible and available mediums to attract
victims such as distributing impressive ads on the Internet, including malicious URLs in informa-
tive emails, or hacking a website. Such threats are collectively referred to as phishing which is a
type of threat to sensitive information or data where attackers intentionally attack a victim [1].
The attacker lures the victim to a phishing webpage using different mediums and waits for the
victim to access the phishing webpage (collectively referred to as social engineering approaches).
According to the anti-phishing working group (APWG)’s newest report [2], in the �rst quarter of
2020, 165,772 phishing sites were detected on the Internet. Besides, 75% of these malicious sites
use secure socket layer (SSL) protection which implies that it is not enough to rely only on SSL
against such attacks.

Malicious URLs detection is a highly challenging task since there are no rules for generating
URLs and the behavior of the URL must be studied to detect potential malicious URLs. Most
of the existing traditional detection systems use database-oriented solutions such as blacklists,
or heuristic-oriented solutions such as content or visual-based detection [3]. The URL-based
techniques are safer and more realistic from three perspectives, i.e., no need to access the malicious
webpage for performing dynamic analysis, the ability to perform Zero-Hour threat detection (i.e.,
for newly created websites), and reducing the amount of work and time to process a webpage
compared to other existing approaches.

With the tremendous development in the �eld of ML in general and DL models in particular,
these models are used to solve a wide variety of tasks in computer security and other �elds [4–6].
ML helps in detecting any offensive events including detection of spam content, DoS attacks [7],
attacks on industrial control systems (ICS) [8], attacks on Internet of Things (IoT) devices [9],
malware detection, and malicious URL detection [10,11]. During the training process, ML models
learn a prediction function that is used to classify a URL and then the trained model is used
to classify new unseen URLs. For this purpose, we need a training dataset consisting of benign
and malicious URLs. Furthermore, the training dataset should have informative features such that
they adequately characterize the URL and that the benign and malicious URLs have different
distributions. These features are usually extracted by domain experts and may include lexical fea-
tures (such as the length of the URL, the existence of some words, bag of words, n-grams, etc.),
and host-based features (Domain name properties, the geographical location of the host, etc.) [3].
To this end, different classi�cation algorithms such as support vector machine (SVM), logistic
regression, and decision tree classi�ers can be used over the training data to learn the prediction
function. However, extracting informative features is essential for the success of any classi�cation
model training. On the other hand, DL does both feature learning and prediction within the
same model; hence, deep neural networks (DNNs) have the ability to discover the required secret
features and use them to �nd a model that maps the input data to the desired output without
explicitly de�ning the features by the domain experts. The �rst layers of the networks discover
informative features and the latter layers use these features to make decisions [12]. In natural
language processing (NLP), for instance, the model classi�es a sentence according to the existence
of some keywords. Hence, featureless malicious URL detection uses DL to classify a URL as
benign or malicious [10]. The URL should be considered as a sentence and use the same approach
used in NLP to classify it. This approach can eliminate the limitation of typical blacklist-based
solutions [11] which cannot be generalized to novel URLs that do not exist in the blacklist.
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Another advantage of DL-based featureless malicious URL detection systems is that they do not
require feature engineering because they can extract the features automatically.

Nevertheless, despite remarkable results in providing intelligent solutions in different domains,
ML and DL systems have shown more susceptibility to adversarial attacks in the form of small
purposely created perturbations leading to misclassi�cations [13]. These attacks can cause dire con-
sequences, especially when developing deep learning-based solutions for security-related problems
where attackers work hard to discover new attack vectors. Evaluating the performance of these
systems from only accuracy standpoint is not enough to decide if they are suitable for real-life
applications or not. Since the purpose of applying these techniques is to protect against malicious
activities, they cannot be applied until the robustness is considered to prevent the attacker from
developing adversarial samples easily with small changes to the input sample.

To �ll the gaps, the goal of this paper is three-fold: To highlight the existence of a vulner-
ability in featureless DL-based malicious URL detection systems that can be used by attackers
to launch adversarial attacks on such systems, to develop a proof-of-concept algorithm to launch
three attacks (character-based, segment-based, and full attack) and test these attacks on three
kinds of classi�ers (character-based, word-based, and full joint classi�er), and to show how
adversarial learning can be used to mitigate the threat of such attacks by augmenting the training
data to effectively defend against such attacks.

The main contributions of this paper are summarized below.

• A novel attack on featureless deep learning-based malicious URL classi�cation systems is
introduced. The attack exploits the sensitivity of these systems to small input manipulation
causing malicious URL misclassi�cation as a benign URL. This attack works in a greedy
mode providing the required perturbation with the least possible number of steps.
• CNN-based URL classi�ers (character-based, word-based, and optimized joint classi-

�er) are implemented and the performance of these classi�ers is evaluated under our
proposed attack.
• The ability of adversarial training is examined to defend against the proposed attack

where the usability of this attack is demonstrated as a way for data augmentation
to get more malicious URLs for training both accurate and secure DL-based URL
classi�cation systems.

