
echT PressScienceComputers, Materials & Continua
DOI:10.32604/cmc.2021.016123

Article

A Fault-Handling Method for the Hamiltonian Cycle in the
Hypercube Topology

Adnan A. Hnaif*, Abdelfatah A. Tamimi, Ayman M. Abdalla and Iqbal Jebril

Faculty of Science and Information Technology, Al-Zaytoonah University of Jordan, Amman, 11733, Jordan
*Corresponding Author: Adnan A. Hnaif. Email: adnan_hnaif@zuj.edu.jo

Received: 24 December 2020; Accepted: 26 January 2021

Abstract: Many routing protocols, such as distance vector and link-state pro-
tocols are used for �nding the best paths in a network. To �nd the path
between the source and destination nodes where every node is visited once
with no repeats, Hamiltonian and Hypercube routing protocols are often used.
Nonetheless, these algorithms are not designed to solve the problem of a
node failure, where one or more nodes become faulty. This paper proposes
an ef�cient modi�ed Fault-free Hamiltonian Cycle based on the Hypercube
Topology (FHCHT) to perform a connection between nodes when one or
more nodes become faulty. FHCHT can be applied in a different environment
to transmit data with a high-reliability connection by �nding an alterna-
tive path between the source and destination nodes when some nodes fail.
Moreover, a proposed Hamiltonian Near Cycle (HNC) scheme has been devel-
oped and implemented. HNC implementation results indicated that FHCHT
produces alternative cycles relatively similar to a Hamiltonian Cycle for the
Hypercube, complete, and random graphs. The implementation of the pro-
posed algorithm in a Hypercube achieved a 31% and 76% reduction in cost
compared to the complete and random graphs, respectively.

Keywords: Hamiltonian cycle; hypercube; fault tolerance; routing protocols;
WSN; IoT

1 Introduction

State-of-the-art technology, especially the Internet of Things (IoT), has increased the demand
for Wireless Sensor Networks (WSNs). A WSN is a network of nodes that communicate with each
other, sense the environment, and transmit the collected data via wireless links. A sensor network
employs small, lightweight, battery-powered devices, known as sensor nodes [1–4]. In WSNs, each
sensor node is equipped with a wireless communication module. The goal of sensor networks
is to monitor a speci�c type of data within a particular area. For example, a sensor network
can monitor the humidity, the temperature of the surrounding area, �re hazard, traf�c status, or
wildlife habitat [5–8]. Several routing algorithms, such as distance vector and link-state routing
protocols [9,10], may be used to connect the nodes of the network, or [11] to connect the nodes
of the ad hoc network.

This work is licensed under a Creative Commons Attribution 4.0 International License,
which permits unrestricted use, distribution, and reproduction in any medium, provided
the original work is properly cited.

http://dx.doi.org/10.32604/cmc.2021.016123

506 CMC, 2021, vol.68, no.1

Although WSNs can successfully distribute data collection for IoT applications, they have
limited reliability because one or more nodes may become faulty [12] or need to be secured [13].
A sensor network may fail to monitor the surrounding area adequately due to the failure of some
modules (such as the presence of factory defects in the sensor units), environmental factors, or
battery power depletion. These failures will inevitably lead to a breakdown in the data transmis-
sion process between the source and the destination nodes and compromise the quality of service
of the entire network [14].

Furthermore, the nature of the region plays an essential role in the distribution of sensors
and may increase repair challenges. For example, a geographic territory with steep terrain is not
easily accessible for repairing faulty sensors. Therefore, a failure could lead to the partitioning of
the network into disjoint blocks, and to changing the routing path.

The problem of a complete halt in any communication network occurs when no message can
be delivered towards its destination due to faulty nodes. Consequently, no communication occurs
through the sensor nodes until the network administrator takes exceptional action to handle the
problem, which usually requires a long time. Hamiltonian and Hypercube Routing Protocols can
be used to solve the faulty node problem and therefore have been used in many applications to
avoid deadlock issues [15].

Hamiltonian routing protocols employ either a Hamiltonian path or a Hamiltonian cycle. The
Hamiltonian path requires visiting each node of the graph exactly once during the routing process.
When the end node is the same as the start node, it becomes a Hamiltonian cycle [6].

