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Abstract: Determining the optimum location of facilities is critical in many
fields, particularly in healthcare. This study proposes the application of a
suitable location model for field hospitals during the novel coronavirus 2019
(COVID-19) pandemic. The used model is the most appropriate among the
three most common locationmodels utilized to solve healthcare problems (the
set covering model, the maximal covering model, and the P-median model).
The proposed nonlinear binary constrained model is a slight modification of
the maximal covering model with a set of nonlinear constraints. The model
is used to determine the optimum location of field hospitals for COVID-19
risk reduction. The designed mathematicalmodel and the solutionmethod are
used to deploy field hospitals in eight governorates in Upper Egypt. In this
case study, a discrete binary gaining–sharing knowledge-based optimization
(DBGSK) algorithm is proposed. The DBGSK algorithm is based on how
humans acquire and share knowledge throughout their life. The DBGSK
algorithm mainly depends on two junior and senior binary stages. These two
stages enable DBGSK to explore and exploit the search space efficiently and
effectively, and thus it can solve problems in binary space.

Keywords: Facility location; nonlinear binary model; field hospitals for
COVID-19; gaining–sharing knowledge-based metaheuristic algorithm

1 Introduction

Countries all over the world are working tirelessly to find new and better methods to face
and defeat the novel coronavirus 2019 (COVID-19). Reference [1] shows that the number of
infections is significantly increasing, and hospitals are overcrowded with patients. Many countries
have resorted to the only known solution left: The construction of field hospitals. These hospitals
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are established to meet the needs of treating new coronavirus cases. References [2,3] state that
many countries that are recorded to have the highest numbers of COVID-19 cases, such as China,
United States, Spain, and France, have built field hospitals. Field hospitals are temporary medical
units that are established to take care of and treat patients according to the approved treatment
protocols in times of natural disasters, crisis, or pandemics. They also help in relieving the load
put on the countries’ existing public and private hospitals.

It is of great importance to place field hospitals geographically close to the places most
vulnerable to infection by COVID-19, and to serve the largest number of patients who need
healthcare under the constraints of limited available resources. The location of facilities is par-
ticularly critical where the implications of poor location decisions extend well beyond cost and
patient service considerations. If too few facilities are utilized and/or they are not well located,
mortality and morbidity rates can increase. Thus, facility location modeling takes on even greater
importance when applied to the setting of healthcare facilities. Reference [4] discusses eight basic
facility location models: Set covering, maximal covering, P-center, P-dispersion, P-median, fixed
charge, hub, and maxi sum. In all these models, the underlying network is given, as are the
demand locations to be served by all facilities and the locations of existing facilities (if pertinent).
The general problem is to locate new facilities to optimize some objective like distance or some
measure functionally related to distance (e.g., travel time, cost, and/or demand satisfaction). This
is fundamental, and thus problems are classified according to their consideration of distance. The
first four basic facility location models are based on maximum distance, and the last four are
based on total (or average) distance.

Reference [5] states that a priori maximum distances are known as “covering” distances in the
facility location models based on maximum distance, and demand within the covering distance
to its closest facility is considered “covered.” Meanwhile, reference [4] shows that many facility
location planning situations are concerned with the total travelled distance between facilities and
demand nodes.

Three classic facility location models are the basis for almost all facility location models that
are used in healthcare applications. These are the set covering model, the maximal covering model,
and the P-median model.

It is very important to note that location models are application-specific; that is, their struc-
tural form (the objectives, constraints, and variables) is determined by the particular location
problem under study. Consequently, no general location model appropriate for all current or
potential applications exists.

In this paper, a modified version of the maximal covering model is designed to be suitable
for the optimum location of healthcare field hospitals for COVID-19. This designed model is a
nonlinear binary mathematical programming model.

The structure of this paper is as follows. The first section presents an introduction and
contains a concise point content for each subsequent section in this article. The second sec-
tion presents a brief review of the three basic facility location models that are the most suitable
for application in the healthcare field: The set covering model, the maximal covering model, and
the P-median model. Section 3 introduces the location of field hospitals for COVID-19 to ease
the patient burden on regular hospitals. Experience with field hospitals around the world proves
that this method is an effective one when dealing with the crisis caused by the unbelievably quick
spread of COVID-19. This section also clarifies that the formulation model is a modified version
of the general location models that are appropriate for determining the location of healthcare
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facilities. Section 4 presents the model’s formulations, and clarifies that the model is a nonlinear
binary constrained model. A real application is presented in section 5: The model is used to locate
field hospitals in 8 governorates in Upper Egypt. In section 6, a novel discrete binary version of
a recently developed gaining–sharing knowledge-based technique (GSK) is introduced to solve the
mathematical model. GSK is augmented to become a discrete binary-GSK optimization algorithm
(DBGSK), with two new discrete binary junior and senior stages. These stages allow DBGSK
to inspect the problem search space efficiently. Section 7 represents experimental results, and
Section 8 provides conclusions and suggestions for future research.

