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Abstract: Quantum machine learning (QML) is a rapidly rising research field
that incorporates ideas from quantum computing and machine learning to
develop emerging tools for scientific research and improving data processing.
How to efficiently control or manipulate the quantum system is a fundamental
and vexing problem in quantum computing. It can be described as learning
or approximating a unitary operator. Since the success of the hybrid-based
quantum machine learning model proposed in recent years, we investigate to
apply the techniques from QML to tackle this problem. Based on the Choi—
Jamiotkowski isomorphism in quantum computing, we transfer the original
problem of learning a unitary operator to a min—max optimization prob-
lem which can also be viewed as a quantum generative adversarial network.
Besides, we select the spectral norm between the target and generated unitary
operators as the regularization term in the loss function. Inspired by the hybrid
quantum-classical framework widely used in quantum machine learning, we
employ the variational quantum circuit and gradient descent based optimizers
to solve the min-max optimization problem. In our numerical experiments,
the results imply that our proposed method can successfully approximate the
desired unitary operator and dramatically reduce the number of quantum
gates of the traditional approach. The average fidelity between the states that
are produced by applying target and generated unitary on random input states
is around 0.997.
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1 Introduction

With the enormous variety of applications, machine learning has already impacted modern
life [1,2]. It not only provides powerful tools for mining the potential information from massive
data but also helps us explore the laws of nature from a new perspective. In recent years,
machine learning has caught the attention of researchers from various fields such as physics
and chemistry [3,4]. They intend to develop new tools based on machine learning techniques
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for scientific research. Quantum machine learning is one such rising and promising branch that
combines the approaches of data processing from machine learning with the outperformance of
quantum computing. As well known, there is computational difficulty in simulating a quantum
system by classical methods. As the size of a quantum system increases, the resources required
for simulating will increase exponentially.

Based on this fact, quite a lot of quantum machine learning models that harness the quantum
advantages have been proposed in recent years. Quantum support vector machine (QSVM) and
its physical implementation that runs on a small-scale quantum device result in an exponential
speed-up over the corresponding classical one [5]. Quantum principal component analysis (QPCA)
is more than a quantum extension of the classical algorithm. It also provides a technique to
construct unitary transformation efficiently [6]. Quantum generative adversarial networks (QGAN)
inherit the framework of classical models, consisting of a generator and a discriminator. How-
ever, the components of QGAN can be constructed by variational quantum circuits such that
generating quantum data is more efficient like quantum state preparation [7-10]. These quantum
machine learning models are classified into two categories. One category is full quantum that
the models only rely on full quantum algorithms including quantum Fourier transformation,
quantum phase estimation and HHL algorithm etc. [11,12]. The representative works are QSVM,
QPCA, and so on. Another category is hybrid that the models consist of the classical part and
quantum part. That is the reason why it is called the hybrid quantum-classical model. These
models are formalizing the problem of interest as a variational optimization problem and finding
an approximate solution by parametrized quantum circuit and classical optimizer [13]. Compared
to the full quantum-based model, the hybrid quantum-classical model requires fewer resources to
build, particularly the size of the quantum system, the number of quantum gates, etc. Meanwhile,
the well-developed optimization techniques can be naturally employed, which means that we are
able to make use of well-maintained open-source optimization libraries such as Tensorflow and
Pytorch as the optimizing backend [14,15].