A Hypercube is either a graphical representation of some nodes and edges or is the set of all
n-bit strings denoted by {0, 1}n in a single unit in any dimension n, which is called n-cube [16].

A complete graph, denoted by Kn, is a graph where n is the number of nodes with an edge
that links each pair of separate nodes. The graph is assumed to be simple; i.e., it contains no
loops or multiple edges.

A connected graph G is a graph where each pair of nodes is connected by a simple path.

This paper will present a modi�ed Hamiltonian cycle protocol implemented on a Hypercube
graph to �nd an alternative cycle in case of the occurrence of one or more faulty nodes. Addi-
tionally, a new simulator, called HNC, has been designed and implemented to verify the ef�cacy
of this protocol.

The rest of this paper is organized as follows. Section 2 provides graph-theory preliminaries
on the Hamiltonian path and cycle and Hypercube graphs. Section 3 reviews related works.
In Section 4, the theorems lying behind the proposed algorithm are proven and the general
idea of the algorithm is introduced and explained brie�y. The algorithm and pseudo code of
the algorithm’s components are given in Section 5, where the simulation results are shown in
Section 6. Finally, Section 7 concludes the paper followed by the list of references.

2 Preliminaries

This section reviews and discusses some basic concepts and de�nitions of the Hamiltonian
and Hypercube topologies.

De�nition 1 (Hamiltonian Path): In a graph G, a Hamiltonian Path is a path that contains
every node of G [17].

CMC, 2021, vol.68, no.1 507

De�nition 2 (Hamiltonian Cycle): In a graph G, a cycle cł of G, which contains every node
of G, is said to be a Hamiltonian cycle. In this case, G is called a Hamiltonian graph [18].

De�nition 3 (Hypercube): A Hypercube, Q_n, is a graph whose node set V consists of the
n-dimensional Boolean vectors, i.e., vectors with binary coordinates 0 or 1, where two nodes
are adjacent whenever they differ in exactly one coordinate [6]. Fig. 1 shows an example of a
4-dimensional Hypercube.

Figure 1: A 4-dimensional hypercube

Luca Trevisan [19] proved the following theorem.

Theorem 1: For every n≥ 2, the n-dimensional Hypercube has a Hamiltonian cycle.

Consequently, we propose solving the faulty node problem in the Hamiltonian cycle routing
protocol for the Hypercube. Hypercube Qn with 2n nodes is an undirected graph where each node
is labeled with a binary number that differs from each of its adjacent nodes in exactly one bit.
The parity of the node is determined based on the number of 1’s in its binary-number label; i.e.,
the parity is 0 if the number of ones is even and otherwise it is 1.

The n-Hypercube graph also called the n-cube graph and commonly denoted as Qn or 2n,
is the graph whose vertices are the 2k nodes ε1, . . . , εn where εi = 0 or 1 and two vertices are
adjacent if the nodes differ in exactly one coordinate.

In addition, Hypercube Qn is not Hamiltonian if all edges are going in one direction and of
the same parity of faulty nodes. Consequently, [20] showed that the Hypercube is Hamiltonian
if n ≥ 4. Accordingly, there are two edges of different parity if Qn has n ≥ 4 and is free of
faulty nodes.

Hsieh et al. [21] presented two theorems. The �rst theorem veri�ed that there exists a fault-
free Hamiltonian path in an n-dimensional Mobius cube (denoted by MQn) with up to n − 1
faulty nodes for n≥ 4. The second theorem showed that a fault-free cycle with a length between
4 and 2n faulty nodes can be tested in a faulty Mobius cube MQn with up to n− 2 faulty nodes
for n≥ 2.

In order to �nd the most extended cycle in an n-dimensional Hypercube graph G, [22]
proposed a twisted Hypercube-like network (THLN) with up to 2n − 9 faulty nodes (F). They
showed that (G−F) contains a Hamiltonian cycle when (δ (G−F) > 2) and (G−F) include a
near Hamiltonian cycle given that (δ (G−F)≤ 1). Fig. 2 shows a 4-dimensional Hypercube with
Hamiltonian cycle.

