
echT PressScienceComputers, Materials & Continua
DOI:10.32604/cmc.2021.016163

Article

Dynamic Multi-Attribute Decision-Making Method with
Double Reference Points and Its Application

Haoran Huang1, Qinyong Lin2, Weitong Chen3, Kai Fang4, Huazhou Chen5 and Ken Cai2,*

1College of Information Science and Technology, Zhongkai University of Agriculture and Engineering,
Guangzhou, 510225, China

2College of Automation, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
3School of Information Technology and Electrical Engineering, The University of Queensland,

Brisbane, QLD 4072, Australia
4College of Economy and Trade, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China

5College of Science, Guilin University of Technology, Guilin, 541004, China
*Corresponding Author: Ken Cai. Email: icken@zhku.edu.cn
Received: 25 December 2020; Accepted: 10 February 2021

Abstract: To better reflect the psychological behavior characteristics of loss
aversion, this paper builds a double reference point decision making method
for dynamic multi-attribute decision-making (DMADM) problem, taking
bottom-line and target as reference pints. First, the gain/loss function is given,
and the state is divided according to the relationship between the gain/loss
value and the reference point. Second, the attitude function is constructed
based on the results of state division to establish the utility function. Third, the
comprehensive utility value is calculated as the basis for alternatives classifica-
tion and ranking. Finally, the new method is used to evaluate the development
level of smart cities. The results show that the new method can judge the
degree to which the alternatives meet the requirements of the decision-maker.
While the new method can effectively screen out the unsatisfactory alterna-
tives, the ranking results of other alternatives are consistent with those of
traditional methods.

Keywords: Double reference point; dynamic multi-attribute decision
making; smart city evaluation; loss aversion

1 Introduction

Multi-attribute decision-making (MADM) is a type of decision-making problem in ranking
and selection of finite alternatives with multiple attributes. It is an important part of modern
decision theory and has a wide range of application backgrounds. As people face an increasingly
complex environment, the MADM method that uses decision information of single period for
static decision analysis can have difficulty meeting actual needs [1,2]. In the objective reality,
economic investments, building maintenance [3], carbon emission permit allocation [4], semicon-
ductor manufacturing [5], large-scale Web service component strategy [6], smart city evaluation,
and other issues usually have to consider of decision-making information of multiple periods to
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improve the scientific of decision-making. This type of multi-attribute decision-making problem
that takes the time dimension into account is called a dynamic multi-attribute decision-making
(DMADM) problem.

Current methods for solving DMADM problems are mostly based on the Expected Utility
theory [7–9] without considering the effects of loss aversion behavior on decision results. An
increasing number of studies have proved that the psychological behavior characteristic of loss
aversion is widespread in many fields such as politics, economy, and society, etc. [10–13]. That
is, in the decision-making process, the decision-maker is bound to be rational and not seeking to
maximize the expected utility but rather seeking to minimize the loss. Some scholars use the theory
of Bounded Rationality as the basis and start from the perspective of loss aversion, combining
Prospect theory [14], Cumulative Prospect theory [15], Regret theory [16] and other behavioral
theories with decision-making methods for solving various MADM problems including DMADM
problems. Prospect theory, Cumulative Prospect theory, and Regret theory do not use attribute
values as the basis for decision-making and instead use the gap between attribute values and
reference points as the basis for judgment [17], which makes decision results closer to reality than
Expectancy theory. The reference point is the basis for decision-makers to make judgments and
choices and has a decisive influence on decision results [14]. The reference points adopted by
the Prospect theory, Cumulative Prospect theory, and Regret theory are static reference points,
which cannot reflect the changes in the dynamic decision-making environment effectively. From
the perspective of the selection and number of reference points, these theories establish a single
reference point from the perspective of targets, which cannot reflect the bottom-line requirements
of decision-makers effectively and have certain limitations [18]. As early as 1952, Roy proposed
the first principle of safety for investment decision-making [19], and its essence is to place the
bottom-line in the most important position [20]. March et al. [21] and Highhouse [22] pointed
out that the bottom-line and targets have an important influence on the risk appetite of decision-
makers. Wang et al. [23] demonstrated the necessity and rationality of setting the bottom-line and
target as reference points. Huang et al. [24] solved the problem of complex fuzzy multi-attribute
decision-making better by establishing two reference points of bottom-line and target.

According to previous literature, we can see that the trend has been to study the DMADM
problem from the perspective of bounded rationality. However, related research results are based
mainly on a single reference and static reference points. Meanwhile, the bottom-line and target
have an important effect on the decision-making behavior and they can be used as the reference
point to describe the psychological behavior characteristics of the decision-maker in more detail.

