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Abstract: Many previous research studies have demonstrated game strategies
enabling virtual players to play and take actionsmimicking humans. TheCase-
Based Reasoning (CBR) strategy tries to simulate human thinking regarding
solving problems based on constructed knowledge. This paper suggests a new
Action-Based Reasoning (ABR) strategy for a chess engine. This strategy
mimics human experts’ approaches when playing chess, with the help of the
CBR phases. This proposed engine consists of the following processes. Firstly,
an action library compiled by parsing many grandmasters’ cases with their
actions from different games is built. Secondly, this library reduces the search
space by using two filtration steps based on the defined action-based and
encoding-based similarity schemes. Thirdly, the minimax search tree is fed
with a list extracted from the filtering stage using the alpha-beta algorithm to
prune the search. The proposed evaluation function estimates the retrievably
reactivemoves. Finally, the best movewill be selected, playedon the board, and
stored in the action library for future use.Many experimentswere conducted to
evaluate the performance of the proposed engine.Moreover, the engine played
200 games against Rybka 2.3.2a scoring 2500, 2300, 2100, and 1900 rating
points. Moreover, they used the Bayeselo tool to estimate these rating points
of the engine. The results illustrated that the proposed approach achieved high
rating points, reaching as high as 2483 points.

Keywords: Action based reasoning; case-based reasoning; chess engine;
computer games; search algorithm

1 Introduction

Generally, various gamers are playing games on personal computers. There are many different
game categories, such as simulations, adventures, Real-Time Strategy (RTS), puzzles, and board
games. A player can play against others or against a computer-virtual player, where artificial
intelligence can be used to generate responsive, adaptive intelligent behaviors similar to human
intelligence. While games are mostly played for fun, the majority are designed for learning
purposes [1,2].

A chess game is a board game between two players, while an RTS game is a game among
multiple ones. Chess is a perfect information game where both players, at any position, know all
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the actions that can be taken at this position. On the other hand, in RTS games, the information
is hidden from the participants. In chess, each player has an army consisting of 16 pieces of six
types (pawn, rook, knight, bishop, queen, and king). The players are asked to use a plan or a
strategy to mate the opponent king while defending his pieces. On the contrary, in RTS games,
each player is supposed to uplift his resources not only to defend the castle but to wage attacks
as well.

CBR is mainly applicable to RTS games. Also, its phases mostly used when designing a chess
engine [3–6]. CBR simulates human thinking concerning solving problems. Humans try to recall
similar past situations from their experiences and adjust their solutions. CBR consists of four
phases; retrieval, reuse, revision, and retention [7–9]. In CBR, the human experience is similar to
the cases stored in a library called the Case Library (CL) [10]. Throughout the retrieval phase, the
engine searches for similar CL cases and returns the most similar ones. The reuse phase checks
if both retrieved and current states are identical, and then the solution is reused. Otherwise, it is
adapted. Next, we can test solutions in the revision phase and we are able to evaluate the whole
situation to measure the credibility of this solution to the current case. Finally, in the retention
phase, the current state and the reused solution are collected in the CL as a new experience that
could be retrieved and reused for future situations.

In chess, the goal of each player is to mate the opponent king through attacking the oppo-
nent’s pieces and defending his pawns. In addition to that the player attempt to pick the best
move from a set of legal ones. Shannon [11] estimated that the total number of moves in a chess
game is 10∧120, approximately 40 possible moves. As a result, these moves lead to thousands
of positions that need an evaluation each time initiating an action. The problem associated with
developing a chess engine is related to the time and space complexity required to locate the best
moves.

In chess engine, the evaluation process requires estimating many features such as pawn
structure, king safety, and available material for each side. Many researchers focused on tuning
the weights of the evaluation function using different optimization algorithms. The algorithms
included Genetic Algorithm (GA) [12,13], Genetic Programming (GP) [14,15], Evolutionary Pro-
gramming (EP) [16–18] and Neural Network (NN) [19]. On the other hand, this paper tends to
empower the evaluation function by extending its basic control parameters. It gives a high priority
to the safety of pieces on the board.

