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Abstract: With the massive success of deep networks, there have been signi�-
cant efforts to analyze cancer diseases, especially skin cancer. For this purpose,
this work investigates the capability of deep networks in diagnosing a variety
of dermoscopic lesion images. This paper aims to develop and �ne-tune a
deep learning architecture to diagnose different skin cancer grades based on
dermatoscopic images. Fine-tuning is a powerful method to obtain enhanced
classi�cation results by the customized pre-trained network. Regularization,
batch normalization, and hyperparameter optimization are performed for
�ne-tuning the proposed deep network. The proposed �ne-tuned ResNet50
model successfully classi�ed 7-respective classes of dermoscopic lesions using
the publicly available HAM10000 dataset. The developed deep model was
compared against two powerful models, i.e., InceptionV3 and VGG16, using
the Dice similarity coef�cient (DSC) and the area under the curve (AUC). The
evaluation results show that the proposed model achieved higher results than
some recent and robust models.

Keywords: Deep learning model; multiclass diagnosis; dermatoscopic
images analysis; ResNet50 network

1 Introduction

The American cancer society estimates melanoma deaths as 75% of total skin cancer deaths
and new melanoma cases as 100,000 in 2020 [1]. An image-based computer-aided diagnosis (CAD)
system could be used to classify different skin lesions based on image features. A higher accuracy
CAD system could be used in the early diagnosis of skin cancer [2]. Early and accurate detection
aided by deep learning techniques can make treatment more effective [3]. Deep neural networks
(DNNs) have shown great performance in many �elds [2].
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Deep learning has gained great importance in automatically extracting features through mul-
tiple or deep layers [4]. Different from the hand-crafted techniques, a multi-layer architecture can
capture complex hierarchies describing the raw data [5]. Deep learning techniques allow a classi�er
to learn features automatically. Low-level features are abstracted into high-level features to learn
complex and high-level representations [6]. Thus, many studies explored how deep neural networks
give the generalization capability from a known training set to new data. Deep learning capabilities
suffer from vanishing and exploding problems, over�tting and under�tting problems, generalization
error of extensive network, and over-parameterized models [2]. In addition to these problems,
various signi�cant learning settings requires careful initialization of parameters. Typical CAD
systems for classifying dermoscopic lesions usually involve lesion segmentation [6,7] and extract
image features from the segmented lesion for classi�cation [8]. Modern deep learning models rely
on pretraining using a greedy unsupervised paradigm. Then, they apply �ne-tuning methodologies
using supervised strategies [4,7,9,10]. Thus, other deep architectures have emerged using adaptive
learning rate schemes [11] and better activation functions [12–14] to simplify learning features’
computation with better results. The experiments con�rmed that the greedy layer-wise training
strategy ultimately guides the optimization [15–18].

This paper addresses exploring deep learning behavior in the dermoscopic diagnosis of can-
cerous lesions using new representation in a different space. It exploits the synergetic effects
of pretraining using an unsupervised paradigm. Then, it ends with a �ne-tuning stage using
supervised learning. The proposed paradigm’s objectives are to overcome the problems of over-
�tting and under�tting, improve generalization error of large networks, and optimize the hyper-
parameters. This research tests the feasibility of using deep structured algorithms in skin cancer
image diagnosis.

Automatic skin lesion diagnosis using dermoscopic images is challenging to assist the human
expert in making better decisions about patients and reduces unneeded biopsies [19]. Skin cancer
starts with a change and upnormal growth in the healthy cells and forming a mass called a
tumor [18]. A tumor can be cancerous or benign. Early diagnosis of skin cancer can access
opportunities for healing [20]. There are four main skin cancer types: Melanoma, Merkel cell
cancer, squamous cell carcinoma, and Basal cell carcinoma. The last type is called keratinocyte
carcinomas (non-melanoma) skin cancer distinguished from melanoma [20]. Many studies have
reported using various deep learning architectures in designing a classi�cation scheme for dermo-
scopic skin lesion images [3,7,19,21,22]. In lesion classi�cation, the deep architecture can extract
multi-level of features from input images due to the ability of self-learning [9,11,12,23,24]. Unlike
previous deep learning studies for skin lesion classi�cation, which focused on using speci�c layers
within network architectures to extract features, this approach extends the previous work by a new
multi-level feature extraction technique to improve the classi�cation results.

Moreover, the networks were pre-trained multiple times with different �ne-tuning settings
to achieve a more stable classi�cation performance for skin lesion categorization. Compared
to traditional methods where each network architecture is used once, the proposed �ne-tuning
framework guided the �nal results’ performance. To date, the reported classi�cation schemes have
not been reported a signi�cant improvement. The study aimed to improve skin cancer diagnosis
accuracy by using novel deep learning (DL) algorithms. This research proposes a new method for
automated skin lesion diagnosis that overcomes generalization error, over�tting, vanishing, and
explosion problems via a novel deep learning approach that recognizes the skin lesions’ signi�cant
visual features. The proposed deep architecture was trained using the HAM10000 dataset that
contains 10015 dermoscopic images for seven different diagnostic categories. The remainder of
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the paper is organized as follows. Section 2 discusses some current related work. In Section 3,
the proposed model and the used datasets are described in more detail. Section 4 elucidates the
experimental results. Finally, the discussion and the conclusion are discussed in Section 5.