This paper assumes that decision-makers have loss aversion behaviors and proposes a double
reference point decision method for DMADM problems. First, the bottom-line reference point
and the target reference point are used to describe the decision-makers’ psychological behavior
preferences. Then, the dynamic double reference point is established in conjunction with the time
dimension. Following the relationship between the two reference points and the attitude, the
satisfaction function closer to the actual is constructed, and then the utility function is determined.
Finally, the decision weights are assigned to different periods and attributes and the utility values
are aggregated to realize the classification, ranking, and optimization of alternatives.

2 Problem Description and Reference Point Setting

For better explanation and use, in the DMADM problem, A = {a1, a2,. . .,am} denotes the set
of alternatives containing m pieces of alternatives, M = {1, 2,. . ., m}; C = {c1, c2,. . ., cn} denotes
the set of attributes containing n pieces oattributes, N = {1, 2,. . ., n}. The set of benefit-type
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attribute subscripts is represented by Nb, and the set of cost-type attribute subscripts is represented
by Nc, Nc ∪ Nb = N, Nc ∩ Nb = Ø. T = {t1, t2,. . ., tp} suggests a set of periods containing p
periods, P ={1, 2,. . ., p}. w(tk) = w1(tk), w2(tk),. . ., wn(tk) is the weight vector of attributes in
the period tk, where wj(tk) represents the weight of the attribute cj during the period tk, and
wj(tk) is an unknown number, 0 ≤ wj (tk) ≤ 1 and

∑n
j=1wj (tk) = 1. The weight vector of η ={

η (t1) ,η (t2) , . . . ,η
(
tp

)}
is the weight vector of period, where η(tk) represents the weight of the

period tk, η(tk) is an unknown number, 0≤ η (tk)≤ 1 and
∑p

k=1 η (tk)= 1. The decision matrix of
the tk period is expressed as Eq. (1).

D (tk)=

⎡
⎢⎢⎢⎣
x1,1 (tk) x1,2 (tk) · · · x1,n (tk)
x2,1 (tk) x2,2 (tk) · · · x2,n (tk)
...

...
. . .

...
xm,1 (tk) xm,2 (tk) · · · xm,n (tk)

⎤
⎥⎥⎥⎦ . (1)

where xi,j(tk) indicates the measured value of alternative ai in period tk on attribute cj.

From the perspective of psychological behavior characteristics of loss aversion, the bottom-
line and targets have an important effect on decision-making behavior [21–24]. Therefore, this
paper chooses the bottom-line and the target as two reference points for decision-making. The
bottom-line reference point represents the minimum requirements adhered to by the decision-
maker, which cannot be easily broken, while the target reference point is the ideal target that the
decision-maker expects to achieve. Taking smart city evaluation as an example, policymakers may
have a bottom-line requirement and an ideal target for the development level of smart cities. When
the development level of smart cities is poor and cannot meet the bottom-line requirements of
decision-makers, the development level of smart cities will not be recognized by decision-makers.
Meanwhile, when the development level of the smart city reaches or even surpasses the ideal target
of the decision-maker, the development level of the smart city will be recognized by the decision-
makers. When the development level of smart cities is between the bottom-line requirements
and ideal targets, decision-makers exhibit hesitation and contradiction between approval and
disapproval. At present, few studies have focused on the method of setting reference points in
MADM problems and the static reference points are mainly used. In a DMADM environment,
the reference point often changes with time [14]. Some scholars have also clearly pointed out that
the dynamic reference points exist objectively in the fields of portfolio optimization [25], multi-
agent path selection [26], emergency decision-making [27], and passenger behavior under flight
delay [28]. Hence, the setting of dynamic reference points is very necessary. In summary, in this
paper, the dynamic double reference points (B(tk), G(tk))(k ∈P) are set, where B(tk) is the bottom-
line reference point at the tk period, B(tk) = (B1(tk), B2(tk),. . ., Bn(tk)), and Bj(tk) represents the
bottom-line value of attribute cj at the tk period. G(tk) is the target reference point at the tk
period and G(tk) = (G1(tk), G2(tk),. . ., Gn(tk)), and Gj(tk) represents the target value of attribute
cj at the tk period.

3 Decision Model

3.1 Calculation of Gain/Loss Values
Losses and gains are relative to the reference point. When the attribute value is better than

the reference point, it appears as a gain. Meanwhile, when the attribute value is less than the
reference point, it appears as a loss. Taking the benefit-type attribute as an example (the cost-type
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attribute is similar), the judgment results of the bottom-line reference point B and target reference
point G on losses and gains are shown in Fig. 1.