In this work, relying on the advantages of the hybrid-based quantum machine learning model,
we intend to exploit it for a unitary learning problem that is an essential task in quantum
computing. One reason why learning unitary matrices matters a lot is that the dynamics of a
quantum system can be described by a unitary transformation, exploring the efficient way to
implement the unitary transformation is fundamental. Since we are still in the early stages of
quantum computing with the limitation of quantum resources for computation, it is necessary
to investigate how to control or manipulate the quantum system efficiently. Besides, various
tasks will benefit from the results of the study on learning unitary transformation. For instance,
unitary matrix compiling, that is the task of ‘compiling’ a known unitary transformation into a
quantum circuit constructed by a sequence of gates chosen from the specific quantum gate set.
A large amount of existing works has been focused on how to implement unitary transformations
efficiently. Such works provide theoretic analysis of approximate error and gate or time complexity
for implementing target unitary transformation [16,17]. Recently, some work investigated the ideas
from machine learning for simulating a desired unitary transformation [18,19]. Similar to these
related literatures, we formulate the learning of a given target unitary operator as an optimization
problem, and employ the hybrid-based quantum machine learning model to approximate the
solution. From our numerical experiments, the results show that the proposed method provides a
reasonable approximation while the number of required quantum gates is much less than those
of traditional approach.
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We organized this paper as follows. In Section 2, we formalize the learning problem of
unitary transformation. In Section 3, we give a brief introduction of the techniques in hybrid
quantum-classical framework and quantum generative adversarial networks (QGAN). In Section 4,
we propose a method by which a quantum machine learning model can be used for solving
the formulized unitary learning problem. In Section 5, we provide the numerical experiments
which demonstrate the advantages of the proposed model. We also introduce the background of
quantum computing in the appendix.

2 Learning Problem of Unitary Transformation

In quantum mechanics, we have two pictures for the dynamics of a quantum system. One is
the Hamiltonian picture; another is the unitary operator picture. In the Hamiltonian picture, given
the Hamiltonian, a Hermitian operator, that is the total energy function of the closed system, we
can describe the evolution of the system by Schrodinger equation as follow,

dly)

iﬁT =H |p) (1)

It can be verified that the solution of Eq. (1) can be,

|0) = e FHE=0 g ) = U |y (2)

Because the Hamiltonian H is a Hermitian operator, the operator U is unitary. Thus, in the
unitary operator picture, we use this unitary transformation to formulate the quantum dynamics.

U= e hoH (3)

In the following, our discussion is mainly under the unitary operator picture. As shown
in Eq. (2), the manipulation of a quantum system is equivalent to manipulating corresponding
unitary matrices. Once there is an efficient way to implement the desired unitary operator, we can
effectively imitate the behavior, that is the dynamics, of a quantum mechanical system, which is
an intractable task for classical methods [20]. This learning unitary problem introduced above is
related to Hamiltonian simulation, which suppose given a Hamiltonian H, time ¢ and precision
¢ > 0, the task is to find a quantum algorithm (quantum circuit) to produce operator U which is
approximate to the target unitary operator Ur = e ""#, that is,

‘UT—ﬁ‘SE (4)

Plenty of methods were proposed in past years. Lloyd [20] first invented the quantum
algorithm by using Lie-Trotter product formula for simulating Hamiltonian which only includes
the local interactions. Berry et al. [21] based on Trotter—Suzuki algorithm gave a method for
simulating sparse Hamiltonian. As the unitary operator can be rewritten by the Taylor series
expansion, Berry et al. [22] gave an algorithm for approximating the unitary operator with the
truncated Taylor series in the same year. Low et al. [23] proposed a quantum signal processing for
simulating. Being different from these approaches by quantum algorithm, some works intended to
build a unitary operator by neural network or parametrized quantum gate sequence to approxi-
mate the target [19,24]. They formulize the approximation of the target evolution operator as an
optimization problem. The loss function is the square of Frobenius norm between desired unitary
operator and parametrized alternating operator sequences [!9].
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3 Quantum Machine Learning

In this section, we will introduce the hybrid-based quantum machine learning model. The
hybrid quantum-classical framework is derived from the quantum approximate optimization algo-
rithm (QAOA) [25]. The QAOA was proposed for solving the MAX-CUT problem, which can be
viewed as minimizing the expectation value of a specific observable A that encodes the subjective
function in the parametrized quantum state generated by applying alternating operators e Ai-8

and e~ 4 on a uniform quantum state as follow,

rllgli}l’l (Ay=tr(4-pg,y)=(B.¥y | 4]B.¥) (5)
where we are able to program the |8, y) by following way

1B,y) = (e—iﬁn~Be—i7/n~A) ... <e—iﬂ1~Be—iV1 -A) |x) (6)

By calculating the derivative, in terms of parameters 8 and p, of the loss function Eq. (5),
the gradient-based optimizer can iteratively update these parameters and eventually approximate
a solution. The fundamental of QAOA is the hybrid quantum-classical framework which consists
of classical optimizer and variational quantum circuit (VQC).