This paper is organized as follows: Section 2 presents some related works. Section 3 discusses
the proposed work. Section 4 presents the experimental results and compares them against some
existing methods. Section 5 provides the conclusion.

2 Related Work

In 1950, Shannon [11] was the first one who started teaching programming a computer to
play chess. In 1951, Alan Turing made the first computer program playing chess and tested it
through paper, not an actual machine. However, the first computer program that was able to
play a complete chess game was developed in 1958. In the last decades, researchers’ aim was
to build a chess engine capable of simulating human beings, evaluating positions, and choosing
moves like humans.

Sinclair [10] proposed a selective move generation mechanism based on example-based rea-
soning. The games played by chess grandmasters were analyzed and, accordingly, the positions
characterized. These characterizations mapped using Principle Component Analysis (PCA) and
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compared to those in the example base. Besides, a list of candidate moves returned and ranked
according to the similarity to the mapping.

Hauptman et al. [15] used GP to build up the evaluation function of the chessboard
endgames. They developed evaluation strategies similar to human experts’ analysis based on IF
conditional functions that return TRUE or FALSE values. During the testing, the GP paradigm
achieved a draw or won against the expert human-based strategy. It also got a draw against
CRAFTY, which is a world-class chess engine.

Flinter et al. [20] seek to improve the process of creating the case library. They demonstrated
a method for automatically generating a case library from a large set of grandmaster games using
the chunking technique.

Kerner [21] proposed an intelligent system for educational purposes, which empowered the
performance of the weak and intermediate players. This system developed a new case-based model
for analyzing any given chess position by studying the most significant features in that position.
This model provided explanatory comments better than those of the other existing game-playing
programs. However, to strengthen this model, some searching capabilities are needed urgently to
strengthen this model.

Ganguly et al. [22] proposed an IR-based approach for retrieving chess positions that resemble
those stored in the chess games database. They presented and interpret each position in terms of
mobility, reachability, and connectivity between pieces with a textual representation. The exper-
iments proved that this approach could retrieve similar game positions to analyze the current
piece’s position and predict each piece’s next best move.

Kubat et al. [23] tended to reduce the number of positions calculated for each move. They
designed an agent that searches for the learned patterns, which reduced the search tree. The
agent collected positive and negative models of scarification from the middle game patterns for
the learning process and used Quinlan’s C5 for creating the decision tree. Instead of calculating
billions of positions, the agent could recognize patterns with achieving acceptable classification
performance.

Kendall et al. [24] proposed a methodology that used GA to select optimal weights for the
evaluation function. Also, the minimax tree with the alpha-beta pruning algorithm was used for
locating the best moves. Shannon’s simple evaluation function used includes player material and
mobility parameters. Furthermore, a population of players was collected where two players were
selected to play a chess game against each other. During the testing, the player could beat the
chess master after 69 moves as the white player and lose after 97 ones as the black player.
However, this methodology needed more additional games to get acceptable results. It also needed
more depth for the search tree. Consequently this increased the learning time.

Boskovic et al. [25] proposed an approach that uses Differential Evolution Algorithm (DEA)
to find the optimal weights for the evaluation function. To run the same chess engine many
times, was the main purpose. Each time the engine is embedded with different parameters of the
evaluation function. Preliminary results demonstrated a smaller number of generations generated
acceptable parameters and improved the evaluation function.

Nasreddine et al. [26] proposed the dynamic boundary strategy, which uses an Evolutionary
Algorithm (EA). It tried to find an optimal evaluation function by dynamically updating the
weights associated with each chess piece except the king and the pawn. The engine’s performance
is tested against another one that is using the same Shannon’s evaluation function. After 520
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learning generations, it achieved a draw in the first game via a 50-moves limit, and however, it
won in the second game after 21 moves. Furthermore, the chess engine is tested against the chess
master 8000 in two games. It lost in the first game after 81 moves and achieved a draw in the
second game because of the 50-moves limit.