2 Basic Location Models for Healthcare Applications

The set covering model, maximal covering model, and P-median model are discrete facility
location models as opposed to continuous location models. Discrete location models assume that
there is a finite set of candidate locations or nodes at which facilities can be sited. Conversely,
continuous location models assume that facilities can generally be located anywhere in the region.
Throughout this paper, discrete location models are strictly considered since they have been used
more extensively in healthcare location problems.

2.1 The Set Covering Location Model
The notion of coverage for the set covering and maximal covering models means that

demands at a node are generally said to be covered by a facility located at some other node if
the distance between the two nodes is less than or equal to some specified coverage distance.

The set covering location problem (SCLP) attempts to minimize the cost of the facilities that
are selected so that all demand nodes are covered. Inputs to the model are the set of demand
nodes, set of candidate facility sites, and fixed cost of locating a facility at candidate sites.

References [6,7] show that the set covering problem is a specific type of discrete location
models. In this model, a facility can serve all demand nodes that are within a given coverage
distance from the facility. The problem is to place the minimum number of facilities so as
to ensure that all demand nodes can be served. In this model, the facilities have no capacity
constraints. Many extensions of the location set covering problem have been formulated.

Reference [8] shows that the objective function minimizes the total cost of all selected facil-
ities. The constraints stipulate that each demand node must be covered by at least one of the
selected facilities. Minimizing the number of facilities that are located is often an interesting target,
rather than minimizing the cost of locating facilities. A situation might arise where the fixed costs
of facilities are approximately equal, and the dominant costs are operating costs that depend on
the number of located facilities. A number of row and column reduction rules can be applied to
this location set covering problem.

In practice, at least two major problems occur with the set covering model. First, if mini-
mizing the cost of the facilities that are selected is used as the objective function, the cost of
covering all demands is often prohibitive. If minimizing the number of facilities that are located is
used as the objective function, the number of facilities required to cover all demands is often too
large. Second, the model fails to distinguish between demand nodes that generate a lot of demand
per unit time and those that generate relatively little demand. Clearly, if all demands cannot be
covered because the cost of doing so is prohibitive, it will be preferred to cover those demand
nodes that generate a lot of demand rather than those that generate relatively little demand. These
two concerns motivated the formulation of the maximal covering problem.
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2.2 The Maximal Covering Location Model
The maximal covering location problem (MCLP) is a classic model in the location science

literature. The demand at each node and the number of facilities to locate are needed as inputs,
and additional decision variables are added. The MCLP was formulated to address planning
situations that have an upper limit on the number of facilities to be sited.

The objective function in this case is to maximize the number of covered demands. The
constraints state that exactly P facilities are to be located and a demand node cannot be counted
as covered unless at least one facility that is able to cover the demand node is located.

A variety of heuristic and exact algorithms have been proposed for this model. Lagrangian
relaxation provides the most effective means of solving the problem when the following constraint
is relaxed: That demand at a node cannot be counted as covered unless at least one facility that
is able to cover that demand node is located. The problem can be divided into two separate
problems: One for the coverage variables, and one for the location variables. The sub problem
for the coverage variables can be solved by inspection, and the location variable sub problem
requires only sorting. The Lagrangian relaxation approach can typically solve instances of the
problem with hundreds of demand nodes and candidate sites in few seconds or minutes on today’s
computers, even though the problem is technically NP-hard. Reference [9] reviews the general
class of location covering models, and reference [10] proposed a cluster partitioning technique to
determine upper bounds for the optimal solution of maximal covering location problems.

Reference [11] shows that the MCLP has found wide applications; for example, in conser-
vation biology. Reference [12] considers the introduction of a doctor-helicopter system into an
existing ground ambulance system. Meanwhile, reference [13] reminds researchers that not only
is the maximal covering location problem the subject of broad application and extension, but
it is also integrated into a number of geographic information system-based commercial software
packages, including ArcGIS and TransCAD, for general use.