Figure 1: Relationship between reference points and losses and gains

According to the psychological characteristics of loss aversion and Equity Theory, decision-
makers are often concerned not with the absolute value of gain or loss but with the relative value.
When multiple reference points are observed, the calculation of the gain/loss value is suitable for
adopting the mode of processing each reference point separately [29] and then the results are
combined. Following this idea, the gain/loss value of attribute xij(tk) relative to the bottom-line
reference point Bj(tk) can be expressed as Eq. (2), and its gain/loss value relative to the target
reference point Gj(tk) can be expressed as Eq. (3).

ybij (tk)=

⎧⎪⎪⎨
⎪⎪⎩

xij (tk)−Bj (tk)
Bj (tk)

, j ∈Nb,

Bj (tk)−xij (tk)
Bj (tk)

, j ∈Nc,
i ∈M, k ∈P. (2)

ygij (tk)=

⎧⎪⎪⎨
⎪⎪⎩

xij (tk)−Gj (tk)
Gj (tk)

, j ∈Nb,

Gj (tk)−xij (tk)
Gj (tk)

, j ∈Nc,
i ∈M, k ∈P. (3)

y is a gain when y> 0, and y is a loss when y < 0. Based on the separate calculation of the
gain/loss value of the two reference points, the gain/loss value based on the two reference points
is obtained through the combination as shown in Eq. (4).

yij (tk)= rybij (tk)+ (1− r)ygij (tk) , (4)

where r is the coefficient of the decision mechanism, indicating the relative importance of the
decision-makers on the two reference points, 1 > r > 0. When r > 0.5, the decision-maker pays
more attention to the bottom-line reference point, while when r < 0.5, the decision-maker pays
more attention to the target reference point. When r = 0.5, the decision-maker attaches equal
importance to the two reference points while when r= 1, the decision-maker only pays attention to
the bottom-line reference point and not the target reference point. When r= 0, it means that the
decision-maker focuses only on the target reference point and not the bottom-line reference point.
αj (tk) was used to represent the gain/loss value corresponding to the target value Gj(tk), as shown
in Eq. (5). βj (tk) was used to represent the gain/loss value corresponding to the bottom-line value
Bj(tk), as shown in Eq. (6).

αj (tk)= r

∣∣∣∣Gj (tk)−Bj (tk)
Bj (tk)

∣∣∣∣ , k ∈ P (5)
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βj (tk)=− (1− r)

∣∣∣∣Bj (tk)−Gj (tk)
Gj (tk)

∣∣∣∣ , k ∈P (6)

Fig. 1 and Eq. (4) suggest the following: (1) When the measured value of attribute xi,j(tk) is

better than the target reference point Gj(tk), ybij (tk) > 0 and ygij (tk) > 0, ybij (tk) and ygij (tk) both

represent gain, yij (tk) > αj (tk). This state is called a double-gain state. (2) When the measured

value of attribute xij(tk) is worse than the bottom-line reference point Bj(tk), ybij (tk) < 0 and

ygij (tk) < 0, ybij (tk)and ygij (tk) represent loss, yij (tk) < βj (tk). This state is called a double-loss state.

(3) When the measured value of attribute xi,j(tk) is between the bottom-line reference point Bj(tk)

and target reference point Gj(tk), ybij (tk) > 0 and ygij (tk) < 0, ybij (tk)is the gain, ygij (tk) is the loss,

and βj (tk) ≤ yij (tk) ≤ αj (tk). This state is called the coexistence state of gain and loss. Using

δj (tk) present the x value when yij (tk) = 0. δj (tk) = Gj(tk)Bj(tk)
Gj(tk)r+Bj(tk)(1−r) can be derived. Under the

coexistence state of gain and loss, when xij(tk) is between the bottom-line reference point Bj(tk)
and δj (tk), the loss is greater than the gain, βij (tk)≤ yij (tk)≤ 0. This state is called an incomplete
loss state. When xij(tk) is between the target reference point Gj(tk) and δj (tk), the gain value is
greater than the loss value, 0 ≤ yij (tk) ≤ αj (tk), this state is called an incomplete gain state. In
summary, the division of the whole domain of attribute measured value x by double reference,
and the comparison results of the division on the whole domain of gain/loss values y are shown
in Fig. 2.

Figure 2: Double reference points and area division. (a) Attribute value is benefit type,
(b) attribute value is cost type
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3.2 Construction of Attitude Function
Attitude is the essential reflection of decision-makers on the gain/loss [24]. Attitude value is a

quantitative description of attitude characteristics. When the attribute value is in the double-gain
state, the decision-makers are satisfied. Meanwhile, when the attribute value is in the double-loss
state, the decision-maker is dissatisfied. When the attribute value is under the coexistence state of
gain and loss, the decision-makers feel hesitant and contradictory. The relationship between gain
and loss status and the attitude of decision-makers is shown in Fig. 3.