Vázquez-Fernández et al. conducted a series of studies concerning the performance of the
evaluation function. In [27], they build a search engine for a chess program based on EA. It
automatically adjusted the weights of the evaluation function. Additionally, in [28], the research
empowered the evaluation process using a selection mechanism that decides which virtual player
will pass to the next generation. The virtual player passed according to the matching degree of his
moves to the grandmasters’ moves. In [29], the study enhanced the engine’s rating using EA and
the Hooke-Jeeves algorithm. In [30], work refined the performance using Neural Network (NN)
based on unsupervised learning.

3 The Proposed Approach

Fig. 1 shows our proposed framework. It is composed of four consecutive continuous phases
as follows:

Figure 1: The proposed framework
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(1) Building the action library. This library was built by parsing a large set of chess grand-
masters games and stored as a set of descriptive cases, as described in Subsection 3.1.

(2) Minimizing the search space. When the opponent makes a move, the proposed engine
retrieves a list of reactions from the action library filtered twice as described in
Subsection 3.3. Firstly, it returns only the reactions of the grandmasters to the same
opponent’s move. Secondly, a similarity function is applied to select the most similar board.

(3) Feeding the minimax search tree with the list resulted from the filtering stage and pruning
the search using the alpha-beta algorithm. The minimax search tree expands the moves,
and the retrieved positions are estimated using the proposed evaluation function. Besides,
the best action that increases the case’s power is selected, as described in Subsection 3.4.

(4) Retaining the updated representation of the case. After locating the best move, the board
is updated and stored in the action library as a new case for future use, as described in
Subsection 3.5.

3.1 Building Action Library
The proposed action library was formed by mining 6,000 games. It consists of 300000

mapping action moves of the white opponent and the reactive actions of the black opponent.
Moreover, the scheme of the case within the action library takes the form: C = {Wm, Wf , Bm,
Bf , S}. Wm specifies the actions of the white opponents. Wf represents the Forsyth-Edwards Nota-
tion (FEN) after the move action of the white opponent. Additionally, Bm embeds a description
of the reactions of the black opponents. Bf also represents the FEN after the reaction of the
black opponent. Finally, the string ‘S’ encodes the complete textual representation of the case
after playing the move [22].

3.2 Engine Specification
The researchers have to clarify the initial state, terminal state, set of operators, and the utility

function to specify the chess engine.

3.2.1 Initial State
Initially, all pawns are locating on the board in their legal positions. Once the game is starting,

the white opponent starts to move one pawn to an allowed position. This case referred to the
board’s physical representation as to the search space’s initial state.

3.2.2 Terminal State
A chess game can be terminated in one of the following cases; 1) Win/Loss: It happens when

the king piece of one any player is threatened by the opponent and cannot move to a safe square
while the player cannot capture the attacked piece. 2) Insufficient material: A game ends in a draw
when both players do not have sufficient material, where capturing a checkmate through using the
remaining pieces is impossible. 3) Threefold repetition: It happens when a specific position occurs
three times in a game. In such a case, one of the players can ask for a draw and ends the game.
The researchers refer to the terminal state as T, in which each case takes the value of 0 or 1. The
starting position is referred to as T = {0, 0, 0}. Moreover, the terminal state in case of Win/Loss
is T = {1, 0, 0}.