2 Related Work

Several attempts have been made to overcome the aforementioned challenges with the aid of
deep learning architecture. For example, Walker et al. [19] proposed a skin cancer diagnosis system
with two-stages. They �rst used two deep network architectures: convolutional neural network
(CNN) and inception network. They employed the Caffe library in the training of inception
parameters using stochastic gradient descent. They also augmented the data to expand the avail-
able training images by applying translational and rotational invariance at random rotation angles.
Second, the input images are mapped into feature representation to be used in soni�cation. In
the soni�cation step, a raw audio classi�er uses 1-dimensional CNN, convolutional, max pooling,
and �nally a fully connected and softmax layer with two neurons for binary classi�cation of
dermoscopic images, i.e., malignant from benign. They evaluated their method using the publicly-
available ISIC 2017 dataset of 2361 labeled images as melanoma or benign lesion. They obtained
an accuracy of 86.6% in the classi�cation of cancerous dermoscopic images.

Mahbod et al. [9] proposed a hybrid deep network approach for skin lesion classi�cation that
combines two network architectures, i.e., intra and internetwork fusion architecture. They �rst pre-
trained CNNs on ImageNet and then �ne-tune them on the dermoscopic lesion images dataset.
The last few fully-connected layers’ deep features output is fed to a support vector machine
(SVM) classi�er for classifying the lesion type. They �ne-tuned the pre-trained networks with
different settings for better classi�cation performance in classifying skin lesions. They evaluated
their approach to ISIC 2017 dataset as a binary classi�cation task. They achieved an average
area under the curve (AUC) equals to 87.3% for malignant melanoma classi�cation vs. all and
95.5% for seborrheic keratosis vs. all. They utilized ResNet-18 with random weight initialization
for obtaining optimal hyperparameter of the individual components on the classi�cation results.

Hekler et al. [5] used a pre-trained ResNet CNN for the classi�cation of histopathological
melanoma images. They employed hyperparameter controlling by modifying the weights to reduce
loss, given the difference between the predicted class labels and actual class labels. They evaluated
their method on 595 histopathologic slides from a dataset of 595 individual patients (300 nevi and
295 melanoma). They evaluated their deep classi�cation technique’s performance using a test set
of 100 known class label images with a mean accuracy of 68% accuracy for binary classi�cation
of melanoma from nevi. They presented an invasive technique with a limited number of images
with limited resolution. Another limitation is the binary nature of their technique for melanoma
vs. nevi.

Kassem et al. [23] proposed a deep learning model classi�cation of skin lesions. They
used a deep convolutional GoogleNet architecture based inception module that utilizes a sparse
CNN with conventional dense construction. They utilized transfer learning and domain adap-
tation to improve generalization conditions. They evaluated their model on ISIC 2019 dataset
to test the ability to classify different kinds of skin lesions with 94.92% classi�cation accuracy.
They used the traditional multiclass SVM machine learning method, which may result in lower
performance measurements.

Adegun et al. [4] proposed an in-depth learning-based approach for the automatic detection of
melanoma. Their deep network comprises a connected encoder and decoder sub-networks, which
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brings the encoder closer to the decoder feature maps for obtaining ef�cient learned features.
Their system employed multi-stage and uses softmax for melanoma lesions classi�cation. They
also used a multi-scale system to handle various sizes of skin lesions images. They evaluated their
system on two skin lesion datasets, ISIC 2017 and Hospital Pedro Hispano (PH2). They used
2000 and 600 dermoscopy images for training and testing using ISIC 2017, and 200 images and
60 dermoscopic images were used for training and testing using the PH2 dataset. Their results
showed an average accuracy of 95%. They adopted only the binary case of classi�cation for
melanoma vs. non-melanoma.

Brinker et al. [22] used CNN to classify skin cancer images. The convolutional architecture
utilized the ResNet model to classify benign images from malign skin lesions. They also employed
an ensemble for the residual nets to achieved less error rate than that of GoogLeNet. They utilized
stochastic gradient descent with restarts (SGDR) to settle local minima problems in which sudden
increments for the learning rate may arise. They performed CNN image-classi�er training using
the ISBI 2016 dataset, which includes 18170 nevi and 2132 melanomas. They evaluated the results
using 379 test images of ISBI 2016 with a ROC curve of 0.85.

