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Abstract: Fog computing paradigm extends computing, communication, stor-
age, and network resources to the network’s edge. As the fog layer is located
between cloud and end-users, it can provide more convenience and timely
services to end-users. However, in fog computing (FC), attackers can behave
as real fog nodes or end-users to provide malicious services in the network.
The attacker acts as an impersonator to impersonate other legitimate users.
Therefore, in this work, we present a detection technique to secure the FC
environment. First, wemodel a physical layer key generation based on wireless
channel characteristics. To generate the secret keys between the legitimate
users and avoid impersonators, we then consider a Double Sarsa technique
to identify the impersonators at the receiver end. We compare our proposed
Double Sarsa technique with the other two methods to validate our work, i.e.,
Sarsa and Q-learning. The simulation results demonstrate that the method
based onDouble Sarsa outperforms Sarsa andQ-learning approaches in terms
of false alarm rate (FAR), miss detection rate (MDR), and average error
rate (AER).

Keywords: Fog computing; double Sarsa; attack detection; physical layer
key security

1 Introduction

Due to the growth of the Internet of Things (IoT) and mobile devices, many applications are
sensitive to bandwidth and perceived latency [1,2]. Besides, the processing of these applications
requires higher computation and communication costs [3]. In IoT, interconnected things generate
a large amount of data. The data is usually processed in the cloud, prone to severe network
congestion and load [4,5]. This is highly problematic, especially for the overall performance of
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time-sensitive applications and services. In particular, the recently developed 5G wireless networks
have a higher demand for bandwidth, computing resource, security, and delay [6–9]. To address the
problems mentioned above, fog computing was introduced to facilitate the computing, networking,
and storage operations between end-users and cloud data centers. The added fog layer is located
between the cloud and end-users. The primary function of fog computing is to process IoT data
locally, thereby bringing the convenience of data storage, calculation, and transmission. It has
the characteristics of low latency, location awareness, and large-scale IoT applications support [4].
However, due to its additional and unique features, it is faced with communication and data
security issues.

In FC, most of the devices are connected wirelessly [10]. As a result, due to the wireless
transmission medium’s broadcast characteristics, there is a security risk in communication between
fog nodes and end-users [11]. For example, the attackers may pretend to be legitimate fog nodes or
end-users, thereby sending signals to other nodes so that the receivers may receive wrong signals.
To prevent the attack from disguised attackers and ensure the wireless network’s security in FC,
both parties need to use a common key for encrypted transmission. Therefore, we propose the
fusion of physical layer security (PLS) technologies based on the key generation and reinforcement
learning algorithm to detect impersonation attacks.

On the one hand, PLS protects the information by exploiting the communications medium’s
intrinsic characteristics or principles and is a promising wireless security technique [12]. Thus,
we employ physical layer key generation technology based on PLS. Unlike traditional cryp-
tography methods with computational complexity, it can provide real-time, non-distribution key
generation means for both communicating parties with channel coding, pre-coding, signal process-
ing, etc. On the other hand, reinforcement learning is the training of machine learning algorithms
to help make a sequence of decisions. In this scheme, a user learns to achieve a goal in an
uncertain and potentially complex environment via trial and error [13]. The learning is based
on a game-like situation where the users obtain rewards through continuous interaction with
the environment and attain the optimal strategies [14]. Thus, we propose a detection method
with a Double Sarsa algorithm to defend against impersonation attacks. The proposed detection
method based on Double Sarsa [14] utilizes the channel state information (CSI). It can obtain
the optimal test threshold value to detect impersonation attacks in the dynamic environment. The
main contributions of this work are summarized below.

• We investigate to tackle the impersonation attacks between fog nodes and legitimate end-
users in fog computing (FC). For this purpose, we apply a reinforcement learning algorithm
to detect the impersonation attacks.

• We formulate a zero-sum game between the illegitimate node (fog node or end user)
and receiver. We obtain the optimal threshold value to detect impersonation attacks by
establishing a hypothesis test based on channel state information (CSI) at the receiving end.

• We validate the performance of the proposed method by comparing with Sarsa and
Q-learning in false alarm rate (FAR), miss detection rate (MDR), and average error rate
(AER) based on a test threshold value. We find out that the FAR, MDR, and AER
are decreased significantly as the experiments progress based on the appropriate threshold
value with the proposed method. This shows that our proposed technique has a better
detection capability.