3.2.3 Set of Operators
A set of operators make reference to all the possible actions that a player can make in his

game turn. The possible action is a legal move in the game. for instance, a pawn can move either
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one square or two squares forward if it is its first move. A knight can move in an ‘L’ shape, which
is one square along with any rank or file and then at an angle. A bishop can move in a diagonal
direction any number of empty squares. A rook can move whether horizontally or vertically, any
number of empty squares, in addition to its move in castling. A queen can proceed with any
number of empty squares in a diagonal, horizontal, or vertical direction. Finally, a king can move
only one square diagonally, horizontally, or vertically, in addition to a special castling move. The
current research refers to the set of operators ‘O’ as the following:

O = {P: {F1, F2}, Kn: {L}, B: {Dn}, R: {Hn, Vn}, Q: {Dn, Hn, Vn}, K: {D1,H1, V1}}

3.2.4 Utility Function
Utility function measures the performances over a set of game positions. The utility is

calculated using an evaluation function, which evaluates the current chess position. Moreover, the
selection of the best next move is made according to this evaluation. The proposed evaluation
function is computed as given in Eq. (1).

3.3 Minimizing the Search Space
After each opponent’s move, the proposed engine performs two filtration steps to minimize the

search space based on the similarity scheme. Two levels of similarity are considered; the action-
based similarity and the encoding scheme-based similarity, respectively.

3.3.1 Action Based Similarity
It retrieves all the grandmaster cases containing reactions to the current opponent’s move from

the action library. Moreover, Fig. 2 shows the physical representation of the considered root of
the search space from the Adams vs. the Pasman grandmaster game after the 20th move. Figs. 3–5
show the physical representation of the retrieved black reaction cases in response to the move
hxg6 of the white opponent as in Fig. 2.

Figure 2: Board grand master games, Adams vs. Pasman after move 21
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Figure 3: hxg6; black pawn at square h6 captures white pawn at square g6

Figure 4: fxg6; black pawn at square f7 captures white pawn at square g6

3.3.2 The Encoding Scheme Based Similarity
It retrieves a list of the most similar retrieved cases based on two subsequence steps. The first

step measures the similarity between the encoding string of the current and retrieved cases. Then
afterward, it assigns the similarity degrees to them. Moreover, each similarity degree has a range
(0 to 1). The second step discards the cases with a similarity degree, which is less than the value
of the proposed similarity degree ( ). Algorithm 1 illustrates the similarity scheme along with the
sequence of the steps.
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Figure 5: Qd7; black queen at squarre d8 moves to square d7

Algorithm 1: Minimizing the search space
Function Minimize Search Space (board, library) return similar cases
Input:

board, the current case of the game
library, an action-based library, a table indexed by case sequence

Variables:
Wm, the current move of the white opponent
S, the encoding string of the current case
, the similarity degree

L, the list of complete cases that contain black move responding to Wm
, the list of similar grandmaster cases that are like the current case

Begin:
1. Wm = Case-Parsing (board)
2. S = Case-Parsing (Wm, board)
3. L = Look-Up (Wm, library)
4. = Case-Match (S, L,
5. return

End

3.4 Search
This stage includes three subsequence steps: expanding, evaluating, and selecting the best

case responding to the active movement of the other opponent. The engine used the minimax
algorithm with the alpha-beta algorithm to control the proposed search strategy.

3.4.1 Expanding the Search Tree
The retrieved list now contains the best reactions with their cases, which could be played as

responses to the current opponent’s move. These reactions feed the search tree and expand to
select the best of them.
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3.4.2 Evaluate Cases
Once the engine constructs the search tree and specifies the depth limit, it starts recursively

from the leaf nodes to measure the power of its expanded nodes within the search space. It
guides the search procedure to locate the best reactive move. The proposed engine alters the
evaluation function form by maximizing the surrounding defenders’ and attackers’ roles. Moreover,
the proposed evaluation function takes the form given below in Eq. (1).

Pow (S)=
p∑

n=1

Pow(P) (1)

• Pow(S) is the power of the side S under the evaluation.
• P is the pieces’ count of the side S under the evaluation, starting from n = 1 to n = p.
• Pow(P) is the power of the piece P.

Pow(P) is calculated using the formula given below in Eq. (2).