2.3 The P-Median Model
In many cases, the average distance (or time) that a patient must travel to receive service

or the average distance that a physician must travel to reach his/her patients is of interest.
The P-median addresses such problems by minimizing the demand-weighted total (or average)
distances. Many facility location planning situations in the public and private sectors are con-
cerned with the total travel distance between facilities and demand nodes. Reference [8] provides
a traditional formulation of one classic P-median model that finds the locations of P facilities to
minimize the demand-weighted total coverage distance between demand nodes and the facilities to
which they are assigned. This model finds the location of P facilities subject to the requirement
that all demands are covered and each demand node is assigned to exactly one facility. Refer-
ence [14] presents an innovative formulation of the problem that exhibits improved computational
characteristics when compared to the traditional formulation.

To formulate this problem, additional input and new decision variables are needed. The objec-
tive function aims at minimizing the demand-weighted total distance (or time). The constraints
state that each demand node must be assigned to exactly one facility site, a demand node can
only be assigned to open facility sites, and exactly P facilities are located.

As in the case of the maximal covering problem, a variety of heuristic algorithms have been
proposed for the P-median problem. The two best-known algorithms are the neighborhood search
algorithm, and the exchange algorithm. Meanwhile, reference [15] proposes genetic algorithms,
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references [16,17] propose the tabu search, and reference [18] proposes a variable neighborhood
search algorithm. Lastly, reference [19] develops a genetic algorithm for the capacitated P-median
problem in which each facility can serve a limited number of demands.

For moderate-sized problems, Lagrangian relaxation works quite well for the un-capacitated
P-median problem. Reference [8] outlines in detail the use of Lagrangian relaxation for both the
P-median model and the maximal covering model. Reference [20] reports the solution times for
a Lagrangian relaxation algorithm tackling the P-median and vertex P-center problems with up
to 900 nodes. Moreover, reference [21] transforms the maximal covering problem into a P-median
formulation. This is done by replacing the distance between a demand node and a candidate site
by introducing a modified distance to denote a coverage distance. This has the effect of minimizing
the total uncovered demand, which is equivalent to maximizing the covered demand.

3 Location of Field Hospitals for COVID-19

The use of field hospitals is a relatively new experience for Egypt and the Middle East, and
it is found to be greatly contributing to managing the crisis created by COVID-19. It is suggested
that governments should focus on building field hospitals in parks and public places that are
currently unutilized. In addition, establishing field hospitals in rural areas that have hospitals with
limited capacities would be the most beneficial because of the great pressure those hospitals are
facing. This great pressure eventually forces them to refuse taking any more patients who are in
dire need of medical attention. Moreover, the continuing increase in the admission of coronavirus
cases to regular hospitals is causing patients of other diseases to face medical negligence. Field
hospitals would create space in other hospitals need to treat and focus on other critical diseases.

Field hospitals are prepared similarly to regular hospitals; they are equipped with all medical
devices and beds required for the complete and efficient treatment of patients. For coronavirus
cases, the patient needs a bed and medical attention if the condition is intermediate, and an
artificial ventilator and intensive care if the condition is severe. The most important aspect of
field hospitals is that their attention is directed to COVID-19 patients only; therefore, all necessary
precautions will be taken to deal with those patients only (unlike other hospitals, which have other
diseases to deal with as well).

International experiences with field hospitals have proved their effectiveness in dealing with
the crisis caused by the unbelievably quick spread of COVID-19. In January 2020, the Chinese
authorities in Wuhan constructed one of the largest field hospitals in only 10 days to welcome
and treat the large numbers of COVID-19 patients. It was built on an area of about 60 thousand
square meters and equipped with approximately a thousand beds and intensive care units. This
hospital served a crucial role in providing medical care to coronavirus patients, in addition to the
other 11 field hospitals that were built in cities that faced trouble in treating coronavirus patients.
In Europe, France solved the problem of bed shortage in hospitals by announcing the building of
a few field hospitals. Italy collaborated with Russia to prepare a field hospital in Pergamon that
offered 145 beds to take care of coronavirus patients. Meanwhile, the Spanish authorities resorted
to transforming exhibition halls in Madrid to field hospitals that were able to receive COVID-19
patients and provide 5,500 beds and 500 intensive care units. A field hospital was also opened in
London, and it took only 9 days to construct within a huge conference center; initially, it offered
only 500 beds, each equipped with an artificial ventilator and oxygen, but ended up offering 4,000
beds. In the United States, authorities in New York transformed Central Park into a field hospital
with 68 medical beds. In North America, Brazil opened 9 field hospitals in Rio de Janeiro; the
largest was built on an area of 13,000 square meters and contained 500 beds, including 100 beds
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in intensive care units. In the Middle East, Dubai’s government established a field hospital that
provided about 3000 beds and 800 intensive care units, and in Saudi Arabia, a field hospital that
provided treatment for 100 patients at a time was established in Mecca.

