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Abstract: For the last two decades, physicians and clinical experts have used
a single imaging modality to identify the normal and abnormal structure
of the human body. However, most of the time, medical experts are unable
to accurately analyze and examine the information from a single imaging
modality due to the limited information. To overcome this problem, a multi-
modal approach is adopted to increase the qualitativeand quantitativemedical
information which helps the doctors to easily diagnose diseases in their early
stages. In the proposed method, aMulti-resolutionRigid Registration (MRR)
technique is used for multimodal image registration while Discrete Wavelet
Transform (DWT) along with Principal Component Averaging (PCAv) is
utilized for image fusion. The proposedMRRmethod provides more accurate
results as compared with Single Rigid Registration (SRR), while the proposed
DWT-PCAv fusion process adds-on more constructive information with less
computational time. The proposed method is tested on CT and MRI brain
imaging modalities of the HARVARD dataset. The fusion results of the pro-
posed method are compared with the existing fusion techniques. The quality
assessment metrics such as Mutual Information (MI), Normalize Cross-
correlation (NCC) and Feature Mutual Information (FMI) are computed for
statistical comparison of the proposed method. The proposed methodology
provides more accurate results, better image quality and valuable information
for medical diagnoses.

Keywords: Multimodal; registration; fusion; multi-resolution rigid registration;
discrete wavelet transform; principle component averaging

1 Introduction

Medical imaging modalities such as X-rays, Computed Tomography (CT), Magnetic Reso-
nance Imaging (MRI), Single Photon Emission Computed Tomography (SPECT), and Positron
Emission Tomography (PET) are the most important imaging sources used by medical experts
for medical investigations. Each of the imaging modality contains unique and useful information

This work is licensed under a Creative Commons Attribution 4.0 International License,
which permits unrestricted use, distribution, and reproduction in any medium, provided
the original work is properly cited.

http://dx.doi.org/10.32604/cmc.2021.016131


822 CMC, 2021, vol.68, no.1

for diagnoses of various health disorders. In medical imaging, a single imaging modality is not
sufficient to provide all anatomical and functional information required for diagnoses of the
normal and abnormal structures. Single imaging modality has limited information, for example,
anatomical information about bones can be acquired from X-rays and CT scan images whereas
functional and soft tissue information can be attained from MRI images. Similarly, body func-
tional and cancerous cell information can be extracted from PET and SPECT images. All the
functional and anatomical information can be achieved on a single platform by using a multi-
modal approach. Multimodal medical imaging requires two or more than two imaging sources
to give extended medical information that cannot be visible from a single imaging modality. The
detection of the lesion, fractures, cancerous cells, brain hemorrhage, and tumors are more visible
from multimodal medical imaging [1–3]. To achieve a resultant image that contains maximum
information can be possible by multimodal image registration and fusion. Many diseases like
Alzheimer’s, neoplastic, Coronary Artery Disease (CAD), etc. cannot be diagnosed properly in
the early stages from a single imaging modality. To overcome this limitation, registration and
fusion techniques are used to diagnose such diseases more accurately [4–6]. Image registration is
the first step to align geometrical coordinates of two images and match their intensities values
followed by the image fusion to overlap two images without any loss of medical information.
Then, the resultant fused image will contain both anatomical and functional information [7,8]. The
research trend of multimodal approaches can be seen in Fig. 1, which reflects that the research
happening in this area is increasing tremendously. The statistical results shown in Fig. 1 are
collected from PubMed which is an online medical database [9]. It is observed that the number of
publications is increasing each year. Fig. 1, represents published articles from 1990 to third-quarter
year Q3, 2020.
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Figure 1: Multimodal image registration and fusion publications per year [PubMed: 1990–2020]

The general block diagram of multimodal medical image registration and fusion techniques
used for image information enhancement is shown in Fig. 2, which consists of two major steps:
Image registration and fusion.

Figure 2: General block diagram of the multimodal registration and fusion
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In this research article, a multimodal medical image registration and fusion technique is
presented. The main motivation of this research work to diagnose brain diseases at early stages
with the help of registration and fusion techniques. The surgeons and medical experts can perform
surgery more precisely using multi-modality. The contribution of the proposed methodology to
visualize the brain anatomical and functional information more effectively on a single modality.
The remaining section of this paper is arranged as follows: Section 2 contained the related works.
The proposed methodology is discussed in Section 3. The dataset and experimental details are
discussed in Section 4. The results and discussion of the proposed methodology are elaborated in
Section 5. The last Section 6 concludes the research work.