Pow (P)=Pos (P)+Mat (P)+
d∑

n=1

(Pos (D)+Mat (D))−
a∑

n=1

(Pos (A)+Mat (A)) (2)

• Pow(P) is the power of the piece P of the side under evaluation.
• Pos(P) is the positional value of the piece P.
• Mat(P) is the material value of the piece P.
• D is the number of the defenders for the piece P starting from n = 1 to n = d.
• Pos(D) is the positional value of a defending piece D.
• Mat(D) is the material value of a defending piece D.
• A is the number of attackers for piece P, starting from n = 1 to n = a.
• Pos(A) is the positional value of an attacking piece A.
• Mat(A) is the material value of an attacking piece A.

Algorithm 2 illustrates that the implementation of the evaluation process is decomposed into
three main steps as follows:

(1) Creating both defenders’ net chain list and attackers’ net chain list of each piece.
(2) Tracking the frequency of pushing each defender and attacker inside the lists.
(3) Getting the power of each piece, as well as taking into account their associated net

chain lists.

Algorithm 2: The evaluation process
Function Evaluate ( ) return power
Input:

, the current case of the minimax search tree
Variables:

power, the calculated power of the board, initially 0
P, an individual piece of white or black opponent within the board

(Continued)
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DL, the net chain list of the defenders of each piece
AL, the net chain list of the attackers of each piece

Begin:
1. Foreach p in
2. Push the current piece to the main list
3. DL = Build Defender List (P, )
4. AL = Build Attacker List (P, )
5. power += Estimate Power (P, , DL, AL)
6. End foreach
7. return power

End

Moreover, to clarify the proposed evaluation function introduced in the research’s procedure,
we traced the mechanism of getting the black pawn’s power resides at g6. In this case, we referred
to it as P/g6, as shown in Fig. 6.

Figure 6: The physical representation of p/g6 position and its surrounding pieces

Once presenting the pawn P/g6 to calculate its power, the algorithm pushes the piece P to
the Main list (ML) and locates it at position g6. Furthermore, the textual representation that
configures the memory takes the form {piece/position: frequency}. In this case, the defenders’ net
chain list (DL) for P/g6 and its appearance frequencies as a defender is represented by {P/h7:1}.
On the other hand, the attackers’ net chain list (AL) for P/g6 and its appearance count as an
attacker is represented by {N/h4:1}.

Besides, the algorithm iteratively passes through each piece within the associated DL and AL.
It checks whether one of them with the specified position is visited or not, as follows:

(1) If it is visited before, then its defenders and attackers will exist; there is no need to expand
them again. Here the frequency of its repeated appearance is increased by 1.

(2) If it has not been visited yet, the algorithm will push the piece as an item in the main list
and expand its defenders and attackers.
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In general, the above condition prevents the search procedure from getting stuck in an infinite
loop. The relation between Rc8 and Qd8 is a clear example of such a case. Every time the engine
investigates the defenders of the piece Rc8, the piece Qd8 appears as an item in its DL and vice
versa. Tab. 1 illustrates the expansion lists (ML, DL, and AL) for the piece P/g6, as shown in
Fig. 6. Algorithm 3 presents the procedure of estimating the power of every single piece within
the board.

Table 1: Tracing expansion lists of a piece p/g6

Main list (ML) Defenders list (DL) Attackers list (AL)

P/g6 {P/h7:1} {N/h4:1}
P/h7 {K/g8:1} { }
K/g8 {R/e8:1} { }
R/e8 {Q/d8:1} { }
Q/d8 {R/e8:2 , R/c8:1} { }
R/c8 {Q/d8:2} { }
N/h4 {N/f5:1, B/f6:1} { }
N/f5 {P/g6:1, P/e6:1} {N/h4:2}
B/f6 {Qld8:3} { }
P/e6 {R/e8:3} {R/e4:1}
R/e4 {Q/d3:1} { }
Q/d3 { } { }

Algorithm 3: Estimation of the power of a single piece
Function Estimate Power (P, , DL, AL) return power
Input:

P, the current piece within the board
, the current case of the minimax search tree