The remainder of this paper is organized as follows. Section 2 presents related works in
malicious URL detection with deep learning and adversarial attacks on text data. In Section 3, the
problem of malicious URL detection is presented as a binary classi�er along with a background
of adversarial attacks. In Section 4, the attack is presented to fool URL classi�ers and then in
Section 5, the results of experiments on the robustness of three classi�ers against the proposed
attack are presented as well as the effectiveness of the proposed adversarial attack along with
adversarial training as a defense against such attacks, are discussed. We discuss why these systems
are vulnerable to adversarial attacks in Section 6 and provide some suggestions on how to make
them secure. The limitations of this work are described in Section 7 and we conclude this work
in Section 8.

2 Related Work

In this section, we review the existing works in malicious URL detection using deep learning
and adversarial attacks on text data.
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Malicious URL classi�cation is a well-studied problem as malicious websites are a primary
source of undesirable content and their timely detection is a crucial task. Recently, deep learning
has been extensively used for malicious URL classi�cation. In this regard, NLP-based deep learn-
ing models have been successfully applied for this task due to their ability to recognize semantic
features from unstructured text data. For instance, eXpose [14] used character-level convolutional
networks to classify a URL sample. The convolutional network tries to locate informative patterns
of speci�c characters appearing together in the URLs. Because the model does not use word
encoding, it does not have an explosion problem when increasing the number of features. The
explosion problem appears when using word encoding because the vocabulary size of URLs
words is unlimited with the ability to add new unseen words in each new URL. In addition to
solving the manual feature extraction issue, eXpose outperforms manual feature extraction based
URL classi�cation models. Similarly, URLNet [10] applied convolutions for both characters and
words in the URL sample to learn the URL �nal optimized embedding. Therefore, the model
can have the ability to discover several types of semantic features of the URL. To solve the
problem of large vocabulary size, URLNet uses an additional character-level word embedding
where the �nal word embedding is created from the word itself and the characters present in
that word. Furthermore, Shima et al. [15] used an advanced embedding method by embedding
the combination of two characters appearing sequentially then CNNs are applied to classify
the sample. On the other hand, in this work, we apply a full featureless approach for URL
classi�cation without any feature engineering, and we deal with rare unknown words by using
word-embedding techniques.

The research in adversarial attacks on DL is more active on image data [16] than on texts.
Consequently, most of the works in the adversarial text �eld try to use methods from the image
�eld and apply them to texts. Samanta et al. [17] used the concept of fast gradient signed method
(FGSM) to �nd and replace the important words or salient words that signi�cantly affect the
resulting class of the text when they are removed. Similarly, Sato et al. [18] operated in the
embedding space instead of discrete space of the input. They saved the semantic meaning of
the sentence by restricting the directions of perturbations to �nd a substitutional word that is in
a pre-de�ned vocabulary instead of any unknown word. The previous two methods [17,18] are
white-box attacks. On the other hand, Gao et al. [19] proposed DeepWordBug which is a black-
box attack. First, they determined important words to change using scoring functions, then they
created perturbations on these words causing a misclassi�cation. To preserve the readability of the
perturbed sentence, the authors used edit distance. In another work, Ebrahimi et al. [20] proposed
a white-box attack called HotFlip working against character-level neural network classi�ers. The
authors used the gradients of the input vector to �nd the manipulations needed to fool the
classi�er. Inspired from DeepWordBug [19], in this paper, we propose a black-box attack using
scoring strategies. Our attack is possible at the level of characters by changing speci�c characters
of the malicious URL to fool the classi�er or at segments level by replacing the full URL segment.
The goal is to change the predicted label of the URL by introducing minimum alterations.

There also exist some studies on adversarial attacks on URL detection systems, but they
were designed to introduce perturbations to the URL input features. Chen et al. [21] used a
differential evolution algorithm to �nd the required minimum bytes to be changed to create an
adversarial attack. Similarly, Shirazi et al. [22] tried to measure the number of features that should
be changed to create adversarial attacks and the cost for each manipulation. On the other hand,
Aleroud et al. [23] used features perturbation for adversarial attack generation using generative
adversarial networks (GAN). The main difference between our study and previous studies is that
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we perform attack and defense on featureless-DL systems and it works directly on the raw data
while considering the URL as a sentence or text.

3 Problem Formulation

In this section, �rst, we provide a real-life scenario of how the attack could happen. Then,
the problem of malicious URL detection is formulated as a binary classi�er. After that, a brief
introduction to adversarial attacks and adversarial training is provided. Lastly, we discuss typical
URL parsing as it determines the restrictions on the modi�cations in the input URL.

3.1 Real-Life Scenario
Fig. 1 shows an example of how the proposed attack could happen in a real-life scenario.

Figure 1: Real-life attack scenario

1) The attacker designs and runs a malicious website with a URL generated using our
proposed attack. This website could ask the victim to download some malicious �les or to
�ll online forms with user credentials (such as password and account details) mimicking
some original service (such as bank website).