2 Related Works

Many multimodal medical image registration and fusion approaches are presented in the lit-
erature. Das et al. [10] used the affine MRR technique for multimodal image registration. CT and
MRI images of the human brain were used as an input. The registered images were obtained by
maximizing the correlation function between the two input images. Particle Swarm Optimization
(PSO) and Genetic Algorithm (GA) were used to maximize the value of the similarity function
between the two input images. The dataset utilized contained MRI-T1, MRI-T2, and CT images.
The correlation similarity was used as a performance parameter to compare the results before
and after registration. In this work better accuracy and robustness were achieved with PSO rather
than GA. Joshi et al. [11] performed a rigid registration of the CT and MRI images using
GA. Mean Square Difference (MSD) similarity metric was computed for statistical comparison.
Leng et al. [12] proposed a novel approach based on interpolation that works on multi-resolution
registration. In this method, the whole image registration steps were divided into two stages:
Registration of medical images and intensity interpolation. The bicubic B-spline vector-valued
transformation function was used for feature-based registration between the two input medical
images. The control points of the B-spline were evaluated on each resolution registration for
better-featured matching. In the second step, the intensity values of input images were matched
using linear/cubic interpolation. The experimental result proved that this approach was suitable
for deformable medical images. The registration results were evaluated using the MSD quality
assessment metric.

Mohammed et al. [13] implemented an intensity-based rigid registration and then Wavelet
Transform was applied to fused CT and MRI images. The SRR method was easy to implement
and time-efficient. The correlation coefficient similarity metric was used for matching both input
images. The registration results were determined by the correlation function of images before and
after registration. It was observed that the correlation value was high after registration. In the
image fusion step, the third level decomposition was used to determine the coefficient of input
images using eighth order Daubechies (db) wavelet. Nandish et al. [14] proposed a multimodal
B-Spline deformable and MRR registration technique. The B-Spline method was implemented on
2D and 3D brain images. It was observed that the B-Spline method gives good results on 2D
medical images but produced noise in 3D images. The multi-resolution technique was much better
and produce less noise in 3D brain MRI and CT images. The spatial information from a source
image to the target image determines and mapped on the target image using multi-resolution
registration. In this method, the three-level multi-resolution approach was used. After registration,
the fusion step takes place. The statistical performance of registration and fusion was determined
using MI and visual results were verified from the radiologist feedback.
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Palanivel et al. [15] proposed a novel method for a 3D multimodal medical image registration.
In this methodology, the volume of input images was registered by volume multifractal char-
acteristics. Multifractal characteristics of volume were used as features in 3D registration. This
methodology was implemented on medical 3D brain images and synthetic phantom images. Brain
CT and MRI images of seven different patients were used from the RIRE database. Initially,
multifractality characteristics of Input CT and MRI images were derived using Holder exponents
and Hausdorff dimensions. Presti et al. [16] proposed a local affine transformation rigid or
non-rigid registration-based technique that works on the Empirical Mutual Information (EMI)
similarity metric. The optimization algorithm based on gradient descent was used for maximizing
the value of the similarity metric between two input images. This method was implemented on
the brain and knee images. Cui et al. [17] presented a novel non-rigid registration technique
based on multichannel. The authors used a novel parameter-reduced cost function to optimize the
weighting parameter and also improved the inflexible solid boundary. The proposed method was
implemented on multi-scale CT and SPECT lung images. In this article, the main focus of image
registration was to diagnose chronic obstructive pulmonary disease (COPD) in the lungs.

Gaurav et al. [18] proposed a multimodal fusion algorithm based on the Directive Contrast
NSCT. The NSCT based fusion technique decomposes the input mages into low and high-level
frequency components. There were two fusion rules applied in this algorithm. The first fusion
rule was directive contrast and the other was phase congruency to fuse low and high-frequency
components of image level. Finally, the resultant fused image was obtained by taking inverse
NSCT. The experiment results were obtained from the brain images of different persons having
diseases like a tumor, Alzheimer’s, and brain stroke. Statistical results were verified based on the
parameters like Edge Based Similarity Measure (ESM), Structure Similarity Index Metric (SSIM),
and Normalize Mutual information (NMI).

Sahu et al. [19] implemented a multimodal brain image fusion using a Laplacian pyramid
and Discrete Cosine Transform (DCT). As the level of the pyramid increases then the quality of
fused images also increases when input images were decomposed. The visualization and statistical
results showed that this method provided better image edges and contains maximum information.
The methodology was compared with Daubechies complex wavelet transform (DCxWT). Bashir
et al. [20] proposed a multimodal fusion method based on Stationary Wavelet Transform (SWT)
and Principle Component Analysis (PCA). These two fusion methods were tested on satellite
images, multimodal medical images, stereo images, and infrared visible images. Then, these two
methods were compared with each other. The fusion image quality was determined by using image
fusion quality metrics like entropy, MI, NCC, RMSE, etc. It was observed that SWT performed
well on multimodal and multi-sensor images, while PCA performed well in the case of those
multimodal images having higher contrast. He et al. [21] used PET and MRI brain images to
fuse by applying Intensity-Hue-Saturation (IHS) technique and PCA. The advantage of these
techniques was to maintain spatial information and acquire spatial features present in the input
images with no loss of color disorder in the images.

