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Abstract:White blood cells (WBCs) are a vital part of the immune system that
protect the body from different types of bacteria and viruses. Abnormal cell
growth destroys the body’s immune system, and computerized methods play a
vital role in detecting abnormalities at the initial stage. In this research, a deep
learning technique is proposed for the detection of leukemia. The proposed
methodology consists of three phases. Phase I uses an open neural network
exchange (ONNX) and YOLOv2 to localize WBCs. The localized images are
passed to Phase II, in which 3D-segmentation is performed using deeplabv3 as
a base network of the pre-trained Xception model. The segmented images are
used in Phase III, in which features are extracted using the darknet-53 model
and optimized using Bhattacharyya separately criteria to classify WBCs. The
proposed methodology is validated on three publically available benchmark
datasets, namely ALL-IDB1,ALL-IDB2, and LISC, in terms of differentmet-
rics, such as precision, accuracy, sensitivity, and dice scores. The results of the
proposed method are comparable to those of recent existing methodologies,
thus proving its effectiveness.
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1 Introduction

Blood is a fluid that transports oxygen, providing energy to body cells that then produce
carbon dioxide. It also plays a pivotal role in the immune system; blood circulating in liv-
ing organisms contains 55% plasma, 40% red cells, 4% platelets, and 1% white blood cells
(WBCs) [1]. The five primary types of WBCs are acidophilus, lymphocytes, monocytes, basophils,
and neutrophils. These blood cells contain nuclei that differ from those of other cells [2]. WBC
abnormalities are diagnosed by a blood smear test. Peripheral blood analysis is utilized for
detection of diseases, such as malaria, leukemia, and anemia [3,4]. Such disorders are revealed
by an increase and decrease the number of WBCs in the human body. Variations occur in the
morphological structure of blood cells in terms of color, shape, and size, and such variations aid
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in the diagnosis of abnormalities in the WBCs [5]. Thus, segmentation and classification methods
are used for the detection of WBCs. The manual evaluation of WBCs is laborious and time
consuming [6], and computerized methods are a useful alternative that also minimize the workload
of hematologists [7]. Segmentation and classification of WBCs are performed using conventional
and deep learning methodologies. In conventional approaches, features are extracted manually;
however, in deep learning, images features are learned automatically through a pipeline to improve
efficiency [8]. In this study, an automated approach based on deep learning is proposed to segment
and classify WBCs more accurately. The foremost contributions of the proposed work are as
follows:

• The Open Neural Network Exchange (ONNX) is applied with a YOLOv2 model, which
detects the different types of WBCs. The features are extracted using activation-5 of
the ONNX model. The extracted features are fed to the YOLOv2 model. The proposed
framework accurately detects the region of interest (ROI).

• The features are extracted using darknet-53, and the prominent features are selected based
on Bhattacharyya separately criteria and fed to the shallow classifiers for the classification
of WBCs.

2 Existing Literature

In the literature, significant work has been done for the detection of WBCs, and some of
the recent works are discussed in this section [9,10]. The detection of WBCs comprises four
primary steps: pre-processing, localization/segmentation, extracting discriminant features, and clas-
sification. Pre-processing is a crucial step that is performed for noise removal and eradicating
unwanted distortion to enhance the lesion region used in the subsequent segmentation step [11].
Segmentation is another vital step; it is used to group the homogeneous pixels and segment the
required region from the input images. WBC cells are difficult to segment because of variations in
their appearance [12]. Traditionally, WBCs were detected manually by pathologists, which is time-
consuming and can be inaccurate [13]. Recently, automated approaches have been used for the
detection of WBCs. Unsupervised clustering methods [14], thresholding approaches [15], shape-
based approaches [16], and saliency-based models [17] are commonly used to localize WBCs.
Watershed and histogram orientation approaches are used for the segmentation of WBCs. A large
amount of data is presented into a set of vectors in the feature extraction process [18]. Selection
of the optimum diagnostic features is an important task for the detection of WBCs [19]. Several
types of features with different classifiers were used to differentiate the types of WBCs [20].
Supervised methods, such as SVM, Bayesian, random forest [21], and Bayesian [22], are used
for the classification of WBCs. However, even the best feature extraction and selection methods
struggle with accurate classification” or something similar [23]. Deep learning (DL) approaches
are used widely to extract high-level information automatically [24] for the detection of ROIs,
such as in WBC detection and classification [25]. Contour aware neural networks are used to
segment the WBCs. Pixel by pixel classification is performed using a fully convolutional neural
network (FCN) [26]. Mask R-CNN exhibits better classification as compared with other DL
techniques [27].