Figure 3: Gain and loss status and attitude

To describe the attitude characteristics quantitatively, numbers greater than 1 are used to
express satisfaction; the larger the value, the higher the satisfaction. Meanwhile, numbers less than
−1 are used to express dissatisfaction and the smaller the value, the higher the dissatisfaction.
The numbers in [−1, 1] indicate contradictory and hesitant attitudes, the closer the value is to 1,
the closer to satisfaction, and the closer the value is to −1, the closer to dissatisfaction. If the
decision-maker exhibits a risk-neutral attitude to the gain/loss value, then the correspondence
between the attitude value v and the gain/loss value y can be simply expressed as Eq. (7) using a
linear function.

vij (tk)=

⎧⎪⎪⎨
⎪⎪⎩

yij (tk)
αij (tk)

, yij (tk)≥ 0

yij (tk)
βij (tk)

, yij (tk) < 0
, (7)

In reality, decision-makers often respond to gains with a risk-aversion attitude and deal with
losses with a risk-seeking attitude [30,31]. Based on this idea, when the gain/loss value y≥ 0, the
attitude function behaves as a monotonically increasing convex function. Meanwhile, when the
gain/loss value y < 0, the attitude function is a monotonically increasing concave function. In
other words, the attitude function should be an S type function whose inflection point is at the
position of y= 0. The correspondence between attitude value v and the gain/loss value y can be
expressed by the power function as Eq. (8).

vij (tk)=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
yij (tk)
αj (tk)

)ϕ

, yij (tk)≥ 0

−
(∣∣∣∣yij (tk)βj (tk)

∣∣∣∣
)ϕ

, yij (tk) < 0
, (8)

where ϕ is the preference coefficient, 0 < ϕ < 1.

By comparing Eqs. (7) and (8), we can see that if the prefer ence coefficient ϕ discards value
constraints, Eq. (8) becomes Eq. (7) when taking the value 1. That is, when ϕ = 1, decision-makers
exhibit risk-neutral attitudes towards losses and gains. When the value range of ϕ is expanded
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from (0, 1) to [0, 1], Eq. (7) will be unified into Eq. (8). The function curve when the constant ϕ

takes different values is shown in Fig. 4.

Figure 4: Attitude function

3.3 Construction of Utility Function
In the coexistence state of gain and loss, the more efficient the attitude value, the greater the

utility. The utility value increases with the increase of attitude value and decreases with a decrease
in attitude value. The utility function u(·) at this time can be expressed as Eq. (9).

u
(
vij (tk)

) = vij (tk) , −1≤ vij (tk)≤ 1, (9)

Han [18] and Wang et al. [32] posited that decision-makers will become very sensitive near
the bottom-line reference point and a small drop in the attribute value across the bottom-line
reference point will cause a “catastrophic” decline in the utility of the decision-makers. Decision-
makers extremely circumvent such risks. In other words, when the coexistence state of gain and
loss becomes the double-loss state, a qualitative change occurs and the utility value will drop
significantly. Supposing 0< ε � |B−G|, the relationship between gain and loss status and attitude
in Fig. 3 shows that attitude value v= −1− ε corresponds to the double-loss state and attitude
value v = −1+ ε corresponds to the coexistence state of gain and loss. Therefore, u (−1− ε) �
u (−1+ ε). Eq. (9) shows that minu (−1+ ε)≈−1, and thus, u (−1− ε)�−1. In addition, because
the reference point effect has the characteristic of decreasing sensitivity [33], the utility value under
the double-loss state has the characteristic of diminishing margin. According to the above analysis,
assuming that δ represents the “catastrophic” reduction in utility value, the utility function u(·) in
the double-loss state can be expressed as Eq. (10).

u
(
vi,j (tk)

) =− ln
(∣∣vi,j (tk)∣∣)− δ, vi,j (tk) <−1, (10)

where δ 	 1, i ∈M, j ∈N, and k ∈ p.
From the coexistence state of gain and loss to the double-gain state, it reflects more a change

of quantity than a sudden change of quality. Therefore, when the attitude value changes from
v= 1− ε to v= 1+ ε, the utility value will change smoothly without a great difference. Similar to
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the double-loss state, because the reference point effect has the characteristic of decreasing sensi-
tivity [33], the utility value under the double-loss state also has the characteristic of diminishing
margin. The utility function u(·) at this time can be expressed as Eq. (11).

u
(
vij (tk)

) = ln
(
vij (tk)