Yuhui et al. [22] utilized a multi-wavelet transform fusion technique on the PET and CT
chest images. The coefficients of images were decomposed by wavelet decomposition. The fusion
results were evaluated by using different assessment metrics. Xu et al. [23] proposed a multi-
modal image fusion method based on adaptive Pulse Coupled Neural Network (PCNN). The
optimization technique Quantum PSO (Q-PSO) was used for determining the maximum value of
the similarity measure. Arif et al. [24] proposed a new fusion method based on Fast Curvelet
Transform along with Genetic Algorithm (FCT-GA). The authors implemented their technique on
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CT, MRI, MRA, PET, and SPECT brain images. In this article, the dataset collected from CMH
hospital Rawalpindi and other sets of the image were acquired from AANLIB freely available
dataset. The statistical results were verified on eight different performance metrics. Maqsood
et al. [25] presented a new technique that works on two-scale image decomposition using the
sparse representation technique. The authors first decomposed input images into two layers: Base
and detail layers. SSGSM method was used to extract the detail layers. CT and MRI brain images
were used for testing the method.

There is some work related to deep learning done that include Bhattacharya et al. [26]
presented a deep learning survey article that mainly focused on Covid-19 disease detection using
deep learning. Gadekallu et al. [27] presented the PCA technique with a deep learning model, but
this work was associated with tomato plant disease detection. In recent deep learning approaches
are widely used but they vary from case to case study as Gadekallu et al. [28] used deep learning
to predict retinopathy disease. Reddy et al. [29] recently implemented a deep neural network with
a combination of Antlion resampling techniques to classified multimodal stroke brain imaging
datasets, the primary focused of this dataset is to classify dataset stroke images taken from
the Kaggle dataset. Many researchers already worked on fusion and registration methods but
accurate registration of two different imaging modalities is still a challenging task due to different
intensity variations. The image fusion for gathering useful medical information in a single imaging
modality is another problem. Most of the existing work is either only based on registration
or the fusion process, a limited number of researchers combined both for useful results. In the
proposed methodology, the combination of registration and fusion process is used to enhance the
medical information in a single imaging modality for ease of diagnosis. The typical SRR method
is tested and compared with the MRR method followed by PCAv for fusion to improve the results
significantly as discussed in Section 4.

3 Proposed Methodology

The proposed method is based on MRR and DWT-PCAv techniques. The MRR technique
is more accurate than single registration and then the DWT-PCAv fusion technique is applied for
adding valuable details in the resultant image. Medical images: CT and MRI are used as input.
The initial step of image registration is achieved by the application of the MRR technique to
align the images and match their intensity values. It is noticed that the MRR technique gives
better results as compared to SRR. The resultant image is best aligned and contains more valuable
information for diagnosis purposes. After registration, the DWT-PCAv fusion technique is applied
to fuse both images. The framework of the proposed method is shown in Fig. 3.

3.1 Multi-Resolution Rigid Registration (MRR)
During the proposed MRR technique, the input medical images are converted into multiple

resolution levels. Fig. 4 shows the multi-resolution pyramid model for registration. Images are
arranged in decreasing resolution as images go from the base of the pyramid to the top of the
pyramid. The base image of the pyramid has a higher resolution than the top of an image of
the pyramid which has the lowest resolution. Images are divided into multiple levels and on each
level registration process will be performed. When input images are of the same sizes and different
resolutions then the registration process will produce better results, which will help in diagnoses
abnormalities. The original input images are at the base level of the pyramid and if these images
are of size N×N then the next upper will be N/2×N/2, the third level will be N/4×N/4, and
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so on. The MRR procedure can be implemented either from the top to down approach or from
down to top.