The rest of the paper is organized as follows. In Section 2, we discuss the related work.
Sections 3 and 4 describe our proposed system and proposed method, respectively. Section 5
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presents the performance evaluation of our proposed method. Finally, the paper is concluded in
Section 6.

2 Related Works

Key generation technology exploits the randomness and reciprocity of wireless channels.
In recent years, this approach is widely studied by many researchers. Zhang et al. [15] presented
a survey of the key generation technologies related to the wireless channels. An information
theory secret key generation (SKG) method is proposed in [16] for time-division duplexing (TDD)
based orthogonal frequency-division multiplexing (OFDM) systems over multipath fading chan-
nels. In [17], the authors proposed a novel key generation scheme for wireless sensor networks,
achieving a high key reconciliation rate. The authors in [18] developed an algorithm to protect
the keys secret from eavesdropper and non-trusted selected relays, which improves the secret key
generation rate (SKGR). FC cannot be considered fully secure, and it is faced with security vul-
nerabilities. To deal with this problem, different approaches have been proposed in the literature.
Huang et al. [19] proposed an access tree structure and attribute-based signature technology in FC
to implement ciphertext updating and computing outsourcing. To ensure the end-to-end security
of IoT devices at the fog layer, Abbas et al. [20] proposed a novel fog security service based on two
cryptographic schemes, i.e., identity-based encryption and identity-based signature. Tian et al. [21]
proposed a three-layer storage framework to prevent an attack from the inside of the cloud server
and protect data privacy. However, the traditional security methods are not suitable in a dynamic
environment. These conventional methods have no self-learning ability and cannot make timely
adjustments according to the changing environment, which causes difficulty in optimization.

Besides, reinforcement learning algorithms have been used by researchers to improve wireless
network security. For instance, Xiao et al. [22] proposed a spoofing detection scheme based on
Q-learning to detect spoofing attacks in wireless networks, and the efficiency of the proposed
strategy is improved. In [23], the authors applied a Q-learning algorithm with reinforcement learn-
ing to detect the impersonation attacks, enhancing detection accuracy. However, these methods
mentioned above only used one Q-table, which may make large changes in the threshold and
slow convergence. Our proposed can solve the problem with two Q-tables, and the optimum
test threshold value is obtained for each other’s estimation errors. It has better performance in
detecting impersonation attacks in FC security.

3 Proposed System

This section illustrates the impersonation attack model and the security model based on the
key generation. First, we discuss the system architecture to consider legitimate and illegitimate
users. Then, a key generation model is presented to discuss the process of secret keys.

3.1 System Architecture
As depicted in Fig. 1, we consider a three-layer system architecture model of the FC net-

work, including the cloud layer, fog layer, and end-user layer. The fog layer is composed of fog
nodes, which can be computers, smartphones, etc. The end-user layer includes end-user devices
and IoT devices. In this regard, let consider there are E = {1, 2, . . . , e} , ∀ e ∈ E transmitters.
F = {1, 2, . . . , f } , ∀ ∈ F are receivers in the network. For legitimate and non-legitimate users, we
consider a set of H = {1, 2, . . . ,h} , ∀h ∈H and I = {1, 2, . . . , i}, ∀ ∈ I , respectively.
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Figure 1: Impersonation attack network model

The fog nodes are used to provide computing, storage, and communication. They provide
temporary storage and real-time analysis for terminal devices’ data and send their data summary
to the cloud. Illegal users pretend to be legitimate users to enjoy the fog node’s services or pretend
to be legal fog nodes to offer false services to end-users. These non-legitimate users (fog nodes or
end-user nodes) claim to be legitimate and launch attacks on other network nodes. Consequently,
it causes the wireless communication link between fog nodes and end-users’ insecure.

3.2 Key Generation Model
As mentioned in the previous section, the purpose is to generate a random and secure key for

secure communication between fog nodes and end-users [24]. Therefore, we exploit the physical
layer channel parameter, i.e., CSI, to generate the secret keys. The proposed key generation model
is depicted in Fig. 2. In this model, we assume that the fog nodes and the end-users communicate
in a time division duplex (TDD) mode. First, both parties send training signals to each other
in a time slot. Based on the received signals, they will estimate the channel and measure the
channel parameter. As the attacker may launch an attack at any time, the signal transmitted by
the channel may be non-legitimate. The detection step is introduced to identify the legitimacy of
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the received signals. If the signal is non-legitimate, the two sides continue to transmit training
signals to extract CSI.