As noted in Section 1, location models are application-dependent, which means that their
mathematical model is formulated related to the specific location problem under consideration.
The formulation of the location of field hospitals for COVID-19 is like the maximal covering
location problem. Thus, this is the problem adopted in the present study.

4 The Mathematical Model

The proposed mathematical model for the location of field hospitals is formulated in
this section.

4.1 Decision Variables
Define the following decision variables:

xj =
{
1 if a field hospital is established in a candidate site j, j ∈ J,
0 if not;

yi =
{
1 if demand at governorate i is covered, i ∈ I ,
0 if not.

where:

I = Set of demand governorates, indexed by i,

J = Set of candidate field hospital locations, indexed by j,

Dc =The maximum distance coverage for governorates and field hospitals,

di,j =Distance between demand governorate i and candidate hospital j,

Ni = {j | di,j ≤Dc} = Subset of field hospitals that can cover demand in governorate i.

In addition, define the following inputs:

ni =Demand in governorate i during the total isolation period (14 days),

H =Number of field hospitals to be established,

di,j =Average transportation distance from the capital of governorate i to the field hospital j,
i ∈ I , j ∈ Ji.
4.2 Constraints

i) Number of Hospitals Constraint:

The number of field hospitals is limited by the available resources (budget, doctors, other
medical staff, equipment, and consumed materials); see Eq. (1).∑
j∈J

xj ≤H (1)

ii) Covered Demand Constraints:

Demand at governorate i is not counted as covered unless we locate a hospital at one of
the candidate sites that covers node i. According to the geographic situation, the number of
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governorates at a distance not exceeding the maximum distance coverage for a field hospital Dc is
limited by a distinct number (for example, 4). Therefore, we need to find a mathematical relation
between a variable representing a specific demand governorate (Y) and the set of hospitals (X) in
a distance less or equal to Dc from that governorate. This mathematical relation is to produce the
value of Y= 0 when X= 0, and Y= 1 when X= (1, 2, 3 or 4). Reference [22] is used to obtain
the required mathematical relation as a power equation in the form (Y= aXb):

Y = 1 ∗X (2.513459∗10(−8)), as shown in Fig. 1.

Figure 1: Curve fitting for the power equation

Then, the following covered demand constraints can be obtained:

yi−
⎛
⎝∑
j∈Ni

xj

⎞
⎠

[2.513459∗10(−8)]

= 0 ∀ i ∈ I (2)

When
(∑

j∈Ni
xj

)
= 0, then yj = 0; this means no patients from the governorate i will be

transported to the hospitals. However, when
(∑

j∈Ni
xj

)
> 0 with values of 1, 2, 3 or 4, some

patients are transported to the located hospitals. The range (1:4) is chosen since the number of
governorates at a distance not exceeding Dc is limited by 4.

iii) Binary Constraints: All decision variables are binary (see Eqs. (3) and (4)).

yi ∈ {0, 1} ∀ i ∈ I (3)

xj ∈ {0, 1} ∀ j ∈ J (4)

Constraint (1) ensures that the total number of available field hospitals is not exceeded. The
set of constraints (2) states that a governorate is not covered unless at least one established
field hospital covers the patients in this governorate. Finally, constraints (3) and (4) are standard
binary conditions.
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iv) The Objective Function:

In this location problem, the objective is to maximize the number of patients covered by the
established field hospitals (see Eq. (5)).

Maximize Z=
∑
i∈I

niyi (5)

5 A Real Application

A real application of the model is presented here. The model is applied to the 8 governorates
in Upper Egypt, namely, Al-Fayoum, Beni Suef, El-Minya, Assiut, Sohag, Qena, Luxor, and
Aswan. In view of the increase in cases of COVID-19 infections, it is necessary to increase the
capacity of healthcare facilities by establishing additional field hospitals for medical quarantine
and treating. This is to be done under limited finances, medical staff, and necessary equipment.
The 8 governorates are briefly described below.

—Al-Fayoum:

Al-Fayoum governorate is located in Upper Egypt in a low location of the Western Desert,
southwest of Cairo; it has an area of about 1,827 km2 and a population of 3.9 million people [23].