508 CMC, 2021, vol.68, no.1

Figure 2: A 4-dimensional hypercube with Hamiltonian cycle

3 Related Work

This section discusses the traditional Hamiltonian cycle, Hamiltonian path, and Hypercube
used to connect nodes. Ammerlaan et al. [18], proved that a Hamiltonian cycle exists between the
kth and (n–k)th level of the n-dimensional Hypercube by using the Gray code counting system.
To obtain the Gray code counting system, the exclusive-OR operation is computed between the
consecutive bits of the corresponding binary number. Other researchers, like [20], implemented an
algorithm to detect any Hamiltonian cycle in the cube. They considered an edge u a neighbor
of an edge v if u and v are neighbors in Qn and the node (n, v)/ ∈ F is healthy; otherwise, no
Hamiltonian cycle is possible. Furthermore, [23] presented a theorem to ensure the existence of a
Hamiltonian path in a graph. They assumed G= (V, E) to be a connected graph. For non-adjacent
edges, there should be e (u) ande (v)= δ (c, v)≥ n+ 1 and then G will have a Hamiltonian path.

Xiaofan et al. [24] described the properties of the Hypercube, where a single volumetric unit
in any dimension is a Hypercube. All edges that meet at a node are perpendicular to each other.
A unique digit of length ‘n’ could label each node if the Hypercube is positioned in the origin of
the coordinate system. The number of nodes resulting in a unique binary word is equivalent to
the possible binary strings of length ‘n’ and can be calculated as the number of nodes= 2n. Like-
wise, [24] designed a layered structure of a Hypercube graph and noted that each corresponding
string (node) can be grouped based on the number of ones. Any edge connects two or more nodes

if the difference between the nodes is only one bit.
(

n
i

)
can be used to calculate the ith number

of nodes, and between node layers i andi+ 1 there exists an edge layer containing
(

n
i+ 1

)
(n− i),

or equivalently,
(

n
i

)
(i+ 1) edges.

Guo et al. [25] devised a new condition of diagnosability to enhance the diagnosability issue.
The conditional diagnosability implies that not all neighbors of any edge fail at the same time.
Similarly, they proposed that any system is called conditionally t-diagnosable when each pair of
the set of the faulty nodes (F0, F1) is distinguishable for |F| ≤ t and proved that tc (EH (s, t))=
3s− 2 for t≥ s> 2.

CMC, 2021, vol.68, no.1 509

Zhang et al. [22] proposed an architecture called THLN for several multiprocessor systems
using Hamiltonian connectivity, based on twisted Hypercube-like networks to improve the com-
munication cost between processors. In addition, they proved that the graph G is an n-dimensional
THLN for n≥ 5 and F is a subset of V(Gn)∪E(Gn) with |F|. Moreover, they showed that for
the node pair (u, v) in the graph Gn−F, there exists an (n− 2) fault-tolerant Hamiltonian path,
except for (u, v) because it is a weak node-pair in Gn−F.

Liu et al. [26] proved two theorems for the n-dimensional twisted Hypercube Hn. The �rst
theorem proved that Hn has a fault-free Hamiltonian cycle if the number of the faulty nodes
>n−2. The second theorem proved that Hn has a faulty open Hamiltonian path if the number of
faulty nodes > n−3 for any pair of non-faulty nodes. Nikolaev et al. [27] introduced an algorithm
to �nd a Hamiltonian decomposition of the 4-regular multigraph called the variable neighborhood
search (VNS) algorithm. The main objective of VNS is to solve the traveling salesperson problem.
For nonadjacent nodes, given two Hamiltonian cycles: x and y, if the graph G(x∪ y) contains a
Hamiltonian decomposition into node-disconnect cycles z and w different from x and y, then the
corresponding nodes xu and yu are not adjacent.

Chen [28] considered the problem of existing faulty nodes in the Hamiltonian cycle that
contains a direct link connection between nodes and avoids the faulty nodes in an n-cube Qn.
The author showed that all edges of the matching node M lie on a fault-node-free Hamiltonian
cycle in Qn if Qn contains 2n−4−|M| faulty edges and the maximum allowed number of faulty
edges is sharp when |M| = 1 or |M| = 2.

4 Modi�ed Hamiltonian Cycle Based On Hypercube Topology

Theorem 2: Let G be a Hypercube graph with a degree (n ≥ 2). If A, B, and C are nodes
in G, then there exists at least one Hamiltonian path from A to C through B* where B∗ ∈G and
B∗ 6=B.