Several studies of literature focused only on the binary case of classi�cation for melanoma
vs. non-melanoma [4,9,19,22]. Moreover, Kassem et al. [23] investigated the problem of multi-
lesion diagnosis. They used the traditional multiclass machine learning method, resulting in lower
performance measurements. For these reasons, the main objective is to investigate the problem
of multi skin cancer lesion diagnosis for more effective treatment. The ISIC 2019 dataset with
nine different diagnostic categories, will train and test the multi diagnostic technique. For this
aim, this paper investigates deep learning architecture and hyperparameter optimization to improve
the diagnosis results. This work uses the ResNet50 deep network to overcome the generalization
error, over�tting, vanishing, and explosion problems. ResNet50 can reformulate network layers
in terms of residual learning functions with a mapping reference to the input layer by �tting
the stacked layers to the residual mapping. ResNet50 uses the identity mapping to predict the
required to reach the �nal prediction of the previous layer outputs, which decreases the vanishing
gradient effect using an alternate shortcut path to bypass. The identity mapping allows the
model to �ow through the unnecessary layers. This helps the model to overcome the training
set over�tting problems. This approach extends the previous work by using a multi-level feature
extraction technique to improve the classi�cation results. Moreover, the proposed network was
pre-trained multiple times with different �ne-tuning settings to achieve a more stable classi�cation
performance for skin lesion categorization. The proposed deep model utilizes various �ne-tuning
techniques, i.e., regularization, hyper-parameter tuning and batch normalization, transfer learning,
cross-entropy optimization, and Adam optimizer. The proposed novel deep learning classi�cation
scheme has been reported a signi�cant improvement in skin cancer diagnosis accuracy.

3 Materials and Methods

3.1 Dataset
HAM10000 (Human Against Machine) (HAM) is a publicly available dataset [25]. HAM

dataset is comprised of 10015 dermatoscopic images through the ISIC archive. The HAM der-
matoscopic images are collected from different populations in different modalities. This dataset
provides a diagnosis for seven pigmented lesion categories: Actinic keratosis (AKIEC), benign
keratosis lesion (BKL), vascular lesions (VASC), basal cell carcinoma (BCC), dermato�broma
(DF), melanocytic nevi (NV), and melanoma (MEL). Most of these lesions are con�rmed through
histopathology. The lesion_id in the metadata �le tracks the lesions within the dataset. The lesion
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images are diversely delivered. They were acquired different dermatoscopy types from various
anatomic sites, i.e., nails and mucosa, from a sample of skin cancer patients, from several different
institutions. Images were acquired under the Ethics Review Committee of the Medical University
of Vienna and the University of Queensland. The HAM10000 dataset is also utilized as the
training set for the ISIC 2018 challenge [25]. The distribution of seven pigmented lesions of HAM
dermoscopic images is shown in Tab. 1.

Table 1: An overview of the HAM dataset and distribution of classes

Class label Abbreviation Class No. of images

0 NV Melanocytic nevi 6705
1 MEL Melanoma 1113
2 BKL Benign keratosis 1099
3 BCC Basal cell carcinoma 514
4 AKIEC Actinic keratosis 327
5 VASC Vascular lesions 142
6 DF Dermato�broma 115
Total images= (10015) before data augmentation

3.2 Proposed Methodology
3.2.1 Pre-Processing

Preprocessing steps are applied to cleanse and organize data before being fed into the model.
Dataset images vary between high and low pixel range. Higher image values can result in different
loss values from the lower range. Sharing the same model, weights, and learning rate require
normalizing the dataset. Images pixels are scaled before the training phase in the deep learning
architecture. Within experiments, images are rescaled to (224, 224, 3) using scaling techniques via
the ImageDataGenerator class. Image pixel values are normalized to unify image samples. The
pixel values in the range [0, 255] are normalized to the range [0, 1]. Without scaling, the high
pixel range images will have many votes to update weights [22].

3.2.2 Training the Deep Network
Deep CNNs can learn hierarchically from low to high-level features automatically. Stacking

the number of layers (depth) can enrich the levels of features. A deeper network can solve com-
plex tasks and improve classi�cation/recognition accuracy [26]. But, training the deeper network
could face some dif�culties, such as saturation/degrading of accuracy and vanishing/exploding
gradients [27]. Utilizing deep residual pretrained architecture can solve both of these problems.
Pre-trained model architecture facilitates training the deeper networks than the deeper framework
used in [26]. ResNet50 is previously trained on ImageNet, composed of a large number of around
1.5 million natural scene images [27]. ResNet can reformulate network layers in terms of residual
learning functions with a mapping reference to the input layer. Within ResNet, the stacked layers
directly �t the desired mapping (residual mapping) [28].

The key idea of ResNet50 is to use identity mapping to predict the required to reach the �nal
prediction of the previous layer outputs [27]. ResNet50 decreases the vanishing gradient effect
using an alternate shortcut path to bypass. The identity mapping allows the model to �ow through
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the unnecessary layers. This helps the model to overcome the over�tting problem to the training
set [29].