The framework of hybrid-based model is shown in Fig. 1, where VQC is responsible for
calculating the gradient of the loss function L respect to parameters @, then classical optimizer
updates the parameters according to the gradient information and feed back to VQC. Similar to
this idea discussed above, plenty of hybrid-based quantum machine learning models are succes-
sively developed for tackling different problems such as quantum generative model [26], quantum
generative adversarial network [8,9], and so on.

Variational Quantum Circuit Classical Optimizer
U '
' 0L (9) SGD,
: i ADAVM,
o, Adagrad,
=arme 0 Momemtum,
o, _ RMSprop,

meinL(O) =gof(9)
Figure 1: The framework of hybrid-based model

The works listed above form the problem as a non-convex optimization problem, such as
minimizing or maximizing a composite function gof (), where f (f) is the expectation value. The
choice of function g can refer to the loss function in classical learning like mean square error
(MSE), cross entropy loss etc.

J(0)=(0)=tr (O py) (7
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where the observable O is the Hermitian operator of interest. In general, the density matrix pg
can be described as an ensemble of pure states,

po = _pjle)lel ®)

J=l1

where ) ;pi=1.1In the most of literatures, the pure state |<pj) is produced by applying a variational

quantum circuit U (6;) on initial quantum state |¢o), that is
[@7) = U (6;) Igo) ©)

By virtue of the success of QAOA, the non-convex optimization of the loss function gof ()
can also be optimized by gradient descent or heuristic algorithms.

Variational quantum circuit (VQC), known as the parametrized quantum circuit, plays the
core role in the hybrid quantum-classical framework. It can be viewed as the quantum black-
box model that is capable of approximating any given unitary operator with a small error like
neural networks in classical machine learning [13]. Unlike neural networks using weight matrices
(parameters) between layers that are adjusted by back-propagation methods, VQC achieves a
similar work in the quantum setting by utilizing a sequence of fixed and parametrized quantum
gates to construct a circuit model with a specific structure, that is

U (0) = UGN U@}\/,] cee U@z UQI (10)

where Uy, can be regarded as a quantum gate acting on specific qubits. They are selected from
a gate set that consists of parameter-free quantum gates including Pauli matrices (oy, oy, 0Z2),
controlled NOT gate (CNOT) and parametrized gates such as rotation gates (Ry (), Ry (9),
Rz (0)). Besides, Uy, can also represent a quantum circuit block, a similar role of the layer in
neural network, that is built by quantum gates with the specific structure. The widely used ways
to construct variational quantum circuits by Up, are shown in Fig. 2.

(a) (b)

Figure 2: The structure of quantum circuit block Up,. (a) Universal two-qubits gate, (b) one qubit
gates + entanglement gates

In subgraph (a) of Fig. 2, each square represents the universal two-qubits gate which can be
implemented by 15 rotation gates and 3 CNOT gates [27]. All these universal two-qubits gates are
applied on nearest-neighbor qubits. If the size of the quantum system is n qubits and number of
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the layer is /, this type of structure requires 15 (n— 1)/ quantum gates to create. In subgraph (b)
of Fig. 2, the gates of Uy, is divided into two parts, the layer of one qubit gates and the layer of
entangling gates. The squares represent the one rotation gates with angle and the rectangles stand
for the entangling gates such as CNOT gates or Ising (XX, YY, ZZ) coupling gates. The details
of these quantum gates are listed in Appendix A.

4 Learning Unitary by QML

Different from the methods introduced to solve the problem of learning a unitary trans-
formation in Section 2, we reformulate the problem from another perspective. According to
Choi—Jamiotkowski isomorphism in quantum information theory [11], there is the correspondence
between a quantum mapping £ and quantum states pg such that,

d-1
1
ps=5®1(pq>)=3 > Ei) G @ i) (] (11)
1,j=0

where pg is known as Choi matrix which is identical to the quantum map £ and pg is the
maximally entangled state,

d—1
1 o
po=- X:O li, 1) (j, jl (12)
Lj=

Since the unitary transformation Ur can be regarded as a mapping £ from one density matrix
to another one. Thus the learning unitary problem can be formed as the follow optimization
problem, that is minimizing the distance between quantum state py, and py,.