Let G (V, E, w) be a Hypercube graph, where V is the union of all ith node
{
vi,j
}

, j =

1, 2, 3, . . . ,
(n

i

)
. The set of nodes in the ith layer can be assigned as shown by Eq. (1)

vi =
{
vi,j
}(n

i)
j=1 (1)

Let E⊆V×V be the set of edges and ‘w’ be the function that assigns a non-negative weight w
to every edge. Then, the number of edges from any vi,j node will be w

(
vi,j, v∗

)
where v∗ can be

calculated by Eq. (2)

v∗ =

{
v1,ik

}n
k=1 , if vi,j = v0,1,{

vi−1,jk

}i
k=1 ∪

{
vi+1,jk

}n−i
k=1 if vi,j 6= v0,1 or vi,j 6= vn,1,{

vn−1,jk

}n
k=1 , if vi,j = vn,1.

(2)

In general, the number of all edges in the ith node layer of a Hypercube contains an(n
i

)
(n− 1) edge layer.

510 CMC, 2021, vol.68, no.1

Proof: Let A= vi,j ∈ v then:

Case 1: See Eq. (3)

A= v0,1 ∈ v (3)

and since (n≥ 2) then there is at least (See Eq. (4))

B∗ ∈
{
v0,j
}

nj= 1\
{
v0,1

}
(4)

Such that B∗ 6=B and w (A, B∗) exist.

Case 2: See Eq. (5)

A= vn,1 ∈ v (5)

and since (n≥ 2) then there is at least (See Eq. (6))

B∗ ∈
{
vn,j
}

nj= 1\
{
vn,1

}
(6)

Such that B∗ 6=B and w (A, B∗) exist.

Case 3: See Eq. (7)

A 6= v0,1 and A 6= vn,1 (7)

and since (n≥ 2) then there is at least (See Eq. (8))

B∗ ∈
{
vi−1,jk

}
ik= 1∪

{
vi+1,jk

}
n− 1k= 1 6=φ (8)

Such that B∗ 6=B and w (A, B∗) exist.

Consequently, there exists at least one Hamiltonian path from node A to node C through
node B where w (A, B∗) and w (B∗, C) exist.

To introduce our own proposed algorithm (FHCHT) based on the above theorems, Fig. 3
depicts the �owchart of the proposed modi�ed Hamiltonian Cycle based on Hypercube Topology.

To reduce the cost of transmission and avoid existing faulty nodes, the Hamiltonian cycle
is used �rst to label all nodes and to process the communication between nodes. This phase is
called the initialization phase. As mentioned, the Hamiltonian cycle algorithm is used where the
source address is the same as the destination address (start node = destination node). At this
phase, all nodes are labeled either in binary or in decimal and the transmission phase is applied,
which has two scenarios. The �rst scenario is called the standard scenario where the packet is
transmitted smoothly from the source node to the destination node using the Hamiltonian cycle
without any obstacles. The second scenario is when one or more nodes do not work (faulty node).
Here, FHCHT is applied to bypass these nodes and go to the next node through an intermediate
node, and to �nd other possible paths.

CMC, 2021, vol.68, no.1 511

Figure 3: A �owchart of the proposed FHCHT algorithm

5 Algorithms of the System

In this section, we introduce the two proposed algorithms: Extracting Hamiltonian Cycle and
Applying FHCHT.

5.1 Extracting Hamiltonian Cycle

Algorithm 1: Create Hypercube with n degree
Step 1. Create a Hypercube with degree n, G(V, E,w).

This step will create a Hypercube with V= 2n nodes, where n is the Hypercube degree,
E–Hypercube edges, and w–edges weight.
Fig. 1 shows a Hypercube graph with n= 4, which generates 16 nodes (0, . . .15).
We can see that node 0 is connected with the nodes (1, 2, 4, 8) and node 1 is connected
with the nodes (0, 3, 5, 9), and so on, as shown in Fig. 1

(Continued.)