Let the desired mapping be represented as H(x). The stacked layers �t the following mapping
F(x) := H(x) − x. If the original mapping is transformed into F(x) + x, thus the optimization
to the residual mapping can be easier than optimizing the original (unreferenced) mapping [26].
The residual can be pushed to zero more than �tting the identity mapping to nonlinear layers
in optimal identity mapping. Comparable to VGG-16, the ResNet50 has an additional identity
mapping [27], as shown in Fig. 1.

Figure 1: The residual identity mapping

The pre-trained deep learning model ResNet50 was used in training along with their weights.
Because of the extensive training, it can facilitate training the deeper networks and gives better
accuracies. The ResNet50 network consists of 50 layers deep with a small receptive �eld of 7× 7
in the input layer followed by a max-pooling layer of 3× 3 kernel size. The architecture of the
ResNet50 is shown in Fig. 2.

Figure 2: Block diagram of the Resnet50 network

3.2.3 Fine-Tuning the Network
Optimization has gained great importance, especially in deep learning, with the exponen-

tial growth of data. The large number of parameters within the deep layer network became
a challenge to handle the complexities in adjusting the network’s parameters [30]. These opti-
mization algorithms aim to �ne-tune the results by utilizing various optimization techniques [31].
Setting the hyper-parameter affects the performance of the deep model. The development of
optimization brings many ef�cient ways to adjust the hyper-parameters automatically [32]. Opti-
mization methods by Adam optimizer have a signi�cant in�uence on the learning performance
rate [33]. Fine-tuning the deep architecture can have a considerable effect on the performance of
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a model [34]. Fine-tuning the deep architecture means the choice of deep training network, the
layers involved within architecture and hyper-parameters for each layer, as well as the optimizers
involved to enhance performance [27]. The proposed deep model utilizes various �ne-tuning
techniques, i.e., regularization, hyper-parameter tuning and batch normalization, transfer learning,
cross-entropy optimization, and Adam optimizer.

Regularization Regularization techniques are applied to enhance the learnability of the net-
work. Image data augmentation is used to synthesize new data to expand the used dataset.
Creating new training data from existing training data can improve the performance and the
model generalization ability [35]. Image augmentation increases the amount of available data by
applying domain-speci�c techniques for creating transformed versions of images. These transfor-
mations can be �ips, zooms, shifts, and much more. Augmentation can also transform invariant
learning approaches and learn the model features that are also invariant to transforms, such as
top-to-bottom to left-to-right and light levels in photographs [36].

Data preparation operations, i.e., image resizing and pixel scaling, are differentiated from
image augmentation. Image augmentation is applied only to the training dataset, not to the
validation or test dataset. But, data preparation must be consistently performed among all the
model datasets [30]. A combination of af�ne image transformations was then performed, i.e.,
rotation, shifting, scaling (zoom in/out), and �ipping to synthesize new data. The number of image
samples was increased to a total of 12519 image datasets.

Hyperparameter Tuning and Batch Normalization Batch normalization achieves better optimiza-
tion performance for convolutional networks [37]. Realizing the �xed distributions of inputs could
remove the internal covariate shift’s effects, reduce the number of epochs required, and decrease
generalization error [36]. Batch normalization can handle the internal covariate shift problem
by standardizing the inputs to deep layers after each mini-batch. This can affect the learning
process’s stability and eventually can reduce the number of training epochs required in training
deep networks [38].

During training, batch normalization can be performed by computing the mean and standard
deviation per mini-batch for each layer’s input variable to perform standardization. After training,
the mean and standard deviation can be observed as mean values over the small mini-batches
training dataset [38]. The mean and standard deviation of activation are calculated to normalize
features by Eqs. (1) and (2), respectively [37].

xf =
1
m

m∑
i=1

xif (1)

σf =
1
m

m∑
i=1

(xif − xf ) (2)

where m represents the size of a mini-batch and xif is the f th feature of the ith sample. Using
mini-batch mean and standard deviation, features can be normalized using Eq. (3) [37].

x̂f =
xf − xf
σk+ ξ

(3)

where ξ represents a small positive constant to reach numerical stability. This standardization of
inputs can be performed using the �rst hidden layer’s inputs or using the hidden layer’s activations
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for deeper layers [38]. In practice, during the training process, batch normalization uses two
learnable parameters as βf and γf for each feature f , this allows automatic shifting and scaling
for the standardized layer inputs [37].