2) The attacker uses different techniques to lure or redirect the victim to the malicious website,
such as social engineering, phishing, email spoo�ng, website spoo�ng, and exploitation of
browser vulnerabilities. In our case, the victim could be using a machine learning-based
classi�er to detect malicious URLs, but since the attacker uses the proposed attack for
generating the malicious URL, the classi�er is not able to detect it.

3) Once the victim browses the malicious URL, the victim will be redirected to the webserver
on which the attacker has hosted the malicious webpage website.

4) The victim executes what the attacker wants, and the attacker gets the information
he/she needs.

5) The attacker uses the information provided by the victim to access the original website
using the victim’s credentials.

3.2 Malicious URL Detection
Consider a dataset consisting of N URLs with their corresponding labels, {(u1, y1) , . . . ,

(uN , yN)}, where (ui : i= 1, 2, . . . , N) ∈U represents a URL, U is the URL space which preserves
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that the input has a URL parsing, and yi ∈ {0, 1} is the label of the URL, with yi = 1 for a
malicious URL, and yi = 0 for a benign URL. First, we need to convert each URL to its feature
representation ui→ xi where xi ∈ Rn is an n-dimensional vector representing the features of the
URL ui. In the case of deep learning, this can be done automatically. Thus, all we need is a
prediction function f (ui) : Rn

→R that can perform both feature learning and URL classi�cation.
This function f is represented as the neural network architecture of the classi�er such as a CNN
and recurrent neural network (RNN). The result of this function is the probabilities of each class
being benign Pf (ben | ui) or malicious Pf (mal | ui) and the �nal output ŷi is the maximum of the
probabilities and denoted as:

ŷi = argmax
(
Pf (mal | ui) , Pf (ben | ui)

)
(1)

The goal is to learn the parameters or weights of the prediction function f that can minimize
the number of prediction errors in the entire dataset. To accomplish this, we need to choose and
minimize a loss function, where different loss functions can be used, such as the mean squared
error and the cross entropy.

3.3 Adversarial Attacks
Adversarial attacks are security vulnerabilities in ML and DL models. Adversaries can utilize

these attacks to fool DL models by altering samples with a small perturbation invisible to humans.
Formally, for a given DL classi�er f , a small perturbation 1x performed on an input sample x
results in a new sample x′ as an adversarial sample:

x′ = x+1x, ‖1x‖p < ε, x, x′ ∈X (2.1)

f (x) 6= f
(
x′

)
or f

(
x′

)
= t (2.2)

The classi�er here is denoted as f : X → Y , where X is the input sample space and Y is
the output classes’ space. ‖1x‖p is the Lp − norm of the perturbation 1x and it measures the
degree to which an adversarial example x′ is imperceptible from its original x. ε is the permitted
perturbation so that the x′ stays in the input space and that it is indistinguishable from x by a
human observer. The constraint in (2.2) means that the class of the adversarial sample can either
be any other class different from the original sample in untargeted attacks or a speci�c one (t) in
targeted attacks.

In our case, the input sample is a malicious URL u and we target �nding a perturbation that
changes u into u′ so that u′ is classi�ed as a benign URL:

u′ = u+1u, ‖1u‖p < ε, u, u′ ∈U (3.1)

f (u)= 1 (malicious) (3.2)

f
(
u′

)
= 0 (benign) (3.3)

The constraints in (3.1) are
(
u′ ∈U

)
mean that u′ should have a typical URL parsing style

and
(
‖1u‖p < ε

)
means that 1u should be as minimum as possible and less than a prede�ned

permitted perturbation parameter ε. The constraints in (3.2) and (3.3) mean that the input sample
u is classi�ed as malicious and the perturbed sample u′ should be classi�ed as benign.

Adversarial attacks are divided into white-box and black-box attacks according to the amount
of knowledge that the attacker has about the model [24]. In white-box attacks, the attacker knows
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the architecture and weights of the model which makes the attack easier to launch. Whereas in
black-box attacks, the attacker has no or limited knowledge about the model which is dif�cult but
more realistic in some cases. If the attacker has no knowledge of the model such as the training
process and weights but can query the model for investigating input samples, it is called adaptive
black-box attacks. The attacker constructs adaptive queries to the target model by changing the
queries according to the label y obtained from the target model for a sample x. The attacker then
builds a surrogate model and trains it on (x, y) obtained from querying the target model [24]. This
surrogate model replaces the target model and white-box attacks can be constructed on it. In this
study, we consider adaptive black-box attacks as these attacks are more realistic since the model
could be deployed somewhere on the Internet as a browser extension or as a spam email detector.

3.4 Adversarial Training
Since it is essentially important to mitigate the effects of adversarial attacks, many robust

DL methods and models have been proposed. Some of these methods are adversarial training,
defensive distillation, and using GANs as defense mechanisms against adversarial attacks [13]. It
is important to mention that each of these defense methods is used to defend against speci�c
attacks, and none of them alone can mitigate all kinds of adversarial attacks.