512 CMC, 2021, vol.68, no.1

Matlab function to create hypercube graph is:
G= hypercube (n)

Step 2. Find an initial Hamiltonian cycle
In order to create a Hamiltonian cycle, choose a starting node, then apply the shortest
path algorithm, which will traverse all nodes and end up with the same starting node.
For programming purposes, we replace the Hypercube node labels by node label +1 in
the Hamiltonian cycle as shown in Fig. 4

Matlab function to create hameltonian cycle is:
hamPath= �ndHam(Graph,Source,Source, totalNodes)

Figure 4: Initial Hamiltonian cycle

The code of the algorithm is as follows:

Main Algorithm to �nd a Hamiltonian or Near Hamiltonian Cycles (The code of Extracting
Hamiltonian Cycle)
Input: graph G(V, E,w)
Output: Hamiltonian cycle
Prompt= read n(number of nodes= 2n)
Determine the source node and destination node
M=Hypercube (n)
Graph= �oating_point (M)

Find the Hamiltonian cycle hamPath=Hamiltonian (Graph, source, destination)
Input number of inactive nodes
generate random numbers of the obove inactive nodes
disconnect inactive nodes from graph

CMC, 2021, vol.68, no.1 513

Determine the new path newPathf =Hamiltonian (Graph1, source, destination)
If (newPath exists) then create near hameltonian cycle

Newpath {f} = re− route(n, inactive nodes {f}, hamPath)
Else

complete Hameltonian cycle
End

5.2 Applying FHCHT

Algorithm 2: Apply FHCHT
Step 1. Do for the number of inactive nodes:
Step 2. Select a random inactive node (i, j) from Graph G (V, E).
Step 3. Apply Exclusive-OR (XOR) operations between the current node (i, j) and each of the

previous and subsequent nodes of (i, j).
Step 4. Connect the node before and the node after to create a near-Hamiltonian path using

Theorem 2.
Step 5. Repeat until the destination is reached.

The code for applying the algorithm is as follows:

The Code for Applying FHCHT
Function newPath= re_route (n, off_nodes, hamPath)

C= extract the elements of those indexes
Indexes= �nd (C)
newpath= newPath
for i= 1 : length(indexes)
for j= 1:n
node_before(i, j)= bitxor (newpath (indexes (i)− 1), 2∧ (j− 1))
node_after(i, j)= bitxor(newpath (indexes(i)+ 1), 2∧ (j− 1))
f = intersect(node_before(i, node_after(i, :))
f = f(f∼= newpath (indexes (i)))
new_node (i)= f (1)
newpath (indexes (i))= new_node (i)

End

Figs. 5–7 show a near-Hamiltonian cycle with 1, 2 and 3 faulty nodes respectively.

514 CMC, 2021, vol.68, no.1

Figure 5: A near-Hamiltonian cycle with one inactive node

Figure 6: A near-Hamiltonian cycle with two inactive nodes

Figure 7: A near-Hamiltonian cycle with three inactive nodes

CMC, 2021, vol.68, no.1 515

6 Experimental Results and Analysis

In this section, we introduce the implementation of the proposed FHCHT algorithm and
show the obtained simulation results. The simulation was run with Matlab 2019 on a lap-
top computer with Intel Core i5 Duo CPU 2900 4M, 4GB DDR3 RAM, and Windows 10
operating system.

As an example, let a Hypercube degree (n = 4) and therefore the number of nodes will be
24
= 16, as illustrated in Fig. 1. The �rst step is the initialization of the Hypercube topology and

then the extraction of the Hamiltonian cycle is applied. See Figs. 2 and 4, respectively, where a
packet runs through the highlighted path (depicted in red).

The packet format is shown in Tab. 1. The input data of Tab. 1 are listed below.

P_ID: packet ID, N_ID: Node ID, N_Node: Next Node, W_msg: Wakeup Message, Ack.:
Acknowledgment, F_Nodes: Faulty Node(s) and A_Nodes: Alternative Node(s).

Table 1: Packet format

P_ID N_ID N_Node W_msg Ack. F_Node(s) A_Node(s)

To �nd a near-Hamiltonian path after a faulty node(s) exists, apply Algorithm 2. If a full
Hamiltonian cycle exists, then it exits and outputs the Hamiltonian cycle with no faulty nodes.
Otherwise, the output is a near-Hamiltonian cycle with one or more loops.

To increase the ef�ciency of the system, the source node will use Tab. 2 for reference to avoid
the faulty nodes in the subsequent routes when no updates are available.

Table 2: Source reference information

Packet ID Faulty nodes Alternative nodes

IDx Fn1, Fn2, . . . , Fnx An1, An2, . . . , Anx

A subcase example is shown in Fig. 4. In this example, suppose that node 4 and node 5
become faulty. Consequently, node 2 will send a wakeup message to node 4 and wait to receive
an acknowledgment. If the acknowledgment is received, then go to node 4; otherwise, node 4 will
be added to the faulty node �eld, and FHCHT will be applied to �nd an alternative path from
node 2 to node 3.