n}’inL (ours PU,) (13)
where the quantum state py, is

pu,= Up R I (po)

0 (14)
==Y Us (i () Ul ®1i) (]
i,j=0

The learning problem of Eq. (13) stands for finding the unitary operator which minimizes the
average output fidelity when feed the maximally mixed state as the input to Up and Ur. Thus,
it is necessary to add a regularization term to the problem Eq. (13), which also guarantees the
distance between Uy and Ur are still small enough. Therefore, the learning unitary problem is
shown as follow,

moinL(pUT,pUg)+)u||UT— Usll, (15)

There are many choices for L(-,-) and -], in problem Eq. (15). Since the bad selection
of L(.,-) and |||, will affect the performance of the model, the appropriate choice of L(-,-)
and |-[l, 1s required. We will introduce the measure of distance between quantum states and
between operators.
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Given two quantum state p4 and pp, the commonly used measure of distance for how ‘close’
between the quantum states are shown as follows,

e Trace distance:

1
Lz (pa, pg)=3tr (\/ (pa—pB) (pa — pg))

(16)
= sup tr(P(p4 — pB))
0<pP<I

It can be viewed as a generalization of the total variation distance on probability distribution
that satisfies the symmetry and triangle inequality. It is also related to the maximum probability of
distinguish different quantum state. The variational form of trace distance is shown in the second
line of Eq. (16) [28].

e Fidelity:

Lr(p4, ,OB)=tr( ,0A1/2,OB,0A1/2> (17)

Although the fidelity is not a metric, it has many good properties, such as it is invariant
unitary transformation, the value of fidelity lies within 0 and 1. It also can be interpreted as the
angle between states on a unit sphere. If p4, pp are pure state, the fidelity can reduced to the
overlap (inner product) between states.

e Quantum Optimal Transport Distance:

Lot (p4,pp) =mintr (7 C)
g (18)
s.t. trx (m) = pa, try () = pp

It is the quantum extension of classical optimal transport distance [10]. However, it is semi-
metric which does not satisfy the triangle inequality of metric on quantum states. It inherits the
nice property of classical optimal transport distance including smoothness and continues.

Because the quantum optimal transport distance can naturally be implemented by hybrid
quantum-classical framework on quantum device, we select quantum optimal transport distance
as L(-, ).

Given a unitary operator U, the norm of operator U can be represented in a general form,

1/
namely Schatten p-norm, ||U|, = [tr (UT U)p/z] P.

e Trace norm (p=1):

||U||tr=||U||1=tr[(U’fU)2] (19)
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e The Frobenius norm (p =2):

1

1UIr= 11Ul =t (UTU)]* (20)

e The Spectral norm (p = oo):
[Ullsp =1 Ulloo = max {|Ux|| : x € X, |lx|| =1} 21
where ||-|| is the Euclidean norm.

There are many nice properties of Schatten p-norm, such as the inequality between the
different norms. For any operator X, if 1 <p <g < oo, then || X||, <[ X]|, [28]. Therefore, we have
the following inequality between trace norm, Frobenius norm and spectral norm of operator X,

[ Xlsp < I X1 < 12X Ml (22)

The related work employed the square of Frobenius norm as the loss function for learning
unitary transformation [19]. In this work, we utilize the typically stronger norm, spectral norm,
to estimate the error between approximate and desired unitary operator. Consequently, we can
rewrite Eq. (15), the loss function of learning a unitary operator, in the following concrete way,

minmax tr(zC)+A||Ur — Uplly,
fx © (23)
s.t. trx (7T)=pUT, try (ﬂ):on

Since the min-max problem of Eq. (23) can be considered as quantum GAN with regulariza-
tion term. As directly solving the problem of Eq. (23) is intractable, we intend to tackle the dual
form of this problem by the Lagrange multiplier technique.