)+ 1, vij (tk) , vij (tk) > 1, (11)

where i ∈M, j ∈N, and k ∈ p.
In summary, the utility function u(·) can be obtained by combining Eqs. (9)–(11) as shown in

Eq. (12). The utility curve obtained from Formula (12) is shown in Fig. 5.

u
(
vij (tk)

) =
⎧⎪⎨
⎪⎩
ln

(
vij (tk)

)+ 1, vij (tk) > 1

vij (tk) , −1≤ vi,j (tk)≤ 1

− ln
(∣∣vij (tk)∣∣)− δ, vij (tk) <−1

, (12)

where δ 	 1, i ∈M, j ∈N, and k ∈ p.

Figure 5: Utility curve

3.4 Calculation of Weights
3.4.1 Time Weight Calculation

Determining the time weight reasonably is a key issue in the DMADM model. Generally
speaking, the value of information will decay over time. At present, most methods for determining
the weight of time are based on the principle of “preference of the new to the old.” That is, new
information is given greater weight, and old information is given a lower weight. Assuming that
the attenuation rate of information is λ(0≤ λ≤ 1) and the amount of information in the current
period (tp) is 1, the time decay model of information can be expressed as Eq. (13).

z (tk)= (1−λ)tp−tk , k ∈P, (13)



CMC, 2021, vol.68, no.1 1311

where tp – tk is the interval of period tk and the current period tp, tp – tk = p − k. When the
attenuation rate λ takes different values, the attenuation function curve can be expressed as shown
in Fig. 6.

Figure 6: Time attenuation function curve

The time weight can be obtained by normalizing z(tk), as shown in Eq. (14). In particular,

when λ= 0, z(tk) ≡ 1, η =
(
1
p ,

1
p , . . . ,

1
p

)
; when λ= 1, z(tp) = 1, z(tk) = 0 (k < p), η = (1, 0, · · · , 0).

η (tk)= z (tk)
/ p∑

k=1

z (tk) , k ∈P. (14)

3.4.2 Calculation of Attribute Weights
The weight of attributes in a dynamic decision model may change with time, in contrast to

the static decision model. The objective weighting method is used for weighting to utilize fully
the loss information in different periods and improve the scientific of decision-making. Common
objective weighting methods include the variation coefficient method, entropy weight method, and
mean-variance method. The attribute weight is obtained based on the gain/loss value to reflect the
difference in profit and loss information. The value range of the gain/loss value is not suitable
for weighting using the variation coefficient method and the entropy weight method. Hence, to
reflect the degree of difference between gain/loss values, the mean-variance method can be used for
weighting. Because the gain/loss values are related closely to the reference point, the mean square
error should be calculated separately according to different reference points. The mean square
deviation of the gain/loss value based on the bottom-line reference point is shown in Eq. (15).
The mean square deviation of the gain/loss value based on the target reference point is shown in
Eq. (16).

σ b
j (tk)=

√√√√∑m
i=1

(
ybij (tk)− ybj (tk)

)2

m
, k ∈ P, (15)
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where ybj (tk)=
yb1j(tk)+yb2j(tk)+···+ybmj(tk)

m .

σ
g
j (tk)=

√√√√∑m
i=1

(
ygij (tk)− ygj (tk)

)2

m
, k ∈P, (16)

where, ygj (tk)=
yg1j(tk)+y

g
2j(tk)+···+ygmj(tk)

m .

Finally, the two mean square errors are combined and normalized to obtain attribute weights,
as shown in Eq. (17).

wj (tk)=
σ b
j (tk)+ σ

g
j (tk)∑n

j=1

(
σ b
j (tk)+ σ

g
j (tk)

) , k ∈P. (17)

3.5 Calculation and Ranking of Comprehensive Utility Value
Following previous calculation results, the comprehensive utility value of the alternative can

be expressed as shown in Eq. (18).

ui =
p∑

k=1

η (tk)
n∑
j=1

u
(
vij (tk)

)
, i ∈M. (18)

The larger the comprehensive utility value ui, the better the alternative ai. Decision-makers
will become very sensitive near the bottom-line reference point and a small drop across the
bottom-line reference point will cause a huge decline in the utility [18,32]. If the virtual alternative
with the attribute value equal to the bottom-line value is called the bottom-line alternative ab,
then following the calculation of the utility value and the aggregation method, the comprehensive
utility value of the bottom-line alternative is ub = −1. Similarly, if the virtual alternative with
the attribute value equal to the target value is called the target alternative ag, then following the
calculation of the utility value and the aggregation method, the comprehensive utility value of
the target alternative is ug = 1. Regarding the division of decision-makers’ attitudes in Fig. 3,
the alternative with comprehensive utility value u > 1 is called the satisfaction alternative, the
alternative with comprehensive utility value u < −1 is called the dissatisfaction alternative, and the
alternative with integrated utility value u ∈[−1, 1] is called hesitation alternative. The relationship
between the different types of alternatives and utility values is shown in Fig. 7. The satisfaction
alternative is better than the hesitation alternative and the hesitation alternative is better than the
dissatisfaction alternative.