BN
(
xf
)
= γf x̂f +βf (4)

The backpropagation algorithm updates training based on the transformed inputs and adjusts
the new scale and shifting parameters to reduce the model’s error [36]. Using batch normalization
makes the network more stable with the adequate distribution of activation values throughout
the training. Initialization of weights prior to training deep networks is a challenging problem.
Achieving stability to training by batch normalization can handle the choice of weight initial-
ization in training deep networks [38]. Batch normalization can be used as data preparation to
standardize raw input data that have different scales [36]. Batch normalization has been widely
used for training CNN to improve the distribution of the original inputs by scaling and shifting
steps [37].

Transfer Learning The linear activation cannot learn complex mapping functions that can only
be used in the output layer to predict a quantity, i.e., regression problems. Nonlinear activation
functions, i.e., sigmoid and hyperbolic tangent, allow the nodes to learn more complex structures
in the data [39]. A common problem with sigmoid and hyperbolic tangent functions is that they
saturate. They saturate very high for a positive value, saturate to very low when for a negative
value, and are sensitive to input value when z is near 0 [40].

For deep layers in large networks, using sigmoid and tanh function fail to receive suitable
gradient information. The error is used to update the weights through the backpropagation,
decreasing with additional layers [41]. It results in the vanishing gradient problem that prevents
deep networks from learning effectively or knowing the suitable parameters to improve the cost
function [39].

To train deep networks with deep layers, a speci�ed activation function is needed. This
activation function must act as a linear function to be sensitive to the activation input sum. It acts
as a nonlinear function to allow the complex relationships within the data to be learned to avoid
easy saturation [39]. To permit deep network development, major algorithms have signi�cantly
improved their performance by replacing hidden sigmoid units with piecewise linear hidden units,
known as recti�ed linear units (ReLU) [41]. Because the ReLU is linear for half of the inputs and
nonlinear for the others, it is recognized as a piecewise linear function [40].

a. ReLU

A ReLu activation is applied to all hidden layers. Three fully connected layers followed Max
pooling layers. To achieve high training accuracy, the dropout layer and SoftMax classi�er are
connected at the last layers. After the dropout, the results are smoothed and fully connected
via SoftMax. The feature mapping includes convolutions, ReLU activation function, and batch
normalization. To retain a bounded feature map, the model is divided into separate blocks with
stacked layers to reduce the feature map’s dimension. Hence, the model eventually prepared for
100 epochs for the dataset. ReLU activation function is the most common activation function
used in networks with many layers. ReLU overcomes a lot of pf problems, i.e., vanishing gradient
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problem [41]. ReLU is presented by Eq. (5). The weights are updated by using the update rule
in Eq. (6).

ReLU (Z)=max(0, z) (5)

w∗ =w+ η
δE2

δw
(6)

where w∗ is new weight computed based on current value w, η is the learning rate and
δE2

δw
is the

partial derivative of the error with respect to w [40]. The derivation of the error term describes
the sensitivity of the error E2 to the weight. The derivative term can be evaluated using the chain
rule. A vanishing gradient problem is encountered if the results of partial derivative receive very
small updates. In the same way, the explosion problem is the opposite of the vanishing problem,
where the values of the weights are rapidly increasing [40]. ReLU activation function for input z
is set to zero if z has a value less than zero and equal to z if z has a value above or equal to
zero. ReLU is superior when developing CNN, allowing the model to learn faster and perform
better [39].

b. SoftMax

SoftMax enables the model to map certain classes to certain logits by maximizing the
target classes’ logit values. It can also generate a discrete probability distribution for class out-
comes [36]. This can lead to an effective training process and generating a useful machine-learning
model. Besides normalization properties, SoftMax can be very useful for optimizing the network
model [42]. SoftMax is a squashing function that results in vectors in the range (0, 1) and all
sum up to one. These vectors are regarded as scores that represent class probability in multiclass
classi�cation [36]. Let the output scores denoted as s. The SoftMax function depends on all
elements of the class, not for each class Si. The SoftMax function for an individual class Si can
be given by Eq. (7) [4].

f (s)i =
eSi∑c
j e

Sj
(7)

where Sj are scores inferred by the net for all classes. SoftMax ensures that the last layer of the
network probabilities’ outputs have nonnegative real-valued probabilities with overall summation
equals to one when no activation function is applied [36]. During iterative processes, the pre-
dictions are compared with the targets and summarized in a loss value. The improvement for
the backpropagation is computed according to the loss value [4]. Performance improvement is
subsequently performed using the optimizer and its idiosyncrasies. The iterative processes stop
when the model achieves signi�cant improvement in performance [36].