DL, the net chain list of the defenders of each piece
AL, the net chain list of the attackers of each piece

Variables:
power, the calculated power of the board, initially 0
def_power, the calculated power of the defenders in DL, initially 0
att_power, the calculated power of the attackers in AL, initially 0
def_pos, the position of the defender piece within the board.
att_pos, the position of the attacker piece within the board

Begin:
1. Foreach def in DL
2. def_pos = GetPosition (def, )
3. def_power += (GetPosVal ( , def, def_pos) + GetMatVal(def)) * GetFreq(def)
4. End Foreach
5. Foreach att in AL
6. att_pos = GetPosition (att, )

(Continued)
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7. att_power += (GetPosVal ( , att, att_pos) + GetMatVal(att)) * GetFreq(att)
8. End Foreach
9. power = (GetPosVal ( , p, piece_pos) + GetMatVal(p) + def_power) – att_power
10. return power

End

3.4.3 Select the Best Case
Once evaluating each expanded case, the engine strives to select an optimal move for an

opponent by assuming that the other opponent is also playing optimally. It motivates the max
player to identify the maximum value of the power and the min player to select the minimum
value [31].

3.5 Retaining
Once selecting the best action is selected, the engine alters the given case’s incomplete textual

representation. It adds the best black move Bm, FEN after the black move Bf and the complete
specification of the encoding string S. Additionally, the engine extends its experience by pushing
the new case to the action library as a revised gained experience, to which enhance its performance
for further actions. Algorithm 4 illustrates the steps of updating the action library.

Algorithm 4: The retain process for empowering the action library
Function Retain (C, best move)
Input:

C, a fully specified description of the case
best move, the best move selected using minimax with alpha-beta.

Begin:
1. Wm = Case-Parsing (C)
2. Wf = Case-Parsing (Wm, C)
3. Bf = Case-Parsing (best move, C)
4. S = Case-Parsing (best move, C)
5. C = Update-Case (C, Wm, Wf , best move, Bf , S)
6. Append C to the end of the library.

End

4 Experiments

4.1 Dataset
The course experiments used our action library, built by parsing the grandmaster games taken

from: (https://ccrl.chessdom.com/ccrl/4040/games.html). Moreover, as mentioned in Section 3.5, its
size grows while playing; therefore, the engine gains experience.

4.2 The Evaluation Criteria
The proposed engine played 200 games for each experiment against Rybka 2.3.2a, which

are available at: (http://www.rybkachess.com/index.php?auswahl=Demo+version). We conducted
the experiments at 2500, 2300, 2100, and 1900 rating points. The Bayeselo tool responsible
for estimating the engine’s rating is available at: (https://www.remi-coulom.fr/Bayesian-Elo/). We

https://ccrl.chessdom.com/ccrl/4040/games.html
http://www.rybkachess.com/index.php?auswahl$=$Demo$+$version
https://www.remi-coulom.fr/Bayesian-Elo/
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counted the number of the games where the engine achieved a draw, win-win, or defeat lost the
game.

4.3 Experiments
4.3.1 Experiment A

This experiment estimated the effect of implementing the evaluation function on empowering
the pieces’ safety ratio. The proposed engine played 200 games twice. It used the standard
evaluation function for the first round and the proposed evaluation function for the second.

Throughout this experiment, the proposed engine fed its search trees using all the legal moves
at any position. Tab. 2 illustrates the results of both trials. At all rating points, the implementation
of the proposed evaluation function produces better results due to considering both the defenders’
and the attackers’ net chain list of each piece.

Table 2: Results of experiment A

Method Win–Draw–Loss

2500 rate 2300 rate 2100 rate 1900 rate

Proposed evaluation function 18-1-181 69-43-88 98-23-79 113-31-56
Standard evaluation function 0-1-199 49-13-138 71-33-96 105-44-51

4.3.2 Experiment B
Throughout this experiment, the engine implemented the proposed evaluation function. Also,

it fed its search tree with the legal moves retrieved from the action library.