Figure 7: Alternative classification
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3.6 Decision Steps
The steps of the MADM method based on double reference points in a dynamic environment

are as follows:

Step 1: Start making decisions.

Step 2: Obtain the decision matrix and double reference points in different periods through
a survey.

Step 3: Calculate the gain/loss values according to Eqs. (2)–(4) and obtain the gain/loss matrix
for different periods.

Step 4: Calculate the attitude values corresponding to different gain/loss values according to
Eq. (8) and obtain the attitude matrix for different periods.

Step 5: Calculate the utility value corresponding to different attitude values according to
Eq. (12).

Step 6: Calculate the weight of the period according to Eqs. (13), (14); and according
to Eqs. (15)–(17), calculate the attribute weight vector under each period using the mean-
variance method.

Step 7: Calculate the comprehensive utility value of alternatives according to Eq. (18), and
then classify, rank, and select alternatives.

Step 8: End.

4 Application of Decision-Making Methods in Smart City Evaluation

4.1 Description of Smart City Evaluation Issues
With the rapid development of RFID technology [34,35], internet of things technology [36],

network technology [37,38], big data [39] and other technologies, the construction and develop-
ment of smart cities have been given considerable attention by many governments and organiza-
tions [40–42]. The analysis of the development level of smart cities has also attracted the attention
of many scholars. For example, Shen et al. [43] used the entropy weight method and Technique for
Order of Preference by Similarity to Ideal Solution (TOPSIS) method to evaluate the development
level of smart cities in 44 cities of China. Ren et al. [44] built an evaluation index system from
five aspects that include smart infrastructure, smart government, and smart people’s livelihood to
evaluate the development level of smart cities. Zhang et al. [45] established an evaluation index
system based on the needs of residents and used a fuzzy analytic hierarchy process to evaluate
the development level of smart cities. In general, most existing studies have used static methods
for analysis and evaluation and did not consider the dynamic perspective. The construction
of smart cities is a long-term and gradual process. The static evaluation method has obvious
shortcomings in describing its intellectualization process and development stage. Moreover, the
development stage of urban intelligence should also be measured from the perspective of dynamic
evaluation [46].

The researchers are ready to evaluate the development level of smart cities of six cities a1,
a2, a3, a4, a5, and a6. Considering that the development of smart cities is a dynamic process,
the evaluation information covers three periods, that is, t1, t2, and t3. Drawing on [44], five
aspects, including smart infrastructure (c1), smart government (c2), smart livelihood (c3), smart
production (c4), and innovation drive (c5) are taken as starting points and the evaluation values
of each city in each attribute in different periods are obtained using the expert scoring method,
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as shown in Tab. 1. According to the development background and requirements of the different
periods and following the principle of gradually increasing requirements, the bottom-line reference
point and target reference point are determined as shown in Tab. 2. Now it is required to
evaluate and analyze the development level of smart cities of the six cities according to the
above information.

Table 1: Evaluation information

Cities Period t1 Period t2 Period t3

c1 c2 c3 c4 c5 c1 c2 c3 c4 c5 c1 c2 c3 c4 c5

a1 67 63 70 68 60 76 72 78 74 70 81 76 82 78 76
a2 74 70 71 73 68 80 73 82 81 74 85 81 86 86 79
a3 82 78 80 82 65 88 80 86 89 71 92 89 92 92 82
a4 68 64 70 68 62 81 74 80 81 74 92 95 93 95 92
a5 84 78 82 81 58 86 80 83 81 65 87 81 85 80 65
a6 86 82 84 86 81 92 83 93 92 85 96 93 96 98 92

Table 2: Double reference points

Reference points Period t1 Period t2 Period t3

c1 c2 c3 c4 c5 c1 c2 c3 c4 c5 c1 c2 c3 c4 c5

Bj(tk) 65 60 65 62 55 70 65 70 68 62 75 72 75 75 70
Gj(tk) 85 80 85 85 80 90 82 90 92 84 95 90 95 96 90

4.2 Evaluation of Smart City Development Level
The decision-making method mentioned above is used to evaluate the development level of

smart cities. First, following Eqs. (2) and (3), the gain/loss matrix relative to bottom-line reference
point B and target reference point G can be obtained. Assuming that the decision-maker pay
more attention to the bottom-line reference point than to the target reference point, the decision
mechanism coefficient r is taken as 0.6, and the comprehensive gain/loss matrix can be obtained
according to Eq. (4), as shown in Tabs. 3–5.