In this paper, we examine the effect of using adversarial training as a defense for the classi�er.
In [25], the authors introduced adversarial training to secure the model by augmenting the training
dataset with perturbed data received from attacking the original dataset. Different adversarial
attacks are used to generate the adversarial examples then augment these perturbed data to the
model’s training data. Formally, �rst, for each input sample, all samples that cause maximizing
the loss function should be found using the proposed attack. Then, during the training of the
model, instead of updating the parameters depending only on the loss of original samples, the
pre-treated input is included as follows.

δi+1 = arg max
δ∈1

I [f (x+ δ | θi) 6= y] (4.1)

θi+1 = arg min
θ

L (x+ δi+1, y, θ) (4.2)

I is an Indicator function, f is the classi�er, L is the loss function, 1 is the allowable
perturbation, δ is the perturbation that leads to maximizing the loss function of the classi�er for
an input sample x. In (4.2) this perturbed sample is included in the training process of the model
to �nd the optimal parameters of the model θ .

3.5 URL Parsing
URLs have a speci�c structure (as shown in Fig. 2) that determines how to forward the

request from the user to the end servers. A URL includes the following segments:

• A protocol or scheme identi�er (e.g., HTTP, HTTPS),
• A Domain name or netloc registered in DNS server,
• A path which identi�es where the page is located in the server,
• Query: name and value pairs as parameters provide information that the resource can use

for some purpose, and
• Fragment: used to direct the browser to a reference or a function.

URL parsing breaks it down into its partial components or segments allowing it to be
treated as words in a text sentence. All URL components can be replaced with any other suitable
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alternative except for the domain name which is the only part the programmer cannot replace
arbitrarily as it is registered in DNS servers. For example, changing the path will not change the
content as long as the programmer is able to place the page on a different path. We will try to
exploit this feature to build the attacks.

Figure 2: URL structure

4 Proposed Attack on Featureless URL Classi�ers

We propose an adversarial attack that is possible at the level of characters by changing speci�c
characters or at the segments level by replacing the full URL segment. In this study, we refer
to characters or segments as ‘token,’ depending on the attacker’s purpose. We also note that
the previous de�nition for adversarial modi�cation given in (3.1): 1u= u′ − u cannot be directly
applied here because the input URL sample is symbolic and Lp − norm works for continuous
image data; yet, it is meaningless for text data. Therefore, replacement modi�cations of characters
or words into the text are proposed to alter a malicious URL into a benign URL. The de�nition
of adversarial modi�cations here is the edit distance between input URL u and perturbed URL
u′ that is de�ned as the minimal edit operations required to change u to u′. The goal is to change
the predicted label of the URL by introducing minimum alterations. Moreover, we apply scoring
strategies inspired by DeepWordBug [19] to �nd the important URL segments or characters that,
if changed, can cause the misclassi�cation needed for (3.1) and give an incorrect prediction as
in (3.2), (3.3). The proposed attack follows a black-box scenario as it is more realistic to assume
that the model is deployed somewhere as a part of a security system on cloud servers as a
service. Such service may receive the input from the users and returns corresponding outputs so
the architecture and parameters or gradients of the neural network used for classi�cation are not
available. Therefore, the required adversarial modi�cations are created for the chosen tokens of the
input without considering the gradients or weights of the model. With the numerous choices of
potential input changes (among all the URL segments/characters changes), we design an approach
that consists of three steps to choose the tokens and replace them:

• Step 1: Determine the important malicious URL tokens to change,
• Step 2: Determine the important benign URL tokens or candidates pool, and
• Step 3: Introduce the potential attacks that can evade the deep learning classi�er with more

than one suggestion if possible.

To �nd tokens for the �rst two steps, we design scoring functions. However, the proposed
changes should preserve the structure of the URL. The scoring functions �rst �nd the important
token in the malicious input URL and potential candidates to replace them and then the attack
executes a speci�c modi�cation in those tokens that causes the classi�er to misclassify the URL.
Moreover, to �nd important tokens, we de�ne scoring functions (discussed in Subsections 4.1
and 4.2), which are designed to evaluate which tokens affect the decision of the target model more
in both malicious and benign cases. After detecting the tokens to be changed in the malicious
URL and the best candidates to replace them from the benign URL, the modi�cation is applied
to form an adversarial sample. We start by �nding the score of each input URL’s segment towards
determining the maliciousness of the input URL with respect to the classi�er f . Next, the URL
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segments are ranked according to their score in decreasing order. Thus, we ensure that the task is
accomplished with the least possible number of steps. Then, we iterate through the URL segments
in decreasing order of importance and transform the token to a new token. Unless the segment is
a domain name, it is possible to replace it with another segment, otherwise, the domain name must
be tackled by characters to create a new domain name that is not registered in the DNS server.