—Beni Suef:

Beni Suef governorate is located on the western bank of the River Nile, 110 km south of
Cairo, and has a population of about 3.4 million people [24].

—El-Minya:

El-Minya governorate is located in the center of Egypt, on the River Nile. Its population is
about 5.9 million [25].

—Assiut:

Assiut governorate is located in the center of Egypt on the River Nile. This governorate’s
population is about 4.8 million people [26].

—Sohag:

Sohag governorate is located in Upper Egypt, south of the Assiut governorate and north of
the Qena governorate. Its area is nearly 1547 km2, and it has a population of about 5.4 million
people [27].

—Qena:

Qena governorate is located in Upper Egypt, 5–6 km from the River Nile and between the
Arab and Libyan deserts. The area of the Qena governorate is about 1.851 km2, and it is home
to about 3.5 million people [28].

—Luxor:

The city of Luxor was built on the ruins of the ancient capital city of Taibeh, Luxor
governorate is located in Upper Egypt, its area is about 55 km2, and its population is about 1.4
million people [29].

—Aswan:

Aswan governorate has an area of about 679 km2 and is located directly on the eastern bank
of the Nile River under the first waterfall; its population is about 1.6 million people [30].
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Fig. 2 presents the geographic locations of the 8 governorates in Upper Egypt.

Figure 2: Upper Egypt governorates

According to reference [31], di,j is the distance in km between a governorate i and a neighbor
hospital j. Tab. 1 presents the candidate locations of the proposed field hospitals xj in the capital
of each governorate, the distance di,j for the neighbor governorates to each field hospital that
can be accommodated by that hospital, and the designation of decision variables (as in the
mathematical model described in Section 3).

The complete mathematical model for the application case study is formulated accord-
ing to mathematical expressions (1–5). The proposed solution methodology is presented in the
following section.

6 Proposed Solution Methodology

Metaheuristic approaches have been developed for complex optimization problems with con-
tinuous variables [32–41]. Reference [42] recently proposed a novel gaining–sharing knowledge-
based optimization algorithm (GSK), setup on acquiring knowledge and share it with others
throughout their lifetime. The original GSK solves optimization problems over continuous space,
but it cannot solve a problem over binary space. Therefore, a new variant of GSK is introduced to
solve the proposed mathematical model. A novel discrete binary gaining–sharing knowledge-based
optimization algorithm (DBGSK) is proposed over discrete binary space with new binary junior
and senior gaining and sharing stages.

There are many constraint handling techniques in the literature [43,44]. For example, ref-
erence [44] uses the augmented Lagrangian method, in which an unconstrained optimization
problem was obtained from a constrained optimization problem. The proposed methodology is
described in the below subsections.
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Table 1: Field hospitals, neighbor Governorates and related decision variables

j

i

1-Al-
Fayoum

x1

2-Bani 
Sweif

x2

3-El-
Minya

x3

4-
Assiut

x4

5-
Sohag

x5

6-
Qina
x6

7-
Luxor

x7

8-
Aswan

x8

No of 
Patients

1-Al-Fayoum
y1

48 190 70

2-Bani Sweif
y2

48 143 264 61

3-El-Minya
y3

190 143 145 106

4-Assiut
y4

264 145 100 279 87

5-Sohag
y5

100 185 258 95

6-Qina
y6

279 185 69 298 71

7-Luxor
y7

258 69 242 29

8-Aswan
y8

298 242 33

6.1 Gaining–Sharing Knowledge-Based Optimization Algorithm (GSK)
An optimization problem with constraints is worked out as follows:

Min f (X) ; X = [x1,x2, . . . ,xDim]

s.to. gi (X)≤ 0; i= 1, 2, . . . ,m

X ∈ [
αp,βp

]
; p= 1, 2, . . . ,Dim.

Here, f denotes the objective function; X = [x1,x2, . . . ,xDim] are the decision variables; gi (X)

are the inequality constraints; αp and βp are the lower and upper bounds of decision variables,
respectively; and Dim represents the dimension of individuals. If the objective function is in
maximization form, then minimization=−maximization.

The GSK algorithm contains two stages: Junior and senior gaining and sharing stages. All
people acquire knowledge and share their views with others. People in the early stages of life
(junior stage) gain knowledge from their networks, such as family members, relatives, and neigh-
bors, and want to share this knowledge with others who might not be in their networks (this stems
from a curiosity to explore others). These may not have the experience to categorize the people.
In the same way, people in middle or later stages of life (senior stage) enhance their knowledge
by interacting with various circles, such as friends, colleagues, and social media friends, and share
their knowledge with the most suitable person (this stems from a desire to teach others). These
people have the experience to judge other people and can categorize them as good or bad. The
process described above can be mathematically formulated through the following steps.