Optimization During iterative processes, the predictions are compared with the targets and
summarized in a loss value. The improvement for the backpropagation is computed according to
the loss value [36]. Performance improvement is subsequently performed using the optimizer and
its idiosyncrasies. The iterative processes stop when the model achieves signi�cant improvement
in performance [4]. For this purpose, optimization techniques like Cross-Entropy Loss and Adam
optimizer are used within the network architecture. For each trainable parameter, the optimizer
subsequently adapts the parameter concerning the loss and intermediate layers [32]. The goal
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of optimization problems is to �nd the optimal mapping function f (x) that minimize the loss
function L of the training samples of number N (Eq. (8)) [30].

min
θ

1
N

N∑
i=1

L(yi, f (xi, θ)) (8)

where θ is the parameter of the mapping function, xi is the feature vector of the ith samples
and yi is the corresponding label. Stochastic gradient descent (SGD) outperforms batch gradient
descent for large-scale data [31]. SGD uses only one random sample to update the gradient
during iterations instead of calculating its value. The cost of the SGD is independent of the
number of samples and can convergence faster [30]. SGD decreases the update time for large data
samples and removes the computation redundancy. The loss function is represented by Eq. (9) [33].
The loss function L for a randomly selected sample i in SGD is represented by Eq. (10) [30].
The update of the gradient in SGD using a random sample i in each iteration rather than all
samples [33].

L(θ)=
1
N

N∑
i=1

1
2

(
yi, fθ

(
xi
))2
=

1
N

N∑
i=1

cos t
(
θ ,
(
xi, yi

))
(9)

L∗(θ)=
1
2

(
yi, fθ

(
xi
))2
= cos t

(
θ ,
(
xi, yi

))
(10)

θ́ = θ + η
(
yi, fθ

(
xi
))
xi (11)

where η is the learning rate and θ́ the gradient update based on the previous update. The
straightforward enhancement to SGD is AdaGrad (Adaptive Gradient Method). AdaGrad adjusts
the learning rate automatically based on the previous iterations. The update of the gradient in
AdaGrad [33]:

θt+1 = θt+ η
gt
Vt

(12)

where θt is the value of parameter θ at iteration t, η is the learning rate, gt is the gradient
of parameter θ at iteration t and Vt is the accumulated historical gradient of parameter θ

at iteration t. AdaGrad’s improvement is to resolve the radically diminishing learning rates by
calculating the second-order cumulative momentum [33].

Vt =
√
βVt−1+ (1−β) (gt)2 (13)

where β represents the exponential decay parameter.

a. Adaptive Moment Estimation (Adam)

Adam introduces an additional progressive to the SGD technique. Adam is an adaptive learn-
ing rate for each parameter, which integrates the adaptive learning method with the momentum
methods [32]. Instead of storing the average of exponential decay of past squared gradients Vt,
Adam keeps the average of exponential decay of past gradients mt (Eq. (14)), similar to the
momentum method [33].

mt = β1mt−1+ (1−β1)gt (14)
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Vt =
√
β2Vt−1+ (1−β2) (gt)2 (15)

where β1 and β2 are exponential decay rates. Thus, the �nal form for the parameter θ is given
by Eq. (16) [33]. Most implementations use default values of 0.9, 0.999 and 10−8 for β1, β2
and ε, respectively. Adam achieves better in practice against comparable adaptive learning rate
algorithms [31].

θt+1 =mt− η

√
1−β2

1−β1

mt

Vt+ ε
(16)

b. Cross-Entropy Loss

The choice of the loss function is also regarded as a signi�cant part of the optimization.
The model’s loss function can be used to estimate the current model state repeatedly. The loss
function’s choice can affect weights in a suitable direction to reduce the next evaluation’s loss. The
cross-entropy loss function is typically used for multiclass classi�cation problems, where the target
values are assigned integer values. The assigned target integer values are regarded as categorical
within experiments [43]. Cross-entropy calculates a summarization score of the average difference
between the actual and predicted values for all classes. The cross-entropy score is minimized
towards the optimal value 0. Categorical cross-entropy L is de�ned by Eq. (17) [44].

L=
C∏
c=1

yc (x, wc)tc (17)

where yc is the output based input x and weight wc, c is the index running over the classes
number and tc is the number of occurrences of c. The cross-entropy loss function is evaluated
mathematically under the inference framework of maximum likelihood. Maximizing the training
set’s likelihood minimizes the cross-entropy loss as Eq. (18) [44].

L=−
C∑
c=1

yc · log ŷc (18)

where yc is the corresponding target value, ŷc the scalar value with index c in the model output
and log indicates log-likelihood. The choice of cross-entropy loss function instead of the sum-of-
squares for a classi�cation problem achieves better in training as well as improves generalization
performance [43].

3.3 Implementation
Experiments are performed using google Colaboratory (Colab) for accelerating deep learning

GPU-centric applications. The hardware con�guration for Colab accelerated runtime used to
execute the coded program is GPU Nvidia K80, 12 GB RAM, 2496 CUDA cores.