Figure 3: Block diagram of the proposed methodology

MRR is an iterative process via geometric transformation using a similarity metric that maxi-
mizes the similarity between source/moving and target/fixed image. The proposed MRR procedure
is shown in Fig. 5.
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Figure 4: Multi-resolution pyramid model for image registration

Figure 5: Multi-resolution rigid registration procedure

In the proposed methodology, affine rigid registration geometric transformation is applied
which includes scaling, rotation, and shearing of the images to best align the source image into
the target image. There are many similar metrics but we choose the Cross-Correlation similarity
metric due to its non-complex nature and time efficiency. Automatic multi-resolution registration
will be done when a maximum similarity value is achieved between source and target images using
the optimizer. The optimizer will continuously calculate the similarity value until the similarity
between two images is maximized and both images become perfectly aligned. The similarity metric
is a non-convex function. In the proposed methodology, a Gradient descent optimizer is utilized.
The role of the interpolator is to determine the position and the value of each pixel and its
neighbor’s pixel value from both moving and fixed images. The optimizer function is responsible
for the correct registration of images by considering the similarity metric values. The similarity
function is not smooth and contains multiple local optima values due to variation in intensities
values of the images in the multimodal registration process. The images are best overlapped and
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registered when the global optima position is reached. The MRR technique takes more time as
compared to SRR because this is an iterative procedure to register images. MRR registration
requires multiple resolutions of images from a single input image. MRR matched intensities values
of each image one by one and stoped when all the source and target split images perfectly
matched. The final registered image has better geometrical alignment with the target image as it
takes more time but it has better accuracy in terms of alignment. And more registration time
reduces in the fusion process later because with the MRR technique the images are already
registered with minimum alignment error.

3.2 DWT-PCAv Fusion
After the MRR process, the input source images are first decomposed into different multi-

scale resolutions and orientations using DWT. This method is used to visualize input images in
different resolutions having each decomposed level with different information. After multi-scale
decomposition, the principal components are performed on each image coefficients level. Then, the
average of principal components is evaluated on each decomposed image level and some weights
to each coefficient element of images are assigned for fusion rules. The input images are decom-
posed into different coefficient levels, such as Low–Low (LL), Low–High (LH), High–Low (HL),
and High–High (HH). The LH, HL, and HH are detailed coefficient scale levels while LL is the
approximate coefficients element. The LL coefficient elements taken from two source images are
used as an input to the PCA. From the LL coefficients element, the highest principle components
determine the new coefficient element m1 and m2. Similarly, other detailed coefficient elements are
processed to calculate the principal components. Then, the average of approximation and detail
coefficients principal components are taken to obtain m1 and m2 average components. These two
average principal components are used to fuse the final image. The complete step-by-step fusion
procedure is displayed in Fig. 6.

Figure 6: Block diagram of DWT-PCAv fusion process
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The major steps can be summarized as follows:

• Initially, CT and MRI input images are decomposed into two or three levels by using DWT.
• Then, detailed coefficients components and approximation components are obtained by
using PCA.

• Sort out every principle component of corresponding coefficient elements from both image
sources.

• Evaluate average coefficients components using PCAv.
• Implemented principle component averaging fusion via mean and averaging of principle
components.

• Evaluate the quality of the fused image using fusion quality assessment metrics.
• Consider if Y1

i and Y2
i are coefficients approximation taken from LL decompose level from

both medical image sources and can be represented as a column in a matrix. Where the
elements of medical image one are Y1

i and elements of the second image are Y2
i within

a matrix.
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i =LL1 =
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where the value of i is from range 1, 2, 3, . . .k, and k denotes the number of approximation
coefficients. The co-variance among two vectors is given as in Eq. (2).

cov
(
Y1
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2
i

)
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The mean of all pixel’s value can be calculated as follows

µ1
yi=

(
1
k

)∑
y1i and µ2

yi=

(
1
k

)∑
y2i (3)

The two matrixes can be defined as D is a diagonal matrix that contains Eigenvalues and
matrix E that contain Eigenvectors. These two matrixes are evaluated first then normalized com-
ponents of m1 and m2 can be determined as described in the following equations. The n denotes
the number of decomposition levels. If D(1, 1) >D(2, 2)

m1

(
LL1,2

n

)
= E (1, 1)
E (1, 1)+E (2, 1)

; m2

(
LL1,2

n

)
= E (2, 1)
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(4)

Otherwise;

m1

(
LL1,2

n

)
= E (1, 1)
E (1, 2)+E (2, 2)

; m2

(
LL1,2

n

)
= E (2, 2)
E (1, 2)+E (2, 2)

(5)
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After computation of m1 and m2 from approximation coefficients, m1 and m2 are calculated
from detail coefficients elements. When all the m1 and m2 components are calculated then the
mean of these components is computed. In the final step, the PCAv is used to fuse the final
medical image having useful diagnostic information.

4 Experimental Results and Discussion

This section consists of the details of the dataset and performance parameters used for vali-
dation of the proposed methodology. The visual and statistical results along with the discussion
are also provided.