Table 3: Gain/loss matrix for period t1

Cities c1 c2 c3 c4 c5

a1 −0.066 −0.055 −0.024 −0.022 −0.045
a2 0.031 0.050 −0.010 0.050 0.082
a3 0.143 0.170 0.115 0.179 0.034
a4 −0.052 −0.040 −0.024 −0.022 −0.014
a5 0.171 0.170 0.143 0.165 −0.077
a6 −0.052 −0.025 −0.066 −0.065 −0.173



CMC, 2021, vol.68, no.1 1315

Table 4: Gain/loss matrix for period t2

Cities c1 c2 c3 c4 c5

a1 −0.011 0.016 0.015 −0.025 0.011
a2 0.041 0.030 0.067 0.067 0.069
a3 0.145 0.129 0.119 0.172 0.025
a4 0.054 0.044 0.041 0.067 0.069
a5 0.119 0.129 0.080 0.067 −0.061
a6 −0.063 −0.041 −0.050 −0.052 −0.047

Table 5: Gain/loss matrix for period t3

Cities c1 c2 c3 c4 c5

a1 −0.011 −0.029 0.001 −0.051 −0.011
a2 0.038 0.035 0.050 0.046 0.028
a3 0.123 0.137 0.123 0.119 0.067
a4 0.123 0.214 0.136 0.156 0.197
a5 0.062 0.035 0.038 −0.027 −0.154
a6 −0.048 −0.042 −0.048 −0.027 −0.050

Then, based on the gain/loss matrix, the preference coefficient ϕ is 0.5 according to experience
and the attitude matrix can be obtained using Eq. (8). The utility value corresponding to different
attitude values are determined according to Eq. (12), where δ is 10 according to the preference of
the evaluator. The results are shown in Tabs. 6–8.

Table 6: Utility matrix for period t1

Cities c1 c2 c3 c4 c5

a1 −0.839 −0.742 −0.510 −0.450 −0.603
a2 0.412 0.500 −0.334 0.474 0.548
a3 0.880 0.922 0.789 0.898 0.354
a4 −0.745 −0.632 −0.510 −0.450 −0.330
a5 0.962 0.922 0.880 0.861 −0.786
a6 1.036 1.070 0.962 1.031 1.028

Then, the attenuation rate λ takes 0.5 and the weight vector η = {0.143, 0.286, 0.571} for each
period is calculated according to Eqs. (13) and (14). The weight vectors of the attributes in each
period are obtained according to Eqs. (15)–(17) as w(t1) = {0.204, 0.211, 0.160, 0.195, 0.231},
w(t2) = {0.196, 0.165, 0.177, 0.217, 0.245}, and w(t3) = {0.147, 0.210, 0.143, 0.214, 0.288}.

Finally, the comprehensive utility value is obtained by using Eq. (18), and the alternatives are
classified and ranked accordingly. The results are shown in Tab. 9. It shows that the smart city
development level of city a6 satisfied the evaluators, city a5 dissatisfied the evaluator, and other



1316 CMC, 2021, vol.68, no.1

cities are between satisfaction and dissatisfaction. The specific ranking from good to bad is a6 >
a3 > a4 > a2 > a1 > a5.

Table 7: Utility matrix for period t2

Cities c1 c2 c3 c4 c5

a1 −0.348 0.318 0.298 −0.493 0.225
a2 0.491 0.437 0.627 0.562 0.567
a3 0.921 0.906 0.834 0.902 0.344
a4 0.563 0.530 0.491 0.562 0.567
a5 0.834 0.906 0.684 0.562 −0.766
a6 1.071 1.043 1.103 1.000 1.033

Table 8: Utility matrix for period t3

Cities c1 c2 c3 c4 c5

a1 −0.361 −0.601 0.089 −0.763 −0.348
a2 0.487 0.483 0.560 0.525 0.406
a3 0.878 0.956 0.878 0.843 0.627
a4 0.878 1.177 0.921 0.963 1.071
a5 0.624 0.483 0.487 −0.552 −10.275
a6 1.037 1.114 1.037 1.068 1.071

Table 9: Utility value and ranking

Cities Period t1 Period t2 Period t3 Comprehensive

Utility
value

Ranking Utility
value

Ranking Utility
value

Ranking Utility
value

Ranking Type

a1 −0.636 6 −0.015 6 −0.429 5 −0.340 5 Hesitation
a2 0.3544 4 0.540 4 0.481 4 0.480 4 Hesitation
a3 0.7563 2 0.757 2 0.815 3 0.790 2 Hesitation
a4 −0.531 5 0.546 3 1.021 2 0.663 3 Hesitation
a5 0.5175 3 0.368 5 −2.82 6 −1.431 6 Dissatisfaction
a6 1.0286 1 1.047 1 1.069 1 1.057 1 Satisfaction

Notes: “Hesitation” refers to the satisfaction of the evaluator on the development level of the smart city being between satisfaction and
dissatisfaction.