Figure 2: Security model based on key generation

Alternatively, the quantization step is performed to get the initial key bit sequence. The
information reconciliation is then employed to correct mismatch bits and privacy amplification
consistency checking to ensure the agreed key sequence security. After these steps, both parties’
common and secure secret key sequence is generated for secure communications. In this way, the
communication between the fog node and the end-user node is coarse-grained detected, which
reduces the communication and calculation overhead.

4 Proposed Method

According to the models presented in the previous section, we establish the hypothesis test at
the receiver. We then exploit the zero-sum game and the Double Sarsa algorithm [14] to present
the proposed method.

4.1 Hypothesis Test
For the hypothesis test, the fog node and the end-user send training signals to each other in

the channel sampling stage. The receiving end estimates its related CSI and extracts the signal’s
channel vector after receiving each signal. The channel vector of the signal accepted by the
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receiving end is called the channel record. The channel vector and the channel record are used
to determine the sender’s legitimacy. The hypothesis test is built at the receiving end to detect the
attack. The channel gain of each received training signal is sampled and estimated at the receiving

end. Let Vβi
αi denote the channel vector that the βi signal transmitted by the αi sending end. The

received channel vector is called the channel record and is represented by Rβi
αi . The channel gain of

the channel vector is denoted by G(Vβi
αi ). Suppose null hypothesis H0 indicates that the legitimate

node sends the training signal. Alternative hypothesis H1 indicates that the training signal is sent
by an illegitimate node, given by the following equations.

H0 :G(Vβi
αi

)≥ϒM,N (1)

H1 :G(Vβi
αi

) �=ϒM,N (2)

Where

• M,N represent the fog node and end-user, respectively;
• ϒM,N is the estimated channel gain of the legitimate end user.

Due to wireless channels’ spatial decorrelation, the CSIs of each legitimate node, attacker,

and malicious nodes are different [25] but can be determined uniquely. As a result, if Vβi
αi =Rβi

αi ,
the training signal is sent by legitimate sender; otherwise, the training signal is non-legitimate. To
judge whether the signal’s sender is legal, we set the test statistics of the hypothesis test.

L
(
Vβi

αi
,Rβi

αi

)=
∥∥∥Vβi

αi −Rβi
αi

∥∥∥2∥∥∥Rβi
αi

∥∥∥2 (3)

The symbol ‖ · ‖ denotes the Euclidean norm, and L
(
Vβi

αi ,R
βi
αi

)
is the normalized Euclidean

distance between Vβi
αi and Rβi

αi . We compare L
(
Vβi

αi ,R
βi
αi

)
with the test threshold λ. If it is less

than λ, we consider it is sent by a legitimate user and the receiver accepts H0. Otherwise, if it is
greater than λ, we consider it is sent by an attacker and the receiver accepts H1. The hypothesis
test is given by

L
(
Vβi

αi
,Rβi

αi

)
< λ=⇒H0 (4)

L
(
Vβi

αi
,Rβi

αi

)
> λ=⇒H1 (5)

The value of the test threshold has a certain relationship with the detection accuracy. The
false alarm rate (FAR) is high for a small threshold value, while a large threshold value results in
a high miss detection rate (MDR). The FAR represents the probability that a legal signal sent by
a legitimate node is detected as an illegitimate signal. The MDR represents the probability that an
illegitimate signal is detected as a legal signal. Based on the hypothesis test, the FAR and MDR
are calculated as below [23].

P1 (λ)= 1−FX2
2M

(
2λω

2ω2+ nωξ2

)
(6)
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P2 (λ)= FX2
2M

(
2λω

2ω2+ (1+m)ωξ2

)
(7)

The AER is the probability of error in detecting impersonation attacks, which is given by

PA (λ)= 1−FX2
2M

(
2λω

2ω2+ nωξ2

)
+FX2

2M

(
2λω

2ω2+ (1+m)ωξ2

)
(8)

Where

• ω is the signal to interference plus noise ratio of the legal training signals (SINR);
• n is the relative change rate of channel gain;
• ξ2 is the average power gain of the signal received by the receiver from the transmitter;
• m is the ratio of the channel gain of the impersonator to that of the transmitter, and the
symbol FX2

2M
stands for cumulative distribution function with a degree of freedom 2M.