4.1 Dataset
The proposed model is tested on the Harvard Atlas brain dataset obtained from

(http://www.med.harvard.edu/AANLIB/home.html). The Harvard medical dataset is mainly clas-
sified into two categories: Normal and abnormal brain images. This dataset contains modalities
includes MRI (MR, MR-T1, MR-T2, MRPD, MR-GAD), CT, and SPECT/PET brain images. In
the normal brain images section, this dataset added new 3D anatomy brain structure images of
MRI and PET modalities. This new dataset contains three different angles of images known as
Transaxial plane, Sagittal, and Coronal plane. In the normal brain category, this dataset contains
about a hundred brain structure parts with labeling Both normal and abnormal brain images
of the selected dataset are incorporated in simulation to achieve statistical and visual results.
This dataset intends to carry out a wide range of neuroanatomy, focusing on the anatomy of
many emerging central nervous system diseases. A variety of brain abnormalities when working
to show them. This dataset contains several substantial examples of some brain conditions and
various combinations of imaging modalities and frequency of imaging. The Harvard dataset is
further classified into four sets: Normal brain images, Cerebral Toxoplasmosis disease, cerebral
hemorrhage diseased brain images, and acute stroke disease brain images.

4.2 Performance Parameters
The image quality assessment metrics such as Mutual information (MI), Peak Signal to Noise

Ratio (PSNR), Structural Similarity Index Metric (SSIM), Feature Mutual Information (FMI),
Root Mean Square Error (RMSE), and Normalize Cross-Correlation (NCC) are computed for
validation of the proposed model. MI determines the mutual combination of information between
source images and resultant registered or fused images [30]. The MI between source and resultant
images will be zero if the source and result images are independent [31,32]. If the MI is higher,
then more information present between source and resultant images. The formula to determine
MI is given below.

MIxy =Hx+Hy−Hxy (6)

MIF =MIFX +MIFy (7)

where MIxy is the mutual information between source and resultant image, Hx is a joint entropy
of image X and Hy is a joint entropy of image Y, Hxy is a joint entropy of image X and Y.
Similarly, Eq. (7) describes MI of the fused image. PSNR is a quantitative measure based on the
RMSE. PSNR computes the ratio of the number of intensities level in the medical images to

http://www.med.harvard.edu/AANLIB/home.html
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the related pixels in the resultant image. A higher value of PSNR shows superior image fusion
or registration.

PSNR= 10x log

(
(fmax)2

RMSE2

)
(8)

where fmax indicates the maximum pixel gray levels value in the fused image. The SSIM
determines the resemblance between two regions wx and wy in both images X and Y [33].

SSIM (x, y|w)= (2wxwy+ c1)(2σwxwy+ c2)

(wx
2+wy

2+ c1)(σ2wx+σ2wy+ c2)
(9)

FMI calculates features in the resultant fused image. It calculates the number of edges, curves,
and other features transferred from source images to the resultant fused image. If the value of
FMI is higher, then the quality of the resultant fused image is also higher. Mathematically, FMI
can be expressed as follows [34].

FMIF = FMIFX +FMIFy (10)

where FMIF is the features of the resultant image transferred from source images X and Y. FMIFX
and FMIFy are the features of image X and Y. RMSE computes the quality of the final fused
image by comparing it with the ground truth image. For good fusion results, its value should be
nearer to zero [35].

RMSE=

√√√√√ 1
MN

M−1∑
i=o

N−1∑
j=0

(R (i, j)−F (i, j))2 (11)

4.3 Multi-Resolution Rigid Registration (MRR) Results
The registration is an initial and important step after preprocessing. The quality of fusion also

depends on registration. In multimodal image registration, intensity-based registration is suitable.
The two registration methods: SRR and MRR are implemented on the CT and MRI brain images.
The reason for selected these methods is that in SRR the time complexity is not an issue and
complete image alignment is achieved in a very short time but image alignment and intensities
matching are not so good. SRR method sacrifices with image registration quality. On the other
hand, the MRR process significantly improves the image quality at the cost of time complexity.
Both visual and statistical registration results are demonstrated for comparison and validations.
In the fusion process, the MRR images are used as an input of the fusion method.

The visual and statistical results on each set of brain images are computed and evaluated.
All the results of image registration and fusion are implemented in MATLAB 2018a software
and HP pro-Book 430 G1 Intel Core i3 4010G, CPU 1.7 GHz, 4GB RAM. The MRR and SRR
techniques are implemented on four sets of brain images as shown in Figs. 7–10. Each set is
divided into a pair of moving and fixed images. In Fig. 7, image (a) contains MR-PD as a moving
image and MR-T2 as a fixed image/target image of slice-20. Our target is to align and match
different intensities of moving images onto the fixed image and achieved the target images (b)
and (c). The image (b) is the resultant image of the SRR (left side) whereas an absolute difference
image between resultant registered and fixed image (right side). If the difference of image is less
then it means that the source and the target image are perfectly aligned and matched. If the
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difference is high then it means that the registered image is not perfectly aligned. Similarly, the
image (d) contains a pair of MR-PD and MR-T2 slice-35, and the images (e) and (f) are resultant
registered images of the SRR and MRR process, respectively. Similarly, the visualization results
of single and multi-resolution of Cerebral Toxoplasmosis disease images are shown in Fig. 8.