4.3 Comparative of Methods
We use the expected utility method, weighted TOPSIS method, and Regret theory to evaluate

the development level of smart cities and compare the results with the results of the new decision-
making method to further illustrate the difference between the decision-making method proposed
in this study and the traditional method. The traditional method is required to provide the time
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and attribute weights in advance. The weights are calculated using the new decision method to
make the results comparable. When using the expected utility method, the weighted arithmetic
average operator is used twice to obtain the evaluation result. Meanwhile, when using the weighted
TPOSIS method, the closeness of each city in each period is first calculated and the weighted
arithmetic average operator is used to fuse the closeness of different periods. When using the
Regret theory, the average of bottom-line reference point B and target reference point G is taken
as the reference point and then the perception utility of each city in each period is calculated.
Then, the weighted arithmetic average operator is used to aggregate the perception utility of
different periods. The evaluation results of the development level of smart cities through different
methods are shown in Tab. 10.

Table 10: Comparison of different methods

Methods Sort results: Type division Empowerment

Expected utility method a6 > a3 > a4 > a2 > a5 > a1 No No
Weighted TPOSIS method a6 > a4 ≈ a3 > a2 > a5 > a1 No No
Regret theory a6 > a3 > a4 > a2 > a5 > a1 No No
New decision method (a6) > (a3 > a4 > a2 > a1) > (a5) Yes Yes

Notes: The cities in “( )” indicate that their satisfaction is the same type.

The above comparison shows the following: (1) The results of traditional methods for eval-
uating the development level of smart cities are basically consistent. (2) The new method can
classify the development level of smart cities and determine that the smart city development level
of city a6 is in a satisfaction state of decision-makers, city a5 is in a state of dissatisfaction, and
other cities are somewhere between satisfaction and dissatisfaction. (3) The ranking result in a
new decision-making method for cities with satisfactory and intermediate states (a1, a2, a3, a4,
a6) is basically consistent with that of the traditional method. (4) The new method can effectively
weigh periods and attributes.

5 Conclusions and Future Work

As people face an increasingly complex environment, the use of multi-period decision infor-
mation for dynamic decision analysis has become a growing trend. The bottom-line and target
have important influence on decision-making behavior and they can be used as reference points
to describe in more detail the psychological behavior characteristics of the decision-maker. Hence,
this paper proposes a DMADM method based on two reference points, namely, bottom-line and
target. First, the bottom-line reference point and target reference point are set to reflect the psy-
chological and behavioral characteristics of decision-makers. The two reference points are used to
divide the entire range of attribute values into three state intervals of “double gain,” “double loss,”
and “coexistence of gain and loss” The state interval “coexistence of gain and loss” can be divided
into “incomplete income” and “incomplete loss”. Second, gain/loss function, attitude function, and
utility function are established according to the psychological behavior characteristics of decision-
makers. The weight of the period is determined using the principle of information attenuation,
while the attribute weight was calculated based on the mean square error. Finally, the methods of
alternatives classification and ranking are given based on the comprehensive utility value.

The new decision-making method is compared with the expected utility method, weighted
TOPSIS method, and Regret theory through the application of examples. The new decision-
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making method has the following advantages: (1) The new decision-making method can divide
the alternatives into three types, namely, satisfaction, hesitation, and dissatisfaction, and it can
effectively judge the degree to which the alternatives meet the requirements of the decision-makers.
(2) The new decision-making method can effectively solve the weighting problem of periods
and attributes. (3) While the new decision-making method screens out unsatisfactory alternatives
effectively, the ranking results of other alternatives are consistent with traditional methods.

This study can provide a reference for research on multi-reference MADM and DMADM
problems, and further enrich the research connotation of MADM theory and methods. How-
ever, this paper only studies the DMADM problem with double reference points and decision
information as crisp number. The decision mechanism coefficient r, attenuation rate λ, and other
related coefficients in this paper require further discussion. The DMADM problem with more
than two reference points and the double reference points DMADM problem with fuzzy number
or linguistic variable will be discussed in the future work.
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