Step 1:

To get a starting point of the optimization problem, the initial population must be obtained.
The initial population is created randomly within the boundary constraints (Eq. (6)).

x0tp = αp+ randp
(
βp−αp

)
(6)

Here, t is the number of populations; and randp denotes a random number uniformly
distributed in the range 0–1.
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Step 2:

The dimensions of junior and senior stages should be computed through Eqs. (7) and (8).

DimJ =Dim×
(
Genmax−G
Genmax

)k

(7)

DimS =Dim−DimJ (8)

Here, k(> 0) denotes the learning rate. DimJ and DimS represent the dimensions for the
junior and senior stages, respectively. Genmax is the maximum number of generations, and G is
the generation.

Step 3:

Junior gaining–sharing knowledge stage: In this stage, the young people gain knowledge from
their small networks and share their views with other people who may or may not belong to
their network.

Thus, individuals are updated as follows.

i. According to the objective function values, individuals are arranged in ascending order.
For every xt (t = 1, 2, . . . ,NP), select the nearest best (xt−1) and worst (xt+1) to gain
knowledge, and also choose randomly (xr) to share knowledge. The pseudo-code to update
the individuals is presented in Fig. 3.

Figure 3: Pseudo-code for Junior gaining sharing knowledge stage

kf (> 0) is the knowledge factor.

Step 4:

Senior gaining–sharing knowledge stage: This stage comprises the impact and effect of other
people (good or bad) on the individual. The updated individual can be determined as follows.

i. The individuals are classified into three categories (best, middle, and worst) after sorting
individuals into ascending order (based on the objective function values).

The best individual = 100p%(xbest), middle individual = Dim − 2 ∗ 100p%(xmiddle), and
worst individual= 100p%(xworst).
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For every individual xt, choose the top and bottom 100p% individuals for gaining part and
the middle individual for the sharing part. Therefore, the new individual is updated through the
pseudo-code dictated in Fig. 4, where p ∈ [0, 1] is the percentage of best and worst classes.

Figure 4: Pseudo-code of senior gaining sharing knowledge stage

6.2 Discrete Binary Gaining–Sharing Knowledge-Based Optimization Algorithm
To solve problems in discrete binary space, a novel discrete binary gaining–sharing knowledge-

based optimization technique (DBGSK) is presented. In DBGSK, the new initialization and the
working mechanism of both stages (junior and senior gaining–sharing stages) are introduced over
discrete binary space, and the remaining algorithms remain the same. The working mechanism of
DBGSK is described below.

Discrete Binary Initialization:

A first population is obtained in GSK using Eq. (8) and must be updated using Eq. (9) for
the binary population.

x0tp = round(rand(0, 1)) (9)

The round operator is used to convert the decimal number into the nearest binary number.

Discrete Binary Junior Gaining and Sharing stage:

This stage is based on the original GSK with kf = 1. The individuals are updated in the
original GSK using the pseudo-code presented in Fig. 6. This code contains two cases, which are
defined for the discrete binary stage as below.

Case 1. When f (xr) < f (xt):

There are three different vectors (xt−1,xt+1,xr) that can take only two values (0 and 1).
Therefore, a total of 23 combinations are possible (see Tab. 3). Furthermore, these eight combi-
nations can be categorized into two different subcases [(a) and (b)], and each subcase has four
combinations. The results of each possible combination are presented in Tab. 2.

Subcase (a): If xt−1 is equal to xt+1, the result is equal to xr.

Subcase (b): When xt−1 is not equal to xt+1, then the result is the same as xt−1 by taking
−1 as 0 and 2 as 1.
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Table 2: Results of the discrete binary junior gaining and sharing stage of case 1, kf = 1

xt−1 xt+1 xr Results Modified results

Subcase (a) 0 0 0 0 0
0 0 1 1 1
1 1 0 0 0
1 1 1 1 1

Subcase (b) 1 0 0 1 1
1 0 1 2 1
0 1 0 −1 0
0 1 1 0 0

The mathematical formulation of Case 1 is as follows:

xnewtp =
{
xr; if xt−1 = xt+1

xt−1; if xt−1 �= xt+1
.