The visualization results of an SRR and MRR approach on cerebral hemorrhage and acute
stroke disease images are shown in Figs. 9, 10, respectively.

Figure 7: Multimodal image rigid registration of the normal brain images: (a) Moving MR-PD
[left] and fixed MR-T2 [right] Slice-20 brain images (b) SRR resultant [left] and difference image
[right] (c) MRR resultant [left] and difference image [right] (d) moving MR-PD [left] and fixed
MR-T2 [right] Slice35 (e) SRR resultant [left] and difference image [right] (f) MRR resultant [left]
and different image [right]

Figure 8: Multimodal image rigid registration of Cerebral Toxoplasmosis brain disease: (a) Moving
CT [left] and fixed MR-T1 [right] Slice-14 (b) SRR resultant [left] and difference image [right]
(c) MRR resultant [left] and difference image [right] (d) moving CT [left] and fixed MR-T2 [right]
Slice14 (e) SRR resultant [left] and difference image [right] (f) MRR resultant [left] and different
image [right]
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Figure 9: Multimodal medical image rigid registration of cerebral hemorrhage diseased brain
images: (a) Moving MR-T1 [left] and fixed MR-T1 [right] Slice-10 brain image (b) SRR resultant
[left] and difference image [right] (c) MRR resultant [left] and difference image [right] (d) Moving
MR-T1 [left] and fixed MR-T2 [right] Slice12 (e) SRR resultant [left] and difference image [right]
(f) MRR resultant [left] and different image [right]

Figure 10: Multimodal medical image rigid registration of stroke disease brain images: (a) Moving
CT [left] and fixed MR-PD [right] Slice-10 (b) SRR resultant [left] and difference image [right]
(c) MRR resultant [left] and difference image [right] (d) moving CT [left] and fixed MR-T2 [right]
Slice-15 (e) SRR resultant [left] and difference image [right] (f) MRR resultant [left] and difference
image [right] (g) moving MR-PD [left] and fixed MR-T2 [right] Slice-15 (h) SRR resultant [left]
and difference image [right] (i) MRR resultant [left] and difference image [right]
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To analyze better registration results, the visual results of brain registered images with an
absolute difference are shown and it is observed that these results are good for human perception.
Besides, statistical results are also computed to show which technique performs better image
registration. It is observed that the MRR performs better in most of the cases. Seven registration
quality assessment metrics are selected which are MI, CC, SSIM, NCC, Peak SNR, SSD, and
RMSE for validation. The computation time of both registration methods is also calculated. The
value of MI, CC, SSIM, NCC, and PSNR should be high in case of better registration while the
value of SSD, RMSE, and computation time should be lower for better quality image registration.
The normal brain image registration statistical results are shown in Tab. 1.

Table 1: SRR and MRR methods comparison on normal brain images

Dataset Set-1 Methods MI CC SSIM NCC PSNR SSD RMSE Time (s)

MR-PD and MR-T2 (Slice 20) SRR 1.1658 0.8819 0.7770 0.9345 30.9114 9.4171e+09 0.0338 49.408994
MRR 1.1860 0.8917 0.7955 0.9412 40.4342 9.2082e+09 0.0339 176.45631

MR-PD and MR-T2 (Slice 35) SRR 1.1544 0.9113 0.8187 0.9514 32.3552 7.7819e+09 0.0320 47.5468
MRR 1.1671 0.9159 0.8276 0.9608 43.5452 7.7093e+09 0.0321 136.3731

The second set contains brain medical images of Cerebral Toxoplasmosis disease. The MRR
method shows good image quality results while computation time is high due to the increase
of the iteration level. Tab. 2 shows the statistical results of brain images having Cerebral Toxo-
plasmosis disease. Similarly, the third section (cerebral hemorrhage disease brain images) and the
fourth section (stroke disease brain images) statistical results of the Harvard dataset are shown
in Tabs. 3, 4, respectively. It is observed that MRR statistical results are more promising, but the
computation time of the MRR method on each dataset is high as compared to the SRR method.