The dermoscopic images of the HAM10000 dataset were �rst resized to 32×32 and sampled
for scale augmentation. A combination of af�ne image transformations was then performed, i.e.,
rotation, shifting, scaling (zoom in/out), and �ipping to synthesize new data. The number of
image samples was increased to a total of 12519 image datasets by data argumentation. Batch
normalization was adopted after each convolution and before activation. SGD was also used with
a mini-batch size of 256. The learning rate ranges between 0.1 and 0.01 when the error plateaus.
The model was trained for 60×104 iterations per 100 epochs. The weight decay was set to 0.0001
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and the momentum to 0.9. The images of the dataset were split into 80% for training and 20%
for testing. In testing, for comparison, the same model was trained using another splitting ratio of
70% for training and 30% for testing. For best results, various improving techniques were adopted,
i.e., regularization, hyperparameter tuning, and optimization using adam optimizer and categorical
cross-entropy loss function.

3.4 Performance Evaluation
The evaluation results of the trained model are calculated using different performance metrics

that are de�ned by Eqs. (19)–(24).

Precision =
TP

TP+FP
(19)

Recall =
TP

TP+FN
(20)

DSC = 2×
Precision×Recall
Precision+Recall

(21)

Accuracy=
TP+TN

(TP+FP+TN+FN)
× 100 (22)

Sen.=
TP

TP+TN
(23)

Spec.=
TN

TN+FP
(24)

where TP denotes the number of positive instances that are labeled correctly. FP denotes the
number of positive instances that are mislabeled. TN denotes the number of negative instances
that are labeled correctly. FN denotes the number of negative instances that are mislabeled [45].
Precision and recall provide a true positive rate and positive predictive value, respectively. DSC
provides the harmonic mean between precision and recall in a graphical representation between
sensitivity and speci�city measures. ROC curves, along with the associated AUC values, are also
used in evaluation [9].

4 Experimental Results

The �rst run was done by splitting the HAM dataset, which contains 12519 dermoscopic
images of seven respective classes, into 80% for training and 20% for testing. The �rst run of
training is done using 9514 dermoscopic images and 3005 for testing the HAM dataset concerning
the seven classes: AKIEC, BKL, BCC, VASC, DF, MEL, and NV. The number of epochs for
which the model was trained was 100. To evaluate the performance of the proposed framework,
four performance metrics are computed for each class separately. Therefore, the average for these
values is computed. The confusion matrix of this experiment is shown in Fig. 3.

The four outcomes of the confusion matrix for the �rst run experiment are used to evaluate
the performance metrics results. The �ned-tuned model’s performance in terms of the three
performance metrics, i.e., precision, recall, and DSC, are outlined in Tab. 2.

The performance metrics average is 98%, 96%, 97%, and 96.5% for accuracy, precision,
recall, and DSC, respectively. Hence, the average for sensitivity and speci�city is 98% and 100%,
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respectively. The second run is performed using the same conditions and architecture with another
splitting ratio of 70% for training and 30% for testing using the hold-out method. The average
values of performance metrics are computed. These values are 96.00% for the average accuracy
of the seven classes, 90% for average accuracy of precision, 95.25% for recall, and 92.85% for
average DSC. The confusion matrix of this experiment is shown in Fig. 4.

Figure 3: The confusion matrix for the �rst run

Table 2: The �rst run performance evaluation

Precision (%) Recall (%) DSC (%)

Actinic keratosis 99 97 98
Basal cell carcinoma 98 98 98
Benign keratosis 95 98 96
Dermato�broma 96 96 96
Melanoma 100 99 99
Melanocytic nevi 96 96 96
Vascular lesions 90 95 92
Average 96 97 96
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Figure 4: The confusion matrix for the second run

The confusion matrix outcomes for the second run experiment are used to evaluate the results
in terms of performance metrics. The performance of the �ned-tuned model in terms of the three
performance metrics, i.e., precision, recall, and DSC are outlined in Tab. 3.

Table 3: The second run performance evaluation

Precision (%) Recall (%) DSC (%)

Actinic keratosis 99 94 96
Basal cell carcinoma 95 97 96
Benign keratosis 97 95 96
Dermato�broma 97 98 93
Melanoma 99 100 99
Melanocytic nevi 98 97 97
Vascular lesions 98 98 98
Average 98 97 96

The performance metrics averages are 98%, 98%, 97%, and 96% for accuracy, precision,
recall, and DSC, respectively. Hence, the averages for sensitivity and speci�city are 98% and
100%, respectively. ROC curve is constructed to visualize the performance for the �ne-tuned deep
network in the classi�cation of seven classes of skin cancer images. ROC curve for the �ne-tuned
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deep and the seven respective classes is created by plotting the true positive rate (TPR) against
false positive rate (FPR). Fig. 5a shows the relationship between sensitivity and speci�city for the
multiclass model. Moreover, for balanced results, macro and micro averaged ROC AUC scores are
also calculated.