Additionally, we implemented a complete connected and random connected graphs with node
degree greater than or equals 2, in order to compare the ef�ciency and total cost, when we obtain
a Hamiltonian or near-Hamiltonian cycle. Fig. 8 depicts the complete graph with a Hamiltonian
cycle. graph with two faulty nodes (node 4 and 5).

Tab. 3 compares the results between a Hypercube, complete, and random graphs based on
the number of nodes, the number of faulty nodes, and the name of faulty nodes, where all faulty
nodes are selected randomly. The simulator was run on 8 and 16 nodes. For the simulation with

516 CMC, 2021, vol.68, no.1

16 nodes, the execution was repeated with three different numbers of faulty nodes–nodes 3, 4,
and 5 for all graphs.

Figure 8: The complete graph with a Hamiltonian cycle

Table 3: A comparison between the results of the Hypercube, completed, and random graphs

Graph Number of
nodes

Number of
faulty nodes

Faulty
nodes

Near Hamiltonian
path

Time
(ms)

Total
cost

Hypercube 8 2 3_4 0_1_0_2_6_7_5_1_0 0.0063 34
16 3 4_6_7 0_1_3_2_0_1_5_13_15_11_9

_13_12_14_10_8_0
0.0006 86

16 4 5_7_9_12 0_1_3_2_6_4_6_14_15_11_15
_13_15_14_10_8_0

0.0031 96

16 5 2_5_7_9_12 0_1_3_7_6_4_6_14_15_11_15
_13_15_14_10_8_0

0.0031 92

Complete 8 2 3_4 0_1_2_0_1_5_6_7_0 0.0015 60
16 3 4_6_7 0_1_3_2_6_4_6_14_15_11_15

_13_12_14_10_8_0
0.0006 115

16 4 5_7_9_12 0_1_3_2_6_4_6_14_15_11_15
_13_15_14_10_8_0

0.0008 98

16 5 2_5_7_9_12 0_1_3_7_6_4_6_14_15_11_15
_13_15_14_10_8_0

0.0009 101

Random
Number of
edges

8 2 3_4 No cycle 0.003 80
16 3 4_6_7 No cycle 0.008 135
16 4 5_7_9_12 No cycle 0.008 140
16 5 2_5_7_9_12 No cycle 0.012 148

By applying Algorithm 2 twenty times with a �xed number of nodes with randomly generated
faulty nodes, we got the results shown in Tab. 4, where the number of graph edges in the Hyper-
cube is equal to n ∗ 2n− 1 and the number of edges in the complete graph equals (2n(2n− 1)/2),
where n is the Hypercube degree.

The results show that the time required for the complete graph was better than the time of
the Hypercube, while the cost for the complete graph, measured by the number of edges, is greater
than in the Hypercube. For instance, for a Hypercube with 16 nodes, the number of edges is 32,

CMC, 2021, vol.68, no.1 517

while in the complete graph for the same number of nodes the number of edges is 120, which
was a signi�cant difference between them.

Table 4: A comparison between the results of hypercube, completed, and random graphs based
on the number of the randomly generated faulty nodes

Graph Number
of nodes

Number of
faulty nodes

Number of
graph edges

Number
of runs

Number of
existing cycle

Hypercube 8 2 12 20 20
16 3 32 20 20
16 4 32 20 20
16 5 32 20 20

Complete 8 2 28 20 20
16 3 120 20 20
16 4 120 20 20
16 5 120 20 20

Random
number
of edges

8 2 14 20 2
16 3 70 20 5
16 4 70 20 1
16 5 70 20 1

At the same time, when we use a graph with a random number of edges to reduce cost, we
cannot guarantee an existing Hamiltonian or near-Hamiltonian cycle. Thus, it is not preferable to
choose a random number of edges.

7 Conclusion

In this study, a Modi�ed Fault-free Hamiltonian cycle based on the Hypercube Topology
(FHCHT) and a Hamiltonian Near Cycle (HNC) simulator were developed to obtain one or more
alternative paths between the source and the destination nodes in WSNs. FHCHT aims to solve a
well-known faulty node problem. HNC was applied as follows. First, Hypercube connectivity was
used to establish a connection path between the source and destination through a set of active
nodes. Second, a random number was chosen to represent the number of faulty nodes. Third,
HNC was applied to create and �nd the shortest path.