4.1 Determining the Important Malicious URL Tokens to Change
The ultimate goal is to �nd a perturbation that leads to misclassifying a malicious input URL

as a benign URL. For this purpose, �rst, we de�ne a scoring function SCRm (tokeni) : Rn
→R to

determine the important tokens used by the classi�er for measuring the maliciousness of an input
(malicious) URL. Then we calculate the importance of tokens in an input URL according to the
contribution to the classi�cation con�dence or the class probabilities resulting from the classi�er
and after that rank the tokens in the decreasing order of their importance. Formally, the score of
a malicious URL’s token is calculated as follows:

SCRm (tokeni)=
(

Pf

(
ben | utokeni

)
−Pf (ben | u)

)
−

(
Pf

(
mal | utokeni

)
−Pf (mal | u)

)
=

(
Pf

(
ben | utokeni

)
−Pf (ben | u)

)
−

((
1−Pf

(
ben | utokeni

))
−

(
1−Pf (ben | u)

))
= 2 ∗Pf

(
ben | utokeni

)
− 2 ∗Pf (ben | u) (5)

To calculate the importance of a token, we measure the effect of this token on the probability
of this URL belonging to a benign or malicious class. This is accomplished by subtracting the
difference in prediction probability for the benign class and the malicious class before and after
deleting the token. In the second line of (5), we use the fact that the sum of the two output
probabilities (the probability for an input URL to be malicious or benign) is equal to one since
we use a binary classi�er. Large score values mean that deleting this token would lead to a
larger benign-ness probability or less maliciousness probability. Hence, exchanging this value with
another value can lead to a higher benign-ness probability.

Figure 3: An example of calculating the score of the path in a given URL

Perturbing tokens that have high scores leads to less maliciousness and higher benignness
scores. Finding the scores can be achieved at the segment’s level for all URL segments except for
the domain name where the score is calculated at the character’s level. This is due to the attacker’s
ability to replace any segment with another segment inside the site; however, for the domain name,
the attacker should create a new unregistered domain name. As shown in Fig. 3, the score of the
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path in the given URL is positive and has a relatively high value; therefore, replacing this path
with another one from a benign URL could increase the benignness probability of this URL.
Once we estimate the importance of each token in the input sequence, they can be ranked and
the top n tokens are selected for perturbation to create an adversarial sequence, where n is the
number of allowed perturbations.

4.2 Determining the Important Benign URL Tokens
Here the main goal is to build a benign candidate pool for each token in the malicious URL.

The candidate pool for each token consists of the scored benign tokens that can replace this token.
The scoring function in this step �nds the important tokens used by the classi�er to determine
the benignness of a URL. Formally, the score of a benign URL’s token is calculated using the
following formula:

SCRb (tokeni)=
(

Pf

(
mal | utokeni

)
−Pf (mal | u)

)
−

(
Pf

(
ben | utokeni

)
−Pf (ben | u)

)
=

(
Pf

(
mal | utokeni

)
−Pf (mal | u)

)
−

((
1−Pf

(
mal | utokeni

))
−

(
1−Pf (mal | u)

))
= 2 ∗Pf

(
mal | utokeni

)
− 2 ∗Pf (mal | u) (6)

The concept is the same as in the previous step, i.e., tokens that have high scores are chosen,
and changing them leads to higher maliciousness and less benignness. We start by calculating the
scores of all tokens in all benign URLs in the dataset, then rank the tokens in each URL segment
according to their score in descending order. Again, the calculation is at the segment level for all
URL tokens except for the domain name where the calculation is at the character level.

4.3 Token Transformer
To this end, we have sorted tokens of the malicious URL from a scoring function in Step 1

(Section 4.1.) and have built the candidate pool by choosing the n important candidates for each
token in Step 2 (Section 4.2.). The next part of creating the adversarial sample is to transfer or
modify the tokens. The modi�cation of a token can be done directly by replacing tokens from
Step 1 with corresponding candidates from Step 2 recursively until the URL is predicted as benign
by the model. This simple mechanic for perturbing malicious URLs is summarized in Algorithm 1.

Algorithm 1: Token transformation
Input: Sample URL—u, segment to change—s, number of allowed characters to change—m
(default= length(s))
Output: A benign URL u_new

1: Find a candidate pool CP for s using Step 2
2: Initialize ben_u=Pf (ben | u))
3: If s != domain_name:
4: for cand in CP:
5: u_new=Replace s in u with cand
6: ben_new=Pf (ben | u_new))
7: If ben_new> ben_u:
8: ben_u= ben_new

(Continued)
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9: u= u_new
10: Elif s= domain_name:
11: for i in range(m):
12: for j in range(length(s)):
13: for cand in CP:
14: u_new=Replace [j: j+ i] portion in the domain name of u with cand[j: j+ i]
15: ben_new=Pf (ben | u_new))
16: If ben_new> ben_u:
17: ben_u= ben_new
18: u= u_new
19: Return u

Since tokens are considered in the order of their contribution score SCR (tokeni), constructing
adversarial samples is achievable with the least possible changes using the greedy method. For
domain name, the attack is character-based because new domain names must be created that are
not registered in the DNS server. We replace a portion of the input URL with its correspondent in
the candidate pool with maximum length m. The attack starts with the most important character
from the hostname and replace it with its corresponding candidate and recursively replacing until
it reaches an adversarial sample. If the number of characters is small and not enough to construct
an attack, new characters are added to the hostname at the end. An example of characters-based
domain name attack is shown in Fig. 4.