4.2 Methodology of Impersonation Detection
Based on the impersonation attack model presented in Section 3.1, the interactions between

an illegitimate node and a receiver can be considered a zero-sum game [26]. The probability that
an illegitimate node sends an illegal signal is pk. The set of illegitimate signals sent by illegitimate
nodes is �= [pk]. It is assumed that only one illegitimate node performs an impersonation attack

in a time slot, so the receiver’s probability of illegitimate signal is
∑Y

k=1 pk. We also considered
the Bayes risk of impersonation detection is given as [27].

B (λ,�)= (l1(1−P1(λ))− r2P1(λ))

(
1−

Y∑
k=1

pk

)
+ (l2(1−P2(λ))− r1P2(λ))

(
Y∑
k=1

pk

)
(9)

Where

• l1 is the gain of receiving legal signals, l2 is the gain of refusing illegal signals;
• r1 is the cost of receiving illegal signals, r2 is the cost of refusing legal signals;
• P1(λ) represents FAR, and P2(λ) represents MDR.

Therefore, according to the zero-sum game, the utility at the receiving end is as follows.

ΨZ (λ,�)=−ΨY (λ,�)=B (λ,�)

= (l2− l1)
Y∑
k=1

pk− (l2+ r1)P2 (λ)

Y∑
k=1

pk− (l1+ r2)P1 (λ)

(
1−

Y∑
k=1

pk

)
+ l1 (10)

In (10), the illegitimate nodes and the receivers play games in the static environment. However,
the practical fog computing environment is dynamic. Specifically, the mobility of fog nodes and
terminals can cause changes in the wireless channel, and the change rate has a particular impact
on the key generation rate (KGR). In the dynamic scenario, it is difficult for the receiver to recog-
nize the training signal’s legitimacy. Double Sarsa algorithm in reinforcement learning can be used
to find out the optimal strategy with insufficient information in a dynamic environment [14,28].

In reinforcement learning, there are several important constants. First, the discount rate is
used to control the proportion of current and future rewards. For the large value, the agent
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pays much attention to future rewards. However, for a small value, the agent focuses on the
current rewards. Next is learning efficiency. For high efficiency, a large proportion of results are
obtained with new attempts and vice versa. In Double Sarsa algorithm [14], two Q-tables are used
to compensate for each other’s estimation errors. A small change in the Q-value can determine
a steady policy and increase the reward. The receiver evaluate the T training signals sent by
transmitter in each time slot via the hypothesis test. Meanwhile, the receiver employs the ε-greedy
strategy to choose the test threshold until it reaches the optimum, which is determined whether
the sender of the signal is a legitimate node or illegitimate node. In each state, the receiving end
randomly chooses the λ with a probability ε and chooses the largest λ value in Q-table with a
probability 1− ε, that is, the λ satisfying Π (St). According to (10), we can use it as the reward
function in the Double Sarsa algorithm, so the current utility of the receiver in each state is


t =
tT∑

t′=(t−1)T+1

ΨZ (λ,�) (11)

In the Double Sarsa algorithm, aiming at reducing the impact of estimation errors and converging
to the optimal Q value, the update rule of two Q-tables is given by

QA (St,λ)= (1−μ)QA (St,λ)+μ
(

t+γQB (St+1,λ

′
A
))

(12)

QB (St,λ)= (1−μ)QB (St,λ)+μ
(

t+γQA (St+1,λ

′
B
))

(13)

Where

• μ is the learning efficiency, μ ∈ [0, 1];
• γ is the discount rate, γ ∈ [0, 1];
• St is the state of the receivers at time t, i.e., the FAR and MDR value at time t− 1;
• λ′A and λ′B are the test thresholds for maximizing Q value of QA and QB in state St+1,

respectively. Their calculation formulas are as following.

λ′A= argmaxQA (St+1,λ
′) (14)

λ′B = argmaxQB (St+1,λ′
)

(15)

�(St)=max
[
QA (St,λ)+QB (St,λ)

2

]
(16)

�(St) denotes the maximum mean value of QA + QB in current state. The optimal test
threshold λ∗ is given by

λ∗ = arg�(St) (17)



CMC, 2021, vol.68, no.1 275

Aiming to get an optimal action and maximize the utility, the proposed method to resist
impersonation attack is described in Algorithm 1. We initialize some parameters, then judge the
legitimacy of training signals according to the test threshold. Finally, we find the optimum test
threshold value based on the Double Sarsa algorithm to detect impersonation attacks.