The results obtained from HNC con�rmed that the proposed algorithm �nds multiple alter-
native paths between the source and destination nodes with the existence of many faulty nodes
with an approximate 31% reduction of cost over the complete graph and a 76% reduction over
the random graph. However, repeated runs for a Hypercube, complete and random graphs show
that the Hypercube edges are fewer than the complete graph edges, which reduces the connection
cost. Meanwhile, the random connected graph does not guarantee to obtain a Hamiltonian or
near Hamiltonian cycle when a number of faulty nodes exist. The recti�ed communication process
should enhance the overall ef�cacy of WSN applications.

Acknowledgement: The authors would like to thank Al-Zaytoonah University of Jordan for
supporting this research.

518 CMC, 2021, vol.68, no.1

Funding Statement: The author(s) received no speci�c funding for this study.

Con�icts of Interest: The authors declare that they have no con�icts of interest to report regarding
the present study.

References
[1] O. I. Khalaf, G. M. Abdulsahib and B. M. Sabbar, “Optimization of wireless sensor network

coverage using the bee algorithm,” Journal of Information Science and Engineering, vol. 36, no. 2,
pp. 377–386, 2020.

[2] S. K. Prasad, J. Rachna, O. I. Khalaf and D. N. Le, “Map matching algorithm: Real time location
tracking for smart security application,” Telecommunications and Radio Engineering, vol. 79, no. 13,
pp. 1189–1203, 2020.

[3] A. D. Salman, O. I. Khalaf and G. M. Abdulsahib, “An adaptive intelligent alarm system for wireless
sensor network,” Indonesian Journal of Electrical Engineering and Computer Science, vol. 15, no. 1,
pp. 142–147, 2019.

[4] O. I. Khalaf and G. M. Abdulsahib, “Frequency estimation by the method of minimum mean
squared error and P-value distributed in the wireless sensor network,” Journal of Information Science
and Engineering, vol. 35, no. 5, pp. 1099–1112, 2019.

[5] A. A. A. Alkhatib, M. Alia and A. Hnaif, “Smart system for forest �re using sensor network,”
International Journal of Security and Its Applications, vol. 11, no. 7, pp. 1–16, 2017.

[6] Y. Kim, K. Bok, I. Son, J. Park, B. Leea et al., “Positioning sensor nodes and smart devices for
multimedia data transmission in wireless sensor and mobile P2P networks,” Multimedia Tools and
Applications, vol. 76, no. 16, pp. 17193–17211, 2017.

[7] N. Imran, S. Riaz, A. Shaheen, M. Sharif and M. Raza, “Comparative analysis of link-state and
distance vector routing protocols for mobile ad hoc networks,” Science International (Lahore), vol. 26,
no. 2, pp. 669–674, 2014.

[8] O. I. Khalaf and B. M. Sabbar, “An overview on wireless sensor networks and �nding optimal location
of nodes,” Periodicals of Engineering and Natural Sciences, vol. 7, no. 3, pp. 1096–1101, 2019.

[9] O. I. Khalaf and G. M. Abdulsahib, “Energy ef�cient routing and reliable data transmission protocol
in WSN,” International Journal of Advances in Soft Computing and Its Application, vol. 12, no. 3, pp. 45–
53, 2020.

[10] A. F. Subahi, Y. Alotaibi, O. I. Khalaf and F. Ajesh, “Packet drop battling mechanism for energy aware
detection in wireless networks,” Computers, Materials & Continua, vol. 66, no. 2, pp. 2077–2086, 2020.

[11] N. Sulaiman, G. Abdulsahib, O. Khalaf and M. N. Mohammed, “Effect of using different propagations
of OLSR and DSDV routing protocols,” in Proc. of the IEEE Int. Conf. on Intelligent Systems Structuring
and Simulation, Langkawi, Malaysia, pp. 540–545, 2014.

[12] M. T. Lazarescu, Wireless Sensor Networks for the Internet of Things: Barriers and Synergies, In:
G. Keramidas, N. Voros, M. Hübner (Eds.) Turin, Italy: Springer, Cham, 2017. [Online]. Available:
https://link.springer.com/chapter/10.1007/978-3-319-42304-3_9.