minmax tr(¢ - puy) —tr (¢ py,) + 21Ut — Uslly
0 ug,0 (24)
sit. IQe—9o@1xC

As the spectral norm of matrix A is to find the unit vector x which maximize the Euclidean
norm of Ax, we use a full-connected neural network with soft-max layer to construct unit
vector X, i.€., X = fsorimax (W X0 +b). Moreover, we regard the variational quantum circuit Up
as the generator and the parametrized observables ¢, ¢ as the discriminator. On account of the
variational quantum circuit can naturally be used for modeling the unitary transformation Up,
we investigate the feasibility of applying the hybrid quantum classical framework to solve the
optimization problem shown as Eq. (24). By applying the gradient based optimization algorithm,
we iteratively adjust the parameters of quantum circuit to approximate the target unitary operator.
Inspired by the training process of classical generative adversarial network, we also apply the
strategy of alternately updating the parameters of generator and discriminator. The training
algorithm is shown in Algorithm 1.
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Algorithm 1: The algorithm for solving the optimization problem

Input: learning rate n, maximum iteration ifermax, target unitary operator Ur, input quantum state
po=d 'S 10 1) (j. ). ep.

Output: the trained quantum circuit Up.

1 Initialize the parameters of variational quantum circuit Uy, and the parameters «, 8, W, t =0.
2  While ¢ < itermax do

3 for k=0,...,¢ep do

4 Update the parameters of Up

5 Ot 0t — 1y - VoL (6, o, B, W)

6 If t mod ep =0 then

7 Update the parameters of X, ¢, ¢

8 ot —al 4y - VoL (0, o, B, W)

9 Bl «— B4 np- VL (0, a, B, W)

10 W — Wy - VL6, o, B, W)
11 end for

12 t«t+1

5 Experimental Results

In this section, we provide the experiments of applying the quantum machine learning model
for learning the unitary transformation. We apply the quantum machine learning model discussed
above to the task of learning the unitary transformation of one dimensional Heisenberg spin
model which is also considered in reference [29]. The target unitary operator Uy on N-qubit
system is given by,

Ur = e—i~H~t (25)

In which the Hamiltonian H is described as,

N
_ - = oz (. x V =z
H_ZGJ-GJ+1+thJ-,oj_<Gj,Gj,o*j) (26)
j=1

where ;j stands for a vector of Pauli matrices oy, 0y, o> on jth qubit, and the external magnetic
field 7; in the z direction is randomly chosen from —/ to h. We investigate the following cases
that the system size N =2, 3 and the evolution time =N, and h=1.

In Figs. 3 and 4, we provide the changes of trace norm, Frobenius norm and spectral norm
between target and generated unitary operator during the training process. The solid black line
represents the average norm for 10 runs with random initialization of parametrized quantum
circuit, and the shaded area refers to the range of variation of the norm. In all case, the norm
will approximate to zero which means the generated unitary operator is close to the target. In
addition, the small system will lead to faster convergence, which is same as we expected.

We select fidelity between the generated and target quantum states to evaluate the performance
of our model. In Fig. 5, we show the fidelity between the quantum states which are generated
by applying Up and U7 on the same random input quantum states. As shown in Fig. 5, the
fidelity is eventually around 0.997 which indicates that the generated quantum circuit provides a

practicable approximation.
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Figure 3: The trace norm, Frobenius norm and spectral norm vs. iterations (N = 2). (a) Trace
norm (N =2), (b) Frobenius norm (N = 2), (c) spectral norm (N = 2)

6 Discussion

Learning unitary transformation is an important and vexing task in quantum computing,
which is related to controlling a quantum system or implementing a quantum algorithm with
fewer resources. In this work, we investigate the use of promising techniques from quantum
machine learning for learning a unitary transformation of a quantum system. Instead of the
related works which formulate the learning problem as minimizing the norms between target and
generated unitary operator, we express the problem as a quantum generative adversarial network
with regularization term from the other perspective based on Choi—Jamiotkowski isomorphism.
Comparing the trace norm and Frobenius norm used in related works, we add an intuitively
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stronger norm, spectral norm, as the regularization term to the loss function. Our numerical
experiments demonstrate that the operator generated by our proposed model can successfully
approximate the desired target unitary operator. The average spectral norm error of 10-replication
runs is 0.1, and the average fidelity between the states produced by applying target and generated
operators on the random input is around 0.997. Meanwhile, compared to the traditional method
using product formulas for Hamiltonian simulation, our proposed model can significantly reduce
the number of quantum gates for implementation. There are some potential applications of our
proposed model such as providing help for assisting us in implementing quantum algorithms or
compiling quantum circuits.