3 Proposed Methodology

The proposed approach comprises localization, segmentation, high-level feature extrac-
tion/selection, and classification steps for the analysis of WBCs. In the proposed approach,
WBCs are detected/localized using ONNX as the backbone of YOLOv2. The localized cells are
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segmented using the proposed 3-D semantic segmentation model. Finally, the WBCs are classified
using multi-SVM. An overview of the proposed method is presented in Fig. 1.

Figure 1: Proposed method architecture for WBCs localization and the segmentation

3.1 Localization of the WBCs
In this research, WBCs are recognized by the suggested WBC-ONNX-YOLOv2 model, as

shown in Fig. 2, where features are extricated from activation-5 LeakyReLU of the ONNX model.
The extracted features are further fed to the YOLOv2 architecture. The proposed model has 26
layers in the ONNX model, namely 1 input, 6 Conv, 6 Bn, 6 activation, 2 elementwise-affine,
and 5 max-pooling layers, and 9 YOLOv2 layers, namely 2 ReLU, 2 Bn, 2 Conv, 1 classification,
1 transform, and 1 output layer.

The layer-wise proposed model architecture is presented in Tab. 1.

The proposed model is trained using selected parameters as reported in Tab. 2.

It is trained on 100 epochs, because after 100 epochs, the model performance is almost stable.
The number of iterations with the respective loss during training is illustrated graphically in
Fig. 3.

3.2 3D-Segmentation of the Leukocytes
The semantic segmentation model is proposed for the segmentation of WBCs, in which

deeplabv3 is used as a bottleneck in the Xception model. The pre-trained Xception model contains
205 layers, comprising 1 input, 88 2-D Conv, 46 Bn, 46 ReLU, 3 max-pooling, 12 addition, 4 crop
2D, 2 transpose Conv, 2 depth Conv, softmax, and pixel classification layers. The segmentation
model was trained from scratch on the blood smear images. The training parameters of the
presented model are listed in Tab. 3.

The proposed model learning with convolutional layers is plotted with activation units, as
presented in Fig. 4.
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Figure 2: ONNX-YOLOv2 for multi-class detection

Table 1: The layered architecture of the proposed localization model

Layers of the proposed model Activation units Layers of the
proposed model

Activation
units

Image input 128× 128× 3 2× 2 mp3 8× 8× 128
Multiple (mul)-mul (element wise affine) 128× 128× 3 Conv4 8× 8× 256
Add-add (element wise affine) 128× 128× 3 Bn4 8× 8× 256
Convolutional (conv) 128× 128× 16 Act4 8× 8× 256
Batch-normalization (Bn) 128× 128× 16 2× 2 mp4 4× 4× 256
Activation (act) (leaky ReLU with 0.1 scale) 128× 128× 16 Conv5 4× 4× 512
2× 2 max-pooling (mp) 64× 64× 16 Bn5 4× 4× 512
Conv1 64× 64× 32 Act5 4× 4× 512
Bn1 64× 64× 32 Conv1-YOLOv2 4× 4× 512
Act1(leaky ReLU with 0.1 scales) 64× 64× 32 Bn1-YOLOv2 4× 4× 512
2× 2 max-pooling-1 (mp) 32× 32× 32 ReLU1-YOLOv2 4× 4× 512
Conv2 32× 32× 64 Conv2-YOLOv2 4× 4× 512
Bn2 32× 32× 64 Bn2-YOLOv2 4× 4× 512
Act2 32× 32× 64 ReLU2-YOLOv2 4× 4× 512
2× 2 mp2 16× 16× 64 YOLOv2-classification 4× 4= 40
Conv3 16× 16× 128 YOLOv2-transform 4× 4= 40
Bn3 16× 16× 128 YOLOv2-output –
Act3 16× 16× 128



CMC, 2021, vol.69, no.1 789

Table 2: Proposed localization model training parameters

Input image size Training
epochs

Batchsize Optimizers Learning rate Training average
precision rate (mAP)

128× 128× 3
Shuffle = True
(by default)

100 12 Stochastic
gradient descent
(Sgdm)

1e−3 1.00

Figure 3: Number of the iteration with respect to training loss

Table 3: Training parameters of the segmentation model

Optimizer Sgdm

Batch-size 10
Training epochs 40

......

Input Image Convolutional Batchnormalization TransposeConvolutional Classification

Figure 4: Segmentation model with activation units
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3.3 Deep Features Extraction and Classification
The deep features are extracted using a pre-trained darknet53 model, which contains 184

layers, namely 1 input, 53 Conv, 1 global pooling, 52 Bn, 52 LeakyReLU, and 23 addition
layers, and softmax with cross-entropy loss. The features are extracted from Conv53 layers with
dimensions of 1× 1000. The selection of informative features from a pool of features is difficult.
Therefore, the Bhattacharyya rank-based feature selection approach is used, in which the optimum
500 (50%) best features are selected out of 1000 features to improve the classification accuracy,
also providing cost-effective and fast predictors. The best-selected features are further supplied to
the multi-kernel SVM classifiers, such as Cubic-SVM, Quadratic SVM, O-SVM, and Gaussian
SVM to classify the different types of blood cells, as depicted in Fig. 5.

Input Images

Features Extraction and Classification

Darknet-53
Features Mapping

Features Vector
Conv53 Features Selection using

Bhattacharyya

50
%

 b
es

t f
ea

tu
re

s
se

le
ct

io
n

us
in

g
hi

gh
es

t r
an

k

SVM CUBIC
SVM QUADRATIC

SVM OPTIMIZEABLE

Classifiers

EOS BASO LYM MONO

NEU Blast

Final Feature
Vector

Classification

Figure 5: Feature extraction & selection and classification process

The SVM classifier with different kernels is trained on the best-selected feature vectors with
optimum parameters, as listed in Tab. 4.

Table 4: Parameters of SVM selection

Classifier Function of the kernel

SVM Quadratic cubic Kernel of the scale: automated constraint box level: 1
Multilevel approach: One vs. One

Optimizable Kernel scale and box constraint: 0.001–100
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Table 5: Localization results of different kinds of WBCs

Types of WBCS IoU mAP

Acidophilus 0.95 1.00
Lymphocytes 0.92 1.00
Monocytes 0.91 1.00
Basophils 0.93 1.00
Neutrophils 0.90 0.80
Blast cells 0.97 0.93

Figure 6: Localization results on benchmark datasets (a) log average rate (b) average precision of
different types of WBCs (c) IoU (d) average precision of blast cells

4 Experimental Setup

In this research, three publicly available benchmark datasets are used for the method evalua-
tion. ALL-IDB1 contains 107 blood smear images, of which 33 are blasts and 74 are non-blast
cells, and ALL-IDB2 contains 260 blood smear images, comprising 130 blasts and 130 non-blast
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cells [28–31]. The LISC dataset contains blood smear images of WBCs, including eosinophils,
neutrophils, monocytes, lymphocytes, and basophils. The numbers of images for each type of
WBC are not equal. To balance the different types of imaging data of WBCs, data augmentation
is performed by rotating the images at different angles, such as 45◦, 90◦, 180◦, and 360◦. After
augmentation, 6250 images of five types of WBCs are obtained, with each type having 1250 blood
smear images [32].

4.1 Results & Discussion
The proposed work performance is validated by performing three experiments. The first exper-

iment is performed to validate the presented localization technique by different metrics such as
mean precision (mAP) and intersection over the union (IoU). The second experiment is validated
to compute the segmentation model performance, while the third experiment is performed to
compute the classification model performance. All experiments in this research are performed on
the MATLAB 2020 Ra toolbox with 1050 K Nvidia Graphic Card.

4.2 Experiment #1: Localization of Leukocytes
Experiment 1 was performed to validate the performance of the localization approach on

three benchmark datasets, LISC, ALL-IDB1, and ALL-IDB2, using IoU and mAP as metrics,
as shown in Tab. 5. In this experiment, six types of WBCs were localized, and the localization
results are graphically depicted in Fig. 6.

Figure 7: Localization results and corresponding confidence score of the proposed method on
LISC dataset. Column (a) and (d) represent input images; (b) and (e) localization results; (c) and
(f) confidence score
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The localization outcomes in Tab. 5 indicate that the method achieved the highest 0.97 IoU
on blast cells.

The proposed method localizes the WBCs with confidence scores, as shown in Figs. 7 and 8.

The localization results in Figs. 7 and 8 reveal that the proposed method achieved the highest
confidence scores of 0.97349, 0.96849, 0.95933, 0.95867, 0.94616, and 0.89726 for eosinophils,
basophils, lymphocytes, monocytes, neutrophil, and blast cells, respectively.

Figure 8: Localized region on LISC and ALL-IDB datasets (a) blast images (b) localization (c)
confidence scores

4.3 Experiment 2: Segmentation of Leukocytes
In this experiment, the 3D segmented region is validated using different types of performance

metrics, namely IoU, mean, weighted, and global accuracy, and F1-scores, as mentioned in Tab. 6.
The results of the proposed segmented WBCs are mapped pixel-by-pixel with ground annotated
images, as illustrated in Fig. 9.



794 CMC, 2021, vol.69, no.1

Table 6: Segmentation results of the WBCs

Accuracy (global) Accuracy (mean) IoU (mean) IoU (weighted) F1-score

0.99 0.98 0.97 0.98 1.0

Figure 9: 3D-segmentation outcomes (a) WBCs (b) 3D segmentation (c) ground annotated masks

The segmentation results in Tab. 6 indicate that the proposed method achieved the highest
segmentation accuracy, obtained by the pixel-by-pixel comparison of the segmented images with
ground annotated images.

4.4 Experiment #3: Classification Based on the Extracted Feature
In this experiment, an optimized feature vector is fed to a multi-kernel SVM for WBC

classification, and the outcomes are computed in terms of accuracy, precision, recall, and F1
scores from the LISC dataset, as displayed in Tabs. 7–9. The discrimination outcomes on the LISC
and ALL-IDB1&2 datasets with class labels are presented in Fig. 10.
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Table 7: WBCs classification results

Types of WBCS ACC (%) PPV Sensitivity F1scores

Eosinophils 100 1.0 1.0 1.0
Basophils 95.78 0.90 0.90 0.90
Lymphocytes 98.95 0.98 0.97 0.97
Neutrophils 96.26 0.90 0.92 0.91
Monocytes 100 1.0 1.0 1.0

Table 8: WBCs classification results

Types of WBCS ACC (%) PPV Sensitivity F1scores

Eosinophils 100 1.0 1.0 1.0
Basophils 92.06 0.87 0.89 0.88
Lymphocytes 97.56 0.99 0.94 0.96
Neutrophils 92.58 0.87 0.90 0.89
Monocytes 100 1.0 1.0 1.0

Table 9: WBCs classification results

Types of WBCs ACC (%) PPV Sensitivity F1scores

Eosinophils 100 1.0 1.0 1.0
Basophils 98.73 0.96 0.98 0.97
Lymphocytes 99.62 0.99 0.97 0.98
Neutrophils 98.83 0.97 0.97 0.97
Monocytes 100 1.0 1.0 1.0

A quantitative analysis is performed using an SVM with three different types of kernels,
namely cubic, quadratic, and optimized. The SVM with the optimized kernel achieved a maximum
overall accuracy of 98.4%. The classification results are also compared with the latest published
work, as shown in Tab. 10.

Tab. 10 compares the classification results with the latest published existing work. The existing
work achieved accuracies of 0.995, 0.984, 0.984, 0.961, and 0.950 for lymphocytes, monocytes,
basophils, eosinophils, and neutrophils, respectively. In contrast, the proposed method exhib-
ited improved classification accuracy, with 0.996, 1.00, 0.987, 1.00, and 0.988 for lymphocytes,
monocytes, basophils, eosinophils, and neutrophils, respectively.

The classification results on the ALL-IDB1&2 datasets are presented in Tabs. 11 and 12.

The classification results of blast/non-blast cells are presented in Tabs. 11 and 12. An accuracy
of 99.57% was achieved on the ALL-IDB1 dataset and 98.25% on the ALL-IDB2 dataset, and
the results are compared with a recently published work, as provided in Tab. 13.

Tab. 13 presents a comparison of the numerical results, wherein the competitive results
obtained from the proposed method are compared to those of the latest published work.
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Figure 10: Confusion matrix (a) LISC dataset (b) ALL-IDB1 dataset

Table 10: Proposed work comparison with latest published work on LISC dataset

Ref Year Results (accuracy)

[25] 2020 Lymphocyte = 0.995
Monocyte = 0.984
Basophil = 0.984
Eosinophil = 0.961
Neutrophil = 0.950

Proposed method Lymphocyte = 0.996
Monocyte = 1.00
Basophil = 0.987
Eosinophil = 1.00
Neutrophil = 0.988

Table 11: WBCs classification results

Classes ACC (%) PPV Sensitivity F1scores

Blast cell 99.57 1.0 0.99 1.0
Non-blast cells 99.57 0.99 1.0 1.0

Table 12: WBCs classification results

Classes ACC (%) PPV Sensitivity F1scores

Blast cell 98.25 0.99 0.97 0.98
Non-blast cells 98.25 0.97 0.99 0.98
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Table 13: Results comparison

Ref Year Dataset Results (accuracy) (%)

[33] 2018 ALL-IDB 97.22
[34] 2018 96.06
[35] 2020 97.45
[36] 2020 97.00
[37] 2020 94.10
Proposed approach 99.57

5 Conclusion

In this study, deep learning approaches are proposed for the detection of WBCs. Detecting
WBCs is challenging because blood smear images contain different color distributions in the cyto-
plasm and nucleus regions, making it difficult to segment these regions accurately. A 3-D semantic
segmentation model is proposed, in which deeplabv3 is used as a bottleneck and the Xception
model is used as a classification head to accurately segment the WBCs. Feature extraction/selection
is another challenge for the classification of WBCs. The features are extracted from the pre-
trained darknet-53 model, and informative features are selected using Bhattacharyya separability
criteria and passed to the SVM with different types of kernels, namely cubic, quadratic, and
optimized. The proposed classification method achieved an accuracy of 99.57% on the ALL-IDB1
dataset, 98.25% for the ALL-IDB2 dataset, and 98.4% for LISC datasets using the optimizable
SVM kernel. The overall experimental outcomes demonstrate that the proposed technique achieved
competitive outcomes by optimizing the SVM kernel. The proposed new framework based on a
CNN can be used for the detection of different types of cancer, such as lung and bone cancer. It
detects and classifies leukocytes at an early stage, thereby increasing the survival rate of patients.

Acknowledgement: This research was supported by Korea Institute for Advancement of Technol-
ogy (KIAT).

Funding Statement: This research was supported by Korea Institute for Advancement of Tech-
nology (KIAT) grant funded by the Korea Government (MOTIE) (P0012724, The Competency
Development Program for Industry Specialist) and the Soonchunhyang University Research Fund.

Conflicts of Interest: All authors declare that they have no conflicts of interest to report regarding
the present study.

References
[1] M. Srivastava, Analysis on Bio-Mathematics. Chhattisgarh, India: Shashwat Publication, 2020. [Online].

Available: https://shashwatpublication.com/books/anasysis-on-bio-mathematics.
[2] S. Ali, A. Tanveer, A. Hussain and S. U. Rehman, “Identification of cancer disease using image

processing approahes,” International Journal of Intelligent Information Systems, vol. 9, no. 2, pp. 1–
10, 2020.

[3] E. Abdulhay, M. A. Mohammed, D. A. Ibrahim, N. Arunkumar and V. Venkatraman, “Computer
aided solution for automatic segmenting and measurements of blood leucocytes using static microscope
images,” Journal of Medical Systems, vol. 42, no. 4, pp. 1–12, 2018.

https://shashwatpublication.com/books/anasysis-on-bio-mathematics


798 CMC, 2021, vol.69, no.1

[4] M. A. Mohammed, K. H. Abdulkareem, S. A. Mostafa, M. K. A. Ghani, M. S. Maashi et al., “Voice
pathology detection and classification using convolutional neural network model,” Applied Sciences,
vol. 10, pp. 1–13, 2020.

[5] M. Subathra, M. A. Mohammed, M. S. Maashi, B. Garcia-Zapirain, N. Sairamya et al., “Detection of
focal and non-focal electroencephalogram signals using fast walsh-hadamard transform and artificial
neural network,” Sensors, vol. 20, no. 17, pp. 1–20, 2020.

[6] M. K. Abd Ghani, M. A. Mohammed, N. Arunkumar, S. A. Mostafa, D. A. Ibrahim et al., “Decision-
level fusion scheme for nasopharyngeal carcinoma identification using machine learning techniques,”
Neural Computing and Applications, vol. 32, no. 3, pp. 625–638, 2020.

[7] O. I. Obaid, M. A. Mohammed, M. Ghani, A. Mostafa and F. Taha, “Evaluating the performance of
machine learning techniques in the classification of wisconsin breast cancer,” International Journal of
Engineering & Technology, vol. 7, pp. 160–166, 2018.

[8] N. Arunkumar, M. A. Mohammed, M. K. Abd Ghani, D. A. Ibrahim, E. Abdulhay et al., “K-means
clustering and neural network for object detecting and identifying abnormality of brain tumor,” Soft
Computing, vol. 23, no. 19, pp. 9083–9096, 2019.

[9] H. Eilertsen, P. C. Sæther, C. E. Henriksson, A. S. Petersen and T. A. Hagve, “Evaluation of the
detection of blasts by sysmex hematology instruments, cellavision DM96, and manual microscopy using
flow cytometry as the confirmatory method,” International Journal of Laboratory Hematology, vol. 41,
no. 3, pp. 338–344, 2019.

[10] H. H. Inbarani and A. T. Azar, “Leukemia image segmentation using a hybrid histogram-based soft
covering rough k-means clustering algorithm,” Electronics, vol. 9, no. 1, pp. 1–22, 2020.

[11] J. Bai, F. Lu and K. Zhang, “ONNX: Open neural network exchange,” GitHub Repository, 2019.
[Online]. Available: https://github.com/onnx/onnx.

[12] J. Redmon and A. Farhadi, “YOLO9000: Better, faster, stronger,” in Proc. of the IEEEConf. onComputer
Vision and Pattern Recognition, Honolulu, Hawaii, pp. 7263–7271, 2017.

[13] L. Chen, Y. Zhu, G. Papandreou, F. Schroff and H. Adam, “Encoder-decoder with atrous separable
convolution for semantic image segmentation,” in Proc. of the European Conf. on Computer Vision,
Glasgow, United Kingdom, pp. 801–818, 2018.

[14] F. Chollet, “Xception: Deep learning with depthwise separable convolutions,” in Proc. of the IEEE Conf.
on Computer Vision and Pattern Recognition, Montreal, Canada, pp. 1251–1258, 2017.

[15] J. Redmon, “Darknet: Open source neural networks in C,” 2016. [Online]. Available: https://pjreddie.
com/darknet.

[16] S. Theodoridis and K. Koutroumbas, “Pattern recognition,” IEEE Transactions on Neural Networks,
vol. 19, no. 1, pp. 1–957, 2008.

[17] S. Kollem, K. R. Reddy and D. S. Rao, “A review of image denoising and segmentation methods based
on medical images,” International Journal of Machine Learning and Computing, vol. 9, no. 3, pp. 288–
295, 2019.

[18] K. Al-Dulaimi, J. Banks, K. Nguyen, A. Al-Sabaawi, I. Tomeo-Reyes et al., “Segmentation of white
blood cell, nucleus and cytoplasm in digital haematology microscope images: A review-challenges,
current and future potential techniques,” IEEE Reviews in Biomedical Engineering, vol. 14, pp. 1–16,
2020.

[19] M. Dutta, S. Karmakar, P. Banerjee and R. Ghatak, “Detection of leukemia in blood samples applying
image processing using a novel edge detection method,” in Proc. of the Global AI Congress, Singapore,
pp. 1–16, 2019.

[20] M. Nassar, M. Doan, A. Filby, O. Wolkenhauer, D. K. Fogg et al., “Label-free identification of white
blood cells using machine learning,” Cytometry Part A, vol. 95, no. 8, pp. 836–842, 2019.

[21] M. Khodashenas, H. Ebrahimpour-komleh and A. Nickfarjam, “White blood cell detection and count-
ing based on genetic algorithm,” in Advances in Science and Engineering Technology International Conf.,
Dubai, United Arab Emirates, pp. 1–4, 2019.

https://github.com/onnx/onnx
https://pjreddie.com/darknet
https://pjreddie.com/darknet


CMC, 2021, vol.69, no.1 799

[22] A. Şengür, Y. Akbulut, Ü. Budak and Z. Cömert, “White blood cell classification based on shape and
deep features,” in Int. Artificial Intelligence and Data Processing Symp., Malatya, Turkey, pp. 1–4, 2019.

[23] J. Nalepa and M. Kawulok, “Selecting training sets for support vector machines: A review,” Artificial
Intelligence Review, vol. 52, no. 2, pp. 857–900, 2019.

[24] E. Hussain, L. B. Mahanta, C. R. Das, M. Choudhury and M. Chowdhury, “A shape context fully
convolutional neural network for segmentation and classification of cervical nuclei in pap smear
images,” Artificial Intelligence in Medicine, vol. 107, pp. 1–11, 2020.

[25] H. Kutlu, E. Avci and F. Özyurt, “White blood cells detection and classification based on regional
convolutional neural networks,” Medical Hypotheses, vol. 135, no. 10, pp. 1–11, 2020.

[26] V. Shankar, M. M. Deshpande, N. Chaitra and S. Aditi, “Automatic detection of acute lymphoblasitc
leukemia using image processing,” in IEEE Int. Conf. on Advances in Computer Applications, Coimbatore,
India, pp. 186–189, 2016.

[27] N. Dhieb, H. Ghazzai, H. Besbes and Y. Massoud, “An automated blood cells counting and classifica-
tion framework using mask R-CNN deep learning model,” in 31st Int. Conf. on Microelectronics, Cairo,
Egypt, pp. 300–303, 2019.

[28] R. D. Labati, V. Piuri and F. Scotti, “All-IDB: The acute lymphoblastic leukemia image database for
image