Case 2. When f (xr)≥ f (xt):

There are four different vectors (xt−1,xt,xt+1,xr) that consider only two values (0 and 1).
Thus, there are 24 possible combinations (see Tab. 3).

Table 3: Results of the discrete binary junior gaining and sharing stage of case 2, kf = 1

xt−1 xt xt+1 xr Results Modified results

Subcase (c) 1 1 0 0 3 1
1 0 0 0 1 1
0 1 1 1 0 0
0 0 1 1 −2 0

Subcase (d) 0 0 0 0 0 0
0 1 0 0 2 1
0 0 1 0 −1 0
0 0 0 1 −1 0
1 0 1 0 0 0
1 0 0 1 0 0
0 1 1 0 1 1
0 1 0 1 1 1
1 1 1 0 2 1
1 0 1 1 −1 0
1 1 0 1 2 1
1 1 1 1 1 1

These 16 combinations can be divided into two subcases [(c) and (d)]; subcases (c) and (d)
have 4 and 12 combinations, respectively.
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Subcase (c): If xt−1 is not equal to xt+1, but xt+1 is equal to xr, the result is equal to xt−1.

Subcase (d): If any of the condition arises where xt−1 = xt+1 �= xr or xt−1 �= xt+1 �= xr or
xt−1 = xt+1 = xr, the result is equal to xt by considering −1 and −2 as 0, and 2 and 3 as 1.

The mathematical formulation of Case 2 is

xnewtp =
{
xt−1; if xt−1 �= xt+1 = xr
xt; Otherwise

.

Discrete Binary Senior gaining and sharing stage:

The working mechanism of the discrete binary senior gaining and sharing stage is the same
as the binary junior gaining and sharing stage with kf = 1. The individuals are updated in the
original senior gaining–sharing stage using the pseudo-code presented in Fig. 7; this code also
contains two cases. The two cases are further modified for the binary senior gaining–sharing stage,
as described below.

Case 1. f (xmiddle) < f (xt):

Three different vectors (xbest,xmiddle,xworst) can assume only binary values (0 and 1), and thus
a total of eight combinations are possible to update the individuals. These eight combinations
can be classified into two subcases [(a) and (b)], each containing four different combinations. The
combinations of this case are presented in Tab. 4.

Table 4: Results of discrete binary senior gaining and sharing stage of case 1 with kf = 1

xbest xworst xmiddle Results Modified results

Subcase (a) 0 0 0 0 0
0 0 1 1 1
1 1 0 0 0
1 1 1 1 1

Subcase (b) 1 0 0 1 1
1 0 1 2 1
0 1 0 −1 0
0 1 1 0 0

Subcase (a): If xbest is equal to xworst, then the obtained results are equal to xmiddle.

Subcase (b): If xbest is not equal to xworst, then the results are equal to xbest while assuming
−1 or 2 according to the nearest binary value (0 or 1, respectively).

Case 1 can be mathematically formulated in the following way:

xnewtp =
{
xmiddle; if xbest = xworst
xbest; if xbest �= xworst

.

Case 2. f (xmiddle) > f (xt):

There are four different binary vectors (xbest,xmiddle,xworst,xt), yielding a total of 16 combi-
nations. The 16 combinations are also divided into two subcases (c) and (d). The subcases (c) and
(d) contain 4 and 12 combinations, respectively. The subcases are explained in detail in Tab. 5.



CMC, 2021, vol.68, no.1 1197

Subcase (c): When xbest is not equal to xworst and xworst is equal to xmiddle, then the obtained
results are equal to xbest.

Subcase (d): If any case arises other than (c), then the obtained result is equal to xt by taking
−2 and −1 as 0 and 2 and 3 as 1.

The mathematical formulation of Case 2 is

xnewtp =
{
xbest; if xbest �= xworst = xmiddle
xt; Otherwise

.

The pseudo-code of DBGSK is presented in Fig. 5.

Table 5: Results of discrete binary senior gaining and sharing stage of case 2 with kf = 1

xbest xt xworst xmiddle Results Modified results

Subcase (c) 1 1 0 0 3 1
1 0 0 0 1 1
0 1 1 1 0 0
0 0 1 1 −2 0

Subcase (d) 0 0 0 0 0 0
0 1 0 0 2 1
0 0 1 0 −1 0
0 0 0 1 −1 0
1 0 1 0 0 0
1 0 0 1 0 0
0 1 1 0 1 1
0 1 0 1 1 1
1 1 1 0 2 1
1 0 1 1 −1 0
1 1 0 1 2 1
1 1 1 1 1 1

Figure 5: Pseudo-code for DBGSK
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7 Experimental Results

The proposed mathematical model employs the proposed novel DBGSK algorithm, the
parameters of which are presented in Tab. 6.