10 4 -

trace norm
frobeniusl norm
N
1

1 T T I 1
0 20 40 60 80 100 120 140 0 20 40 60 80 100 120 140
iteration iteration

() (b)

2.04 T

-
o
1

=1
o
1

spectral norm

o
o
1

0.0+

T T T
0 20 40 60 80 100 120 140
iteration

()

Figure 4: The trace norm, Frobenius norm and spectral norm vs. iterations (N = 2). (a) Trace
norm (N =2), (b) Frobenius norm (N = 2), (c) spectral norm (N = 2)
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Figure 5: The fidelity of the states generated by applying U 6 on random input (N =2, 3)
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Appendix A. Preliminary of Quantum Computing
A.1 Quantum State

Instead of storing a certain state in one classical bit, a qubit, the counterpart of classical
bit, is in a superposition of two basic state |0) and |1). Let |¢) represents an arbitrary one-qubit

state, which can be described by the |¢) =« |0)+ 8|1} or |p) = [(x ,B]T, where @ and B8 are both

complex number such that |a|?+|B]?> =1. They are known as probability amplitude which means
if we perform a measurement on state |¢), then |¢p) will collapse into state |0) or state |1) with the
probability la|? or |B]%, respectively. Besides, the quantum state |0) and [1) are also orthonormal
bases, which are also called the computational bases in quantum computing. For a multi-qubit
system, the state of this composite system can be described by the tensor product of the state
of subsystem such as |¢) =|p1) ® - ® |¢;,). All the quantum states we discussed above are pure
states. Besides, a mixed state is an ensemble of some pure states {|¢;)} with coefficient p;, which
is generally described by a density matrix in the form of p=)",;p;l¢;) (¢il, and ) . p;=1.

A.2 Quantum Gates and Quantum Circuit Model

The widely used model for quantum computation is the quantum circuit model that is
constructed by a sequence of reversible quantum logic gates. In quantum mechanics, the time
evolution of a quantum system can be described by a unitary transformation. Thus, the quantum
logic gates are equivalent to the unitary transformations in the quantum circuit model. The
followings are commonly used one-qubit and multiple-qubits quantum gates,

e Puali Gates,

fo o - 1o N
ool T oo 0 T o -1 A

e Rotation Gates,

cos6/2 —isinf/2 cosf/2 —isinf/2
R:(0) = : ., Ry@O)=]| | )
—isinf/2 cosf/2 sinf/2 cosf/2

exp(—if/2) 0
R.(6)= | PP (A2)
0 exp (i6/2)
e Entangling Gates,
Controlled-NOT gate,
1 0 0O
01 00
CNOT = (A.3)
0 010
0 0 0 1
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Ising XX Coupling Gates,

cos¢ 0 0 —ising
cos¢p —ising 0
XX (¢) = .
0 ising cos¢ 0
—ising O 0 cos¢

An example of quantum circuit is shown in Fig. A.l, each solid line through quantum gates
represents one qubit, which is corresponding to the passage of time. The square box denotes the
quantum gates, i.e., the revolution of the quantum system. The quantum states are passed through
the quantum gates from left to right.

I—,—|;{ 11 . :_ — _:
|§0> L bl | | | ‘/o |
[71 & [ l l
2] N )
I A
Rz(6,) o
single gates multiple gate circuit block

Figure A.1: An example of quantum circuit

A.3 Qubit Measurement

The classical data stored in quantum states cannot be directly read out. To extract the data,
we have to perform the quantum measurement on the state. Due to the measurement involve the
distraction from the exterior environment, the system will collapse after the measurement which
is an irreversible action. The operation of measurement can be described by a group of mea-

surement operator {M;}, where ZIM:r M; = 1. The projective measurement is simple and widely
used measurement. It is described by an observable M which has the spectral decomposition,
M=), m- Py, where P, = |¢n)(¢n| is the projector to the corresponding eigenspace with
eigenvalue m. When we perform the projective measurement on state |¢), we can get the state |¢;,;)
with probability (¢,,| P, |¢,) and the expectation value E (M) of observable M, E (M) =tr (M p),
where p is the density matrix of state |¢).