Tab. 3 illustrates the results of extending the action library at different rating points. At the
rating point of 1900, the number of games the engine achieved won case increased from 113 to
167 compared to the results mentioned in experiment A. The won cases also increased from 98 to
117 and 69 to 78, at the rating points of 2100 and 2300, respectively. It means that utilizing the
moves played by grandmasters to feed the engine as a response to the current opponent’s move
enhanced the results.

Table 3: Results of experiment B

Method Win–Draw–Loss

2500 rate 2300 rate 2100 rate 1900 rate

Using action library 37-4-159 78-36-86 117-29-54 167-9-24

4.3.3 Experiment C
Throughout this experiment, the engine implemented the proposed evaluation function. Also,

it fed its search tree with the legal moves retrieved from the action library after applying the two
levels of the similarity schemes. Also, a series of similarity degrees tried to find the best value
used to retrieve the most similar cases.
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Tab. 4 illustrates the results of conducting a series of similarity degrees including 0.4, 0.5, 0.6,
0.7, and 0.8, respectively, with 200 games played for each. The results showed that the performance
at the similarity degrees 0.4 and 0.5 are too close. Moreover, their values are better than the
results of playing the games at other similar degrees. Furthermore, the performance of the engine
has enhanced after adding the effects of these similarity schemes.

Table 4: Results of experiment C using different similarity degrees

Proposed engine at different similarity degree Win–Draw–Loss

2500 rate 2300 rate 2100 rate 1900 rate

Test at similarity >= 0.4 38-44-118 109-46-45 127-35-38 179-15-6
Test at similarity >= 0.5 42-37-121 111-46-43 124-41-35 181-13-6
Test at similarity >= 0.6 30-12-158 82-23-95 109-14-77 156-20-24
Test at similarity >= 0.7 18-5-177 41-13-146 74-26-100 96-11-93
Test at similarity >= 0.8 0-4-196 2-1-197 8-1-191 12-3-195

4.4 The Proposed Engine vs. Another Engine
The proposed engine’s performance is compared with another engine developed by Vázquez-

Fernández et al. [18]. The rating of the proposed engine in experiment A was 2167 points. It
reached 2217 points and 2483 points in experiments B and C, respectively. Tab. 5 illustrates that
the proposed engine achieved rating points higher than those presented in [18]. It achieved 166
rating points higher than those accomplished by the evolved virtual player. It also achieved 982
rating points higher than those managed by the non-evolved virtual player.

Table 5: The proposed engine results compared to Vázquez-Fernández et al. [18] results

Comparative engines Win–Draw–Loss Engine rating

2500 rate 2300 rate 2100 rate 1900 rate

Non-evolved virtual player 0-0-200 0-2-198 0-8-192 0-10-190 1501
Evolved virtual player 29-40-131 77-48-75 110-30-60 166-27-7 2317
Our Proposed Engine 38-44-118 109-46-45 127-35-38 179-15-6 2483

5 Conclusion

In this research, we developed a new chess game engine that thinks and plays as human
experts. It retrieved the best move by searching the constructed action library, acting as a repos-
itory of the grandmasters’ actions. This work introduced a proposed form of the evaluation
function that implemented a minimax search tree with an alpha-beta pruning algorithm. Besides,
it included two levels of similarity schemes.

Throughout the experiments, 200 games were played for each test against Rybka 2.3.2a, as
the opponent chess engine, at different rating points. The number of games wherein the engine
achieved a draw, win-win, or defeat lost was counted. The results showed that the similarity
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schemes enhanced the list of the moves retrieved from the action library and the two similarity
levels. Overall, this work keeps the pieces safe as long the associated defenders and attackers
could be tracked throughout the game. Moreover, the experience of the engine is increased with
each game played. Additionally, the results demonstrated that the proposed engine achieved rating
points higher than those of the other engine.
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