Figure 4: An example of changing a malicious input URL to a benign URL by changing three
characters using the proposed attack

For other segments of the URL, both the character and segment level of the attack are
available as long as the crafted URL has the standard URL parsing. We chose not to change the
protocol (or the scheme identi�er) if it is http or https; hence, the changes are executed on all
other segments. The protocol affects the decision of the classi�er only if the dataset implicates
this. For example, if all benign URLs in the dataset start with https and all malicious URLs
start with http, then any URL starts with http will be classi�ed as a malicious URL with high
probability. Below is the algorithm of the full proposed method for converting an input malicious
URL u into a benign URL.
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Algorithm 2: Convert the input malicious URL u into a benign URL
Input: Input URL to change—u, Classi�er trained for malicious URL detection—f , number of
allowed permutations—m (default= length (parse (S)))
Output: An array Malicous_url of malicious URLs u_new

1: Find the score SCRm (si) of each URL’s segment si with respect to the classi�er f .
2: Rank segments S of u according to SCRm (S) : S → {s1, s2, . . . , sk} where, SCRm (s1) >

SCRm (s2) > · · ·> SCRm (sk) and k : length (parse (S)) number of segments in S
3: i← 1, y← f (s), Malicous_url = [ ]
4: while i<=m do
5: if si is not a domain name
6: u_new=Transform(u, si)
7: else
8: u_new=Transform_char(u, si)
9: end if

10: y← f (u_new)
11: if y= benign:
12: Malicous_url.append(u_new)
13: i← i+ 1
14: end while

5 Experiments and Results

In this section, we discuss the implementation details and the obtained results of testing
different versions of our proposed attack against three kinds of DL-based URL classi�ers. More-
over, we evaluate the performance of the proposed attack by testing the accuracy of the model
while increasing the number of allowed permutations. Finally, we examine adversarial training for
designing more robust models against such attacks. We test our attack on three kinds of DL
classi�ers: (i) character-based classi�er (ii) word-based classi�er, and (iii) full character-based and
word-based classi�er. To train the DL binary classi�er, we need to build a dataset containing
labeled benign and malicious URLs. There are many open-source datasets for this purpose. We
consider a dataset that was created to address the problem of malicious URLs classi�cation on
the Internet [26]. The dataset contains malicious and benign URLs that can be used for analysis
or building classi�ers. The dataset was acquired from various sources, such as PhishTank [27], etc.
and it contains 450176 unique URLs of which 77% are benign and 23% are malicious.

As was mentioned earlier, in the DL approach, feature engineering is not required before
feeding the URL to the model. Nevertheless, some pre-processing of the raw URLs is still needed.
The characters and words of the URL need to be expressed as integers. This requires building a
dictionary containing all possible characters or words in the URL. The featureless DL approach
considers the problem of malicious URL classi�cation as a text classi�cation problem and uses
techniques from NLP to solve it. After preprocessing the raw URL, an embedding layer is used to
move characters or words that occur in the same context closer to each other in an n-dimensional
space. This layer will be used as part of the model where the embedding is learned along with
the model training process.

For the character-based classi�er [28], each character is considered as a word and the position
of a character within the n-dimensional vector space is learned from the URL. This position is
based on the characters that surround this character as a context as shown in Fig. 5 for example.
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Figure 5: The character ‘?’ indicates the end of the path segment and the beginning of the
query segment

The vocabulary size, which contains allowed characters for embedding, here is 100 and it
contains all unique printable characters in python. As a result, each character has its own
embedded vector. Character-based classi�ers decide the class of a URL depending on a speci�c
set of characters appearing together. On the other hand, for word-based classi�cation, all unique
words in the training dataset are considered. Because there are no restrictions on the words in
the URL, and especially in the domain name, the vocabulary size here extends unlimitedly as the
training dataset gets bigger. To accomplish that, we replace words that appear less than two times
with “unknown.” Word-based classi�ers determine the class of a URL depending on a speci�c set
of words appearing together.

For a complex word-level and character-level classi�er, we maintain the same embedding
concept proposed by [10]. In this embedding, two matrices are used, one for words and the other
for characters, whereas the �nal URL representation is the sum of these two matrices. The input
URL u to a classi�er is converted into a 2D matrix: u→ x ∈RL∗K where L is the maximum length
of the component that can be a word or a character for each URL and K is the embedding
dimension. There are several architectures to build the model for this task, for instance, LSTM
architecture and 1D convolutions. To this end, we use CNNs as they can discover important
information for the classi�cation from groups of characters or words appearing together in the
URL which could indicate if a URL is benign or malicious [29,30]. In 1D convolutions, the
width of the sliding window is constant which, in this case, is the embedding dimension K.
The convolution process happens over x ∈ RL∗K . We use the same CNN classi�er architecture
proposed by [10] by using 4 convolutional �lters W ∈RK∗h, where h= 3, 4, 5, 6 and for each �lter
size, 456 �lters are used. Using these �lters, the network can consider the relationship among h
components (characters or words) appearing together. In this study, we consider cross entropy as
a loss function for training all classi�ers.