DBGSK runs on an Intel ® CoreTM i5-7200U CPU@2.50 GHz and 4 GB RAM, and is
coded in MATLAB R2015a. To get the compromise or the effective solution, 30 independent
runs are completed. The results obtained by DBGSK are presented in Tab. 7, including the best,
median, average, worst solutions, and standard deviations.

Table 6: Numerical Values of parameters

Parameters of DBGSK Considered values

NP 300
k 10
kr 0.9
p 0.1
kf 1
Max number of iterations 200

Table 7: Statistical results using DBGSK

Algorithm Best (maximum) Median Average Worst (minimum) Standard deviation

DBGSK 552 552 552 552 0.00

It can be obviously seen in Tab. 7 that the DBGSK algorithm reaches the optimal solution
consistently over the 30 runs with zero standard deviation, which proves its outstanding robust-
ness. Moreover, Fig. 6 shows the convergence graph of the solutions of the proposed mathematical
model using 3 field hospitals. After the 14th iteration, the model converges to the global optimal
solution (552), which shows the high convergence speed of DBGSK.
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Figure 6: Convergence graph of DBGSK

The optimum solutions for the problem with different numbers of field hospitals to be
established (1, 2, or 3) are presented in Fig. 7. We notice that the covered governorates in the case
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of establishing one field hospital in Assiut are Beni Suef, El-Minya, Sohag, and Qina, and the
total number of patients = 333. When establishing 2 field hospitals, they are to be built in Beni
Suef and Assiut, or in El-Minya and Assiut; in this case, the covered governorates are Al-Fayoum,
Beni Suef, El-Minya, Assiut, Sohag, and Qina, and the total number of patients = 490. In the
case of establishing 3 field hospitals, they are to be built in Beni-Suef), Assiut, and Qina or in
El-Minya, Assiut, and Qina; in this case, all 8 governorates are covered, and the total number
of patients = 552. The decision-maker can choose the best solution from these three solutions
according to the available resources (medical staff, accommodation, devices, and materials).

Governorates
# of Covered

Patients 
Number 
of Hospitals, Location

1-Al-
Fayoum

70

2-Bani 
Sweif
61

3-El-
Minya
106

4-
Assiut

87

5-
Sohag
95

6-
Qina
71

7-
Luxor

29

8-
Aswan

33
Total No 

of
Covered
Patients

1: (Assiut). 333

2: (Bani-Sweif), 
(Assiut). 490

2: (El-Minya), 
(Assiut). 490

3: (Bani-Sweif), 
(Assiut), (Qina). 552

3: (El-Minya), 
(Assiut), (Qina). 552

Figure 7: Covered patients for different numbers of the established field hospitals

8 Conclusions and Directions for Future Research

The main contributions of this paper can be summarized as follows.

i. A variant of the maximal coverage location model to formulate establishing of field hospi-
tals for COVID-19 problem is proposed. The model is designed to suit a special problem
formulation for placing some field hospitals in candidate locations while maximizing the
number of covered patients.

ii. A nonlinear binary constrained model is formulated for the given problem. The binary
decision variables are establishing field hospitals in the chosen candidate sites and covering
patients in different governorates.

iii. The designed mathematical model and method for obtaining the optimum solution are
applied to 8 governorates in Upper Egypt with different numbers of hospitals to be
established.

iv. The problem is solved by a novel discrete binary gaining–sharing knowledge-based opti-
mization algorithm (DBGSK), which involves two main stages: Discrete binary junior and
senior gaining and sharing stages, with a knowledge factor kf = 1. DBGSK is a discrete
binary variant of GSK that solves the problem with binary decision variables.

v. DBGSK can find the solutions of the problem, with good robustness and convergence.
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Suggestions for future research are as follows.

i. To propose other mathematical models’ formulations for the same problem comprising
designing the objective function(s), decision variables, and constraints, and then to compare
various proposed mathematical models.

ii. To continue applying the problem to other regions of the country, to the whole country,
and to other countries.

iii. To build an online decision support system that can handle repetitive situations with timely
updated data and, in turn, update the locations of field hospitals for COVID-19 to reflect
the updated data.

iv. To check the performance of the DBGSK approach in solving different complex optimiza-
tion problems, and with different kinds of constraint handling methods.
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