Table 2: SRR and MRR methods comparison on cerebral toxoplasmosis disease brain images

Dataset Set-2 Methods MI CC SSIM NCC PSNR SSD RMSE Time

CT and MR-T1 (Slice 14) SRR 0.9185 0.3232 0.5287 0.7630 14.8154 2.4979e+10 0.0266 83.9728
MRR 1.1877 0.5568 0.5799 0.8870 25.680 1.0438e+10 0.0219 248.8461

CT and MR-T2 (Slice 14) SRR 1.0588 0.2376 0.5226 0.7632 16.5560 2.9432e+10 0.0331 88.4648
MRR 1.1991 0.3945 0.5365 0.8506 17.8233 1.8637e+10 0.0320 193.5904

Table 3: SRR and MRR methods on cerebral hemorrhage disease brain images

Dataset Set-3 Methods MI CC SSIM NCC PSNR SSD RMSE Time

MR-T1 and MR-T2 (Slice 10) SRR 1.1634 0.7176 0.5861 0.9280 24.2732 1.1930e+10 0.0343 96.61697
MRR 1.2287 0.7449 0.6022 0.9403 36.7877 1.1524e+10 0.0345 140.4663

MR-T1 and MR-T2 (Slice 12) SRR 1.2192 0.8279 0.6071 0.9527 28.5537 1.2037e+10 0.0362 50.08613
MRR 0.9578 0.8397 0.6138 1.2564 37.8038 1.1838e+10 0.0362 164.7316
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Table 4: SRR and MRR methods comparison on stroke disease brain images

Dataset Set-4 Methods MI CC SSIM NCC PSNR SSD RMSE Time

CT and MR-PD (Slice 10) SRR 0.7367 0.5662 0.5505 0.8367 18.5794 4.8419e+10 0.0361 89.4864
MRR 0.8371 0.5674 0.5259 0.8450 32.1991 4.2211e+10 0.0358 133.451

CT and MR-T2 (Slice 15) SRR 1.0503 0.4755 0.5622 0.8206 17.3709 5.1432e+10 0.0370 77.6235
MRR 1.1495 0.5252 0.5335 0.8636 36.0671 4.1697e+10 0.0363 136.289

MR-PD and MR-T2 (Slice 15) SRR 1.4590 0.8998 0.7945 0.9701 34.5266 5.1075e+09 0.0347 39.6257
MRR 1.5174 0.9073 0.7997 0.9756 50.7112 5.0196e+09 0.0348 190.235

4.4 DWT-PCAv Image Fusion Results
In the fusion process, the MRR images are used as an input because the resultant image

is more accurately registered with its source moving image. The DWT-PCAv method is utilized
for the fusion process. The proposed fusion results are compared with recent fusion methods
in literature such as Discrete Wavelet Transform using principle component Averaging (DWT-
PCA) [36], Guided Image Filter based on Image Statistics (GIF-IS) [37], Fast Filtering Image
fusion (FFIF) [34] and Non-Subsampled Contourlet Transform using Phase Congruency (pc-
NSCT) [38]. It is observed that the proposed methodology produced better results, which is
reflected in the visual and statistical results.

The visual fusion results of normal brain images are shown in Fig. 11. The image (a) is
MR-PD and (b) is a registered input image. The image (c) is the different image of the source
and registered image and (d)–(g) represent fusion methods that are visually compared with the
proposed method. The image (h) shows the fusion result of the proposed method. Similarly, the
visual results of set-2 are shown in Fig. 12 while set-3 and set-4 visual results are shown in
Fig. 13, 14, respectively.

Figure 11: Visual results of different multimodal medical image fusion methods of pair MR-PD
and MRT2 slice-20 (a) MRPD-20 (b) MRT2-20 (c) difference image (d) DWT-PCA [36] (e) GIF-
IS [37] (f) FFIF [38] (g) PC-NSCT [39] (h) proposed method
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Figure 12: Visual results of different multimodal medical image fusion methods of pair CT and
MR-T1 slice 14, (a) CT-14 (b) MRT1-14 (c) difference image (d) DWT-PCA [36] (e) GIF-IS [37]
(f) FFIF [38] (g) PC-NSCT [39] (h) proposed method

Figure 13: Visual results of different multimodal medical image fusion methods of pair MR-T1
and MR-T2 slice 10, (a) MRT1-10 (b) MRT2-10 (c) difference image (d) DWT-PCA [36] (e) GIF-
IS [37] (f) FFIF [38] (g) PC-NSCT [39] (h) proposed method

The visual results of the proposed method are better than other compared methods. In Tab. 5,
the evaluation parameters: MIF, CC, SSIM, NCC, PSNR, and computation time are selected to
compare the statistical results of the proposed method with state-of-the-art fusion methods. It is
observed that the proposed methodology gives promising results in most of the cases.
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Figure 14: Visual results of different multimodal medical image fusion methods of pair CT and
MR-T2 slice 15, (a) CT-15 (b) MRT2-15 (c) difference image (d) DWT-PCA [36] (e) GIF-IS [37]
(f) FFIF [38] (g) PC-NSCT [39] (h) proposed method

The value of each fusion quality assessment metric should be high for better image fusion
results except for computation time. The low value of computation time is required for better
fusion. Most of the existing fusion techniques are computationally expensive. In the proposed
methodology, the computation time is less when compared with other existing techniques. Tab. 6
shows the values of the computation time of four selected pairs of a dataset. The computation
time required for performing the image fusion is represented in seconds. It depends on the
specification of the hardware, software, and the parameters of the algorithm. The selected methods
are tested on the same software and hardware.