Algorithm 1: Detection method based on Double Sarsa algorithm
Step 1: Initialization
μ, γ, ε, QA (St,λ)=QB (St,λ)= 0, Π (St)= 0;
Step 2: Processing:
For t= 1, 2, 3, . . . ,N do

Select λ in current state St according to ε-greedy strategy;
for T= 1, 2, . . . , 20 do
Extract CSI of the training signals,ϒM,N , ϒM|N,I , V

βi
αi and Rβi

αi ;
Calculate L

(
Vβi

αi ,R
βi
αi

)
via (3);

If L
(
Vβi

αi ,R
βi
αi

)
< λ, accept the training signals;

Else
Reject the training signals;

end for
Step 3: Updating:
Enter next state St+1;
Update QA (St,λ) via (12) and (14) with probability 0.5;
Otherwise, Update QB (St,λ) via (13) and (15);
Update �(St) via (16);
End For

5 Performance Evaluation

In this section, to assess the proposed method’s performance, we set four indicators, such as
the utility at the receiver, FAR, MDR, and AER. And three different methods are compared for
preventing impersonation attacks in 500 experiment trails.

5.1 Performance Metrics and Initial Parameters

In this study, we set the experimental environment as a space of 50×50 m2, in which several
fog nodes, attackers, and legitimate end-users are scattered. All channel gains follow the normal
distribution (0, 1), as used in [23]. We use a computer with MATLAB software for simulation
under the Windows operating system. Assuming the receiver receives T = 20 training signals in
the same time slot, the center frequency is 2.4 GHz. The names, symbols, and initial values of
the correlative parameters are shown in Tab. 1.
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Table 1: List of symbols and names for parameters

Name Symbol Value

The cost of receiving illegal signals r1 4
The cost of refusing legal signals r2 2
The gain of receiving legal signals l1 6
The gain of refusing illegal signals l2 9
The learning efficiency μ 0.9
The discount rate γ 0.6
The strategy selection rate ε 0.5
The relative change rate of channel gain n 3 dB
The average power gain of the signal received by the receiver
from the transmitter

ξ2 5

The ratio of the channel gain of the impersonator to that of
the legitimate transmitter

m 0.2

The signal to interference plus noise ratio of the legal
training signals (SINR)

ω 10/20 dB

The center frequency f0 2.4 GHz

5.2 Simulation Results
To improve the detection accuracy at the receiving end, we analyze the performance of the

proposed method under the four indicators by changing the value of ω. Figs. 3a–3c show that
the change of detection error rate with the number of experimental rounds under different ω,
and the Q table is updated 10 times in each round. As shown in Fig. 3a, under the condition
that the ratio of the channel gain of the impersonator to that of the legitimate transmitter m
is constant, the FAR decreases with ω. This is because SINR has a direct relationship with
the channel estimation error. The low SINR indicates that the channel estimation error is low.
Furthermore, the channel estimation error has a particular influence on the degree of training
signal quantization, affecting FAR and MDR. Furthermore, for different ω, the FAR decreases
first, and then stabilize a certain value. This is because Double Sarsa algorithm optimizes the
threshold in the process of searching for the optimal threshold. The threshold changes greatly
at the beginning, the FAR changes rapidly accordingly. As the threshold reaches the optimum,
the FAR changes smaller. If ω = 10, it fluctuates within a small range of 0.20. After 50 rounds
of experiments, the false alarm rate is 0.2021, which is 9.21% lower than ω = 20. Similarly, in
Fig. 3b, the MDR changes quickly at the start, and then keeps stable in a range. Its value is
0.2755 with ω = 10, which is 2.49% higher than ω = 20. Fig. 3c shows that the AER decreases
with ω. For example, after 50 rounds of trails, if n = 3dB, the average error rate for ω = 10dB
decreases to 0.4776 from 0.4914 for ω= 20dB.

In addition, as the detection error rate decreases correspondingly, the average utility of the
receiver decreases with ω, as shown in Fig. 3d. For example, after 500 experiment times, the
average utility of the receiver is 2.4112 with ω = 10, which is 9.9% higher than ω = 20. FAR,
MDR, AER and the average utility of the receiver with different ω is shown in Tab. 2. Therefore,
the performance is better with ω = 10, based on the above four indicators. To further illustrate
the performance gain of the proposed method, we compare the proposed method with Sarsa
algorithm and Q-learning algorithm [29].