5.1 Performance Evaluation
To measure the performance of the proposed attacking methods, the accuracy of the model is

observed on the generated adversarial samples. Effective attacks lead to lower accuracy as they are
able to successfully fool the classi�er. We test three variants of the attack as follows: (i) segment-
based attack for all URL segments except for the domain name, (ii) character-based attack for
the domain name, and (iii) full attack where both character-based and segment-based attacks are
used to create the �nal attack. To study the in�uence of the dataset size on the accuracy and
the robustness of the model, we conduct experiments on the full dataset and partial dataset by
taking 100k training samples with preserving the basic proportions between benign and malicious
samples. We also measure the effectiveness of each of these attacks by determining the reduction
in the correct classi�cation rates of malicious URLs, i.e., �rst, adversarial samples are constructed,
then the percentage of those that are correctly classi�ed as malicious URLs is found. The results
of these experiments are presented in Tab. 1.

From Tab. 1, we can see that the best base-ground accuracy is achieved by applying the model
proposed in [10] which uses both characters and words to classify the sample. We also note that
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the proposed attack was able to reduce the accuracy of all models. Character-based classi�ers have
better accuracy and robustness than word-based classi�ers. That is due to the large vocabulary
size in these applications and the freedom that the programmer has to name the site and the path
inside this site. We also observe that, when the number of allowed characters to change equals
to �ve, the full attack achieved a 56.3% reduction in the accuracy of the full character+word-
level classi�er, 60.1% of the character-based classi�er, and 67.5% of the word-based classi�er. It
is worth mentioning that the attack works better for small datasets; however, it achieved a 56.3%
reduction in the accuracy of the best model making the use of these models insuf�cient in real
protection systems where attackers try every possible way to attack the system.

Table 1: Reduction in the accuracy of three classi�ers against the proposed attack

Classi�er with training-set≈ 500K Classi�er with training-set≈ 100K

Character-
level

Word-
level

Full character+
word-level

Character-
level

Word-
level

Full character+
word-level

Base-ground accuracy 94.1 92.7 95.6 90.3 87.9 91.1
Segment-based attack 76.9 69.3 80.7 72.8 65.5 77.1
Character-based attack 53.9 43.6 56.1 43.3 32.4 47.5
Full attack 34.0 25.2 39.3 22.5 16.1 30.8

For the full attack, we observe the effectiveness of the attack by increasing the number of
allowed characters to change in the domain name. As shown in Fig. 6, the accuracy of the model
starts to drop signi�cantly when the number of characters allowed to change is more than two.

Moreover, to measure the effectiveness of our scoring functions, the proposed attack is com-
pared with the following four random-based attacks that depend on introducing random changes
on the URL:

1) Attack 1: Remove the tokens randomly from the malicious URL without replacing them
with candidates from benign URLs. Four characters are allowed to be deleted from the
domain name and all other segments to be completely deleted.

2) Attack 2: Order the tokens from the malicious URL according to their cost and pick
tokens randomly from benign URLs for replacement.

3) Attack 3: Order the tokens randomly from the malicious URL and replace them with
randomly selected tokens from benign URLs.

4) Attack 4: Order the tokens randomly from the malicious URL and replace them with
tokens from benign URLs ordered according to their cost.

The reduction in the correctly classi�ed malicious URLs rates for the three previous classi�ers
against these random-based attacks is shown in Tab. 2. The results show that random-based
attacks in�uence all classi�ers considerably less than our proposed attack; thus, the proposed
ordering and replacing approach using scoring functions is important. Similarly, the arrangement
of the classi�ers according to their robustness against random attacks is the same as against our
proposed attack. We also note that attack 4 in�uences the classi�ers more than other attacks
because it orders benign candidates according to their cost. Next, attack 2 takes place because it
orders malicious tokens according to their cost.
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Figure 6: Change in model accuracy according to the number of changed characters in the
domain name

Table 2: Reduction in the accuracy of three classi�ers against the random-based attacks

Classi�er with training-set≈ 500K

Character-level Word-level Full character+word-level

Attack_1 80.51 79.11 83.50
Attack_2 74.80 72.86 75.07
Attack_3 78.20 77.04 79.269
Attack_4 68.66 67.13 70.75

5.2 Increasing the Robustness with Adversarial Training
Next, we study the impact of adversarial training on mitigating the effect of small perturba-

tions on input samples. In an attempt to understand how adversarial training could increase the
robustness of the classi�er, the above-mentioned experiments are repeated to observe the difference
in the performance between standard and adversarially trained model using two training datasets
with different sizes. However, we restrict ourselves to augmenting the full classi�er (as it achieved
the best results), in an effort to make it more robust. The goal of using adversarial training is
to improve the generalization performance of the classi�er by considering crafted samples outside
the original training dataset. An effective generalization reduces the classi�er sensitivity to minor
perturbations which increases its resilience against adversarial attacks.