Table 5: Image fusion quality assessment results of different multimodal fusion methods

Dataset Fusion methods MIF CC FMI SSIM NCC PSNR Time

MRPD and MRT2 (Slice 20) DWT-PCA 1.6350 0.9284 0.8207 0.7785 0.1515 19.9389 0.1912
GIF-IS 2.2054 0.9838 0.8983 0.9518 0.2308 25.6276 9.9008
FFIF 1.6466 0.9239 0.8330 0.8411 0.1526 19.4941 0.4737
PC-NSCT 1.9828 0.9851 0.8915 0.9390 0.2043 26.6736 7.1917
Proposed 1.8854 0.9379 0.8301 0.8109 0.1585 20.5812 0.0867

CT and MRT1 (Slice 14) DWT-PCA 1.9395 0.9189 0.8722 0.7298 0.1993 18.2468 0.0890
GIF-IS 2.0400 0.7629 0.8868 0.7419 0.1715 13.6851 15.966
FFIF 2.0180 0.5845 0.8653 0.5894 0.1507 11.2220 0.4813
PC-NSCT 1.9657 0.9142 0.8973 0.7423 0.1742 16.4374 4.9606
Proposed 2.1808 0.9302 0.8756 0.7502 0.2048 18.8808 0.0720

MT1 and MRT2 (Slice 10) DWT-PCA 1.8022 0.7474 0.8244 0.6016 0.1459 13.9381 0.1308
GIF-IS 2.1775 0.9429 0.8815 0.8339 0.2250 20.0758 8.4905
FFIF 1.9069 0.8250 0.8397 0.6459 0.1590 15.4694 0.5197
PC-NSCT 2.0503 0.9538 0.8875 0.7840 0.2027 20.9650 5.0425
Proposed 2.2932 0.9707 0.8596 0.8797 0.2251 22.8769 0.0855

CT and MRT2 (Slice 15) DWT-PCA 2.3227 0.9572 0.9049 0.8632 0.2453 19.5242 0.1017
GIF-IS 1.9511 0.7899 0.8937 0.7344 0.1775 12.6480 8.4514
FFIF 1.9213 0.4930 0.8811 0.5136 0.1416 9.3736 0.4663
PC-NSCT 1.7641 0.9575 0.9107 0.7864 0.1792 19.5843 4.7302
Proposed 2.3743 0.9500 0.9040 0.8175 0.2222 18.9028 0.0892
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Table 6: Values of the computation time of four selected pairs of a dataset

Fusion methods MRPD-MRT2 (Slice-20) CT-MRT1 (Slice-14) MRT1-MRT2 (Slice-10) CT-MRT2 (Slice-15)

DWT-PCA 0.1912 0.0890 0.1308 0.1017
GIF-IS 9.9008 15.966 8.4905 8.4514
FFIF 0.4737 0.4813 0.5197 0.4663
PC-NSCT 7.19176 4.9606 5.0425 4.7302
Proposed 0.0867 0.0720 0.0855 0.0892

5 Conclusion and Future Direction

In the proposed methodology, MRR and DWT-PCAv techniques are presented. The proposed
MRR overcomes the limitation of the SRR. The SRR is a time-efficient approach but having
the drawback of a miss-registration. The registered image of MRR is used as an input of the
fusion step. PCAv fusion technique improves the quality of an image by fusing two brain images
with the preservation of valuable information. The other advantage of PCAv fusion is that it is
time-efficient. The proposed methodology is implemented on four sets of brain images in which
one set contains normal brain images while the other three sets contain abnormal brain images.
The proposed methodology is compared with existing fusion methods. The image registration
and fusion results are shown both visually and statistically. It is observed that the proposed
methodology gives promising results as compared with other existing methods. The researchers
can work further in this field on non-rigid registration and extend this work to other imaging
modalities such as PET, SPECT, etc. Furthermore, researchers can diagnose many recent brain
diseases to identify the patient’s condition at the early stages. This research work can be easily
combined with machine learning models such as fast and compact 3-D Convolutaional Neural
Networks [40] for obtaining better results. The state-of-the-art-work can be implemented in some
current diseases such as COVID-19 and its impact on brain psychology.
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