Figure 5: The area under the ROC curve for multiclass skin cancer (a) The proposed system,
(b) InceptionV3, (c) VGG16, and (d) DenseNet

Other deep models of pre-trained networks on ImageNet are utilized for comparison, i.e.,
Inception v3 and VGG-16. Inception v3 and VGG-16 networks were re-trained using HAM
dataset along with its seven respective classes. The Inception v3 layers’ architecture replaces top
layers with one average-pooling layer that averages out the channel values across the 2D feature
map. The inception module includes two fully connected and the SoftMax layer at the last layer to
categorize the results within the seven respective classes. The inception module contains �lters of
3× 3 kernel size and various combinations of convolutions. Smart factorization for convolutions
using 3× 3 convolutions, 5× 5 convolutions, then 2× 2 convolutions was also applied to reduce
computational complexity. The input images were resized to the size (299, 299) compatible with
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the model. Hyper-parameters are �ne-tuned and set to optimal values. The model Learning rate
was set to 0.0001, and SGD was set to decay. Model optimization was performed using the Adam
optimizer with momentum 0.9.

The VGG-16 network consists of 16 convolution layers with a small receptive �eld of 3× 3.
It has �ve max-pooling layers of size 2 × 2. Three fully connected layers follow Max pooling
layers at the bottom layers. The input images were resized to the size (224, 224). Fine-tuning
for hyperparameters is performed by setting the learning rate to 0.0007 and SGD to a decay.
Optimization was also performed to the model using the Adam optimizer with momentum 0.9.
The average results of two runs are compared against Inception v3 and VGG-16 deep models.
Results comparison in terms of averaged Precision, DSC, and ROC AUC for each deep network
are summarized in Tab. 4.

Table 4: The deep network models performance comparison

Deep network model Precision (%) DSC (%) ROC AUC (%)

InceptionV3 83.53 83.22 98.2
VGG16 84.75 85.15 98.3
Proposed deep network 96.09 87.55 99

5 Discussion and Conclusion

Tabs. 3 and 4 show the proposed deep network model’s performance among two different runs
for testing the proposed model using two hold-out methods. The proposed model’s performance
is presented for seven respective classes, which shows promising results in recognizing different
skin cancer lesions. The two runs’ average results are listed in Tab. 5, which presents superior
results against Inception v3 and VGG-16 deep models. The proposed deep model achieved a
weighted average value of precision of 88.77%, DSC average of 87.55%, and ROC AUC average
of 99%. In comparison, Inception v3 and VGG-16 deep models achieved 83.53% and 84.75% for
precision, respectively. For DSC, they achieved 83.22% and 85.15%, respectively. For ROC AUC,
they achieved 98.2% and 98.32, respectively.

Table 5: ROC AUC evaluation for deep comparative networks on each diagnostic class

Deep networks Mel (%) NV (%) BCC (%) AKIEC (%) BKL (%) DF (%) VASC (%) Macro (%) Micro (%)

InceptionV3 93.4 97 98.6 98.4 97.1 99 100 97.8 98.6
VGG16 94.4 97.3 99.1 97.6 95.8 99.8 100 98 98.6
Proposed deep network 100 98 100 100 100 99 100 99 100

The ROC AUC values for each class shown in Tab. 5 are as follows: For melanoma and
AKIEC classes, the proposed deep network scored the best with 99% and 100%, respectively. Also,
for typical nevi and benign keratosis categories, they achieved higher AUC with 98% and 100%
values, respectively. For basal cell carcinoma, VGG16 achieved higher AUC with the values of
99.1% than the proposed deep network and InceptionV3 values of 99% and 98.6%, respectively.
For dermato�broma cases, VGG16 achieved higher AUC with the values of 99.8% than the
proposed deep network and InceptionV3 values of 99% and 99%, respectively. For vascular lesions
categories, the proposed deep network, VGG16, and InceptionV3 entirely achieved 100%. ROC
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curve for the �ne-tuned deep network in the classi�cation of seven classes of skin cancer images
in Fig. 5a shows superior performance compared to the ROC AUC for the comparative deep
network models in other sub�gures.

This study investigated the capability of deep learning in the multi-classi�cation of 7 pri-
mary skin lesions. Performance evaluation using the pre-trained ResNet50 network on HAM
dermoscopic images (12519 in total) outperforms other robust networks. A variety of �ne-tuning
techniques have been investigated for enhancing diagnosis performance, such as regularization,
batch normalization, and hyperparameter optimization. Adam optimizer and cross-entropy loss
function are also utilized with optimal parameters. The developed deep model has compared
two powerful models, i.e., InceptionV3 and VGG16, for evaluation. The proposed �ne-tuned
deep learning model shows that �ne-tuning networks can achieve better diagnostic accuracy than
other powerful techniques. Although the utilized dataset is highly unbalanced, the model obtained
promising results. These models can be easily implemented to assist dermatologists. A more
diverse skin lesion categories dataset can be further investigated for future work. Also, the use of
metadata for the images can be useful to enhance the diagnosis accuracy.
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