Applying adversarial training is done by performing the attacks on all malicious URLs and
then the perturbed URLs are augmented to the training set as malicious URLs (as shown in
Fig. 7). Using the same approach suggested earlier, the number of characters allowed to change
in the domain name (m) ranges from one to six. Thus, we �x (m), �nd all adversarial samples,
augment the samples to the training dataset, train the model again, and �nally, we try the attack
on the �nal model and compare the accuracy before and after applying adversarial training. The
results are shown in Tab. 3.
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Figure 7: Applying adversarial training by retraining the model on dataset received from augment-
ing the original dataset with adversarial examples received from applying the proposed attack

Table 3: Increase in the rate of correctly classi�ed malicious URLs for three classi�ers against the
proposed attack after applying adversarial training

Classi�er with training-set≈ 500K Classi�er with training-set≈ 100K

Character-
level

Word-
level

Full character+
word-level

Character-
level

Word-
level

Full character+
word-level

Base-ground accuracy 94.1 92.7 95.6 90.3 87.9 91.1
Segment-based attack 92.2 89.4 94.1 82.1 80.0 84.9
Character-based attack 89.4 82.8 91.7 77.1 72.8 81.2
Full attack 88.0 80.9 90.4 76.5 73.1 80.7

The columns in Tab. 3 represent the attack that is used to augment the training dataset for
adversarial training and the rows represent which attack is tried after re-training. Adversarial
training shows promising results in reducing the in�uence of the attack on the robustness of
the model. The in�uence of the segment-based attack was reduced to less than 3% on average.
The in�uence of the character-based attack and the full attacks was reduced to less than 7% on
average. Furthermore, it was observed that a larger training dataset size leads to a smaller gap
between the accuracies of standard and adversarial training models.

6 Discussion

We aim at estimating the robustness of DL-based malicious URL classi�cation systems under
adversarial attacks. The results of this study show that these systems are not applicable until the
robustness of the model is considered and not just the accuracy. By observing the results, one
of the challenges that can make these systems less secure than other NLP DL-based systems
is the vast number of unique words that appear in the URL which do not exist in the formal
English language. This is due to the fact that the domain name and other variables are set by the
programmer without any rules of how to name these variables. Using n-gram could reduce the
effect of this problem by sliding a window of n characters over the URL domain name to generate
n-gram tokens. This solution could alleviate the problem but does not solve it completely when
the attacker adds n-gram from a benign URL. Another problem with word-based classi�ers is that
the attacker can replace all segments (except for the domain name) of the malicious URL with
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segments from a benign URL, which could reduce the maliciousness of the URL signi�cantly. To
address this issue, the domain name of any full URL classi�ed as malicious should be added to a
blacklist, thus changing the path and other segments of the URL would not result in classifying
it as benign. Here are some recommendations to make these systems more robust against these
kinds of attacks:

1) Include the pre-treated input in the loss function which reduces the model’s sensitivity to
small changes.

2) Consider a large training dataset with a reasonable amount of malicious URLs which
increases the accuracy and robustness of the model.

3) Create some predictive features such as the length of the URL, the existence of exe-
cutable extensions in the URL, the existence of redirection in the URL, etc. Although
these features require domain knowledge and increase the complexity of the model, they
harden the process of crafting adversarial samples. Add the domain name to a blacklist
after being discovered with this model to prevent changing other segments which leads to
misclassi�cation from happening.

7 Limitations

Our study has some potential limitations. For instance, we performed the experiments on
an open-source, publically available dataset; however, getting a larger dataset with more up-to-
date malicious URLs could lead to more precise results. Moreover, the proposed attack was
tested against classi�ers that we designed ourselves. Testing the attack against real classi�ers used
by security companies and web browsers would be more realistic. However, security companies
usually do not share the architecture of their malicious URL classi�ers that is why we could
not test it against those classi�ers. Besides, testing against these classi�ers is considered illegal.
Furthermore, their classi�ers are usually a mixture of various approaches such as machine learn-
ing methods, blacklist-based techniques, heuristic approaches, etc. For adequate security, attacks
on each employed strategy and their defense mechanisms should be separately studied. Neverthe-
less, our proposed attack highlights the security issues regarding the potential use of DL-based
featureless methods for malicious URL detection in industrial solutions.

8 Conclusions

In this paper, we investigated the robustness of featureless malicious URLs detection models
and proposed a black-box attack against these models. This attack exploits the sensitivity of
NLP-based classi�ers against small purposely crafted perturbations. The attack can work at
segment level, character level, or use both segments and characters changes to fool the classi�er.
All changes should preserve the typical URL parsing. In essence, we examined three CNN-
based classi�ers: Character-based, word-based, and jointly word and character. The results of
our experiments show that the attack causes a 56% decrease in the classi�cation accuracy for
a joint model, a 77% decrease for a word-level model, and a 60% decrease for a character-
level model. Furthermore, we also used adversarial training to increase the robustness of the
model converting this attack in order to augment the training data. Lastly, we introduced some
recommendations that should be considered when designing such systems. The results of this
paper indicate that there are still loose ends to further study before applying such systems in
real-life security applications and this is related to the progress in defending against adversarial
attacks on deep learning models.
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