[13] O. I. Khalaf, G. M. Abdulsahib, H. D. Kasmaei and K. A. Ogudo, “A new algorithm on application of
blockchain technology in live stream video transmissions and telecommunications,” International Journal
of e-Collaboration, vol. 16, no. 1, pp. 16–32, 2020.

[14] O. I. Khalaf, G. M. Abdulsahib and M. Sadik, “A modi�ed algorithm for improving lifetime WSN,”
Journal of Engineering and Applied Sciences, vol. 13, no. 21, pp. 9277–9282, 2018.

[15] A. A. Hnaif, A. el-Obaid and N. Al-ramahi, “Traf�c light management system based on Hamiltonian
routing technique,” Journal of Theoretical and Applied Information Technology, vol. 95, no. 1, pp. 2792–
2802, 2017.

[16] H. Park and J. W. Lee, “Task assignment and migration in wireless sensor networks via task
decomposition,” Information Technology and Control, vol. 41, no. 4, pp. 340–348, 2012.

https://link.springer.com/chapter/10.1007/978-3-319-42304-3_9

CMC, 2021, vol.68, no.1 519

[17] A. Mahasinghe, R. Hua, M. J. Dinneen and R. Goyal, “Solving the hamiltonian cycle problem using
a quantum computer,” in Proc. ACSW, Association for Computing Machinery, New York, NY, United
States, pp. 1–9, 2019.

[18] J. Ammerlaan and T. S. Vassilev, “Properties of the binary hypercube and middle level graphs,” Applied
Mathematics, vol. 3, no. 1, pp. 20–26, 2013.

[19] L. Trevisan, “Discrete mathematics for CS. lecture 14,” 2007. [Online]. Available: http://docplayer.net/
38836783-Discrete-mathematics-for-cs-spring-2007-luca-trevisan-lectures-polynomials.html.

[20] J. Dybizbański and A. Szepietowski, “Hamiltonian cycles and paths in Hypercubes with disjoint faulty
edges,” arXiv preprint arXiv, vol. 2, pp. 1–12, 2019.

[21] S. Y. Hsieh and N. W. Chang, “Hamiltonian path embedding and pancyclicity on the mobius cube
with faulty nodes and faulty edges,” IEEE transactions on computers, vol. 55, no. 7, pp. 854–886, 2006.

[22] H. Zhang, X. Xu, J. Guo and Y. Yang, “Fault-tolerant Hamiltonian connectivity of twisted hypercube-
like networks THLNs,” IEEE Access, vol. 6, pp. 74081–74090, 2018.

[23] M. S. Rahman and M. Kaykobad, “On Hamiltonian cycle and Hamiltonian path,” Information
Processing Letters, vol. 94, no. 1, pp. 37–41, 2005.

[24] X. Yang, Q. Dong, E. Yang and J. Cao, “Hamiltonian properties of twisted hypercube-like networks
with more faulty elements,” Theoretical Computer Science, vol. 412, no. 22, pp. 2409–2417, 2011.

[25] C. Guo, M. Leng, Z. Xiao and S. Peng, “Conditional diagnosability of exchanged hypercube under
the MM* model,” IEEE Access, vol. 6, pp. 61151–61162, 2018.

[26] H. Liu, X. Hu and S. Gao, “Hamiltonian cycles and paths in faulty twisted Hypercubes,” Discrete
Applied Mathematics, vol. 257, no. 1, pp. 243–249, 2019.

[27] A. Nikolaev and A. Kozlova, “Hamiltonian decomposition and verifying vertex adjacency in 1-skeleton
of the traveling salesperson polytope by variable neighborhood search,” Journal of Combinatorial
Optimization, vol. 218, pp. 1–13, 2020.

[28] X. B. Chen, “Matchings extend to Hamiltonian cycles in Hypercubes with faulty edges,” Frontiers of
Mathematics in China, vol. 14, no. 6, pp. 1117–1132, 2019.

http://docplayer.net/38836783-Discrete-mathematics-for-cs-spring-2007-luca-trevisan-lectures-polynomials.html
http://docplayer.net/38836783-Discrete-mathematics-for-cs-spring-2007-luca-trevisan-lectures-polynomials.html