CMC, 2021, vol.68, no.1 277

Figure 3: Average impersonation detection performance in the experiments. (a) False alarm rate
(FAR). (b) Miss detection rate (MDR). (c) Average error rate (AER). (d) Utility of the receiver

Table 2: FAR, MDR, AER and the average utility with ω

ω FAR MDR AER The average utility

10 0.2021 0.2755 0.4776 2.4112
20 0.2226 0.2688 0.4914 2.1930

Fig. 4 depicts the comparison of FAR of three algorithms for 500 iterations. It can be seen
that the FAR of these three algorithms reduces at the start. The proposed method gradually
stabilizes after 100 iterations. As the iterations continue, the three methods are roughly kept within



278 CMC, 2021, vol.68, no.1

a constant range. The proposed method is stable at 20.0%–20.2%. Because the receiving end
knows nothing about the channel and gradually gets understanding as the experiment goes on.
The optimal λ will be chosen according to previous experience when detecting attacks. The FAR
does not change when reaching a certain number of experiments. But because of the wireless
channel’s fading characteristics, it can cause a slight change in the value and eventually steady.
In most experiments, FAR is lower and stable with the proposed method than Sarsa-based and
Q-learning-based. This is because it uses two Q tables to update each other, which helps slow
down the threshold’s change rate and converge faster. It is easier to get the optimal threshold for
detecting impersonation attacks.

Figure 4: Comparison of double Sarsa, Sarsa, Q-learning for false alarm rate (FAR)

Fig. 5 describes the MDR of the three algorithms. Because the receiving end has no idea of
the system details. The initial Q-table value is all zero, and the threshold at the beginning of the
experiment is small. During continuous training, the threshold gradually increases. According to
Eq. (7), the MDR value of three methods increases first. As the threshold reaches the optimum
gradually, the change range of MDR value is getting smaller. Besides, the channel fading also
affects the value, so it fluctuates slightly. The MDR of the proposed method is steady at about
27.6%, with the experiment is iterated 500 times. Compared with the Sarsa-based method, the
MDR of the Double Sarsa-based method is decreased by 5.5% and by an average of 5.8%
compared with the Q-learning-based method. Furthermore, Double Sarsa uses two Q-value tables
to compensate for errors each other and prevent large changes in the threshold value, so it
is more stable than the other two methods. The proposed method increases the probability of
illegitimate signals being ignored so that the communication quality between fog nodes and
end-users is improved.

As shown in Fig. 6, we compare the average error rate of detection attacks under three
algorithms. All three methods have a downward trend in the early period of the experiment
and then stabilizes. This is because the receiver has a better understanding of the channel after
receiving a large number of training signals and can use accumulated experience to choose the
optimal threshold for detection. At the same time, the AER value eventually stabilizes at a
constant within range for the channel’s characteristics. AER based on the Double Sarsa algorithm
is lower than the other two algorithms. When the experiment is carried out 500 times, the AER of
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the proposed method is stable at about 47.72%, which is less than the Q-learning-based method
by 3.0% and by 3.1% Sarsa-based method. In addition, our proposed method converges more
slowly because two Q tables are used to update alternately. Therefore, considering the overall
performance, the proposed method has lower FAR, MDR and AER, and it can detect attack
behavior more accurately in balanced exploration and utilization, which can improve the security
of FC.

Figure 5: Comparison of double Sarsa, Sarsa, Q-learning for miss detection rate (MDR)

Figure 6: Comparison of double Sarsa, Sarsa, Q-learning for average error rate (AER)
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6 Conclusion

In this paper, we proposed an impersonation attack detection method based on the Double
Sarsa algorithm in FC. First, the impersonation attack model and the key generation model based
on PLS are built. Then, the hypothesis test is established at the receiver. Next, the zero-sum game
between illegitimate nodes and receivers is designed to calculate utility. Double Sarsa algorithm
with reinforcement learning is used to choose the optimal test threshold to detect malicious users’
impersonation attacks. The experimental results illustrate that the proposed method can reduce
the FAR, MDR, and AER. Comparing with the Sarsa algorithm and Q-learning algorithm,
the performance gain of the proposed method is proved. The proposed method in this study
can protect the FC environment more effectively. In the future, reinforcement learning and deep
learning will be combined to study and solve the fog computing environment’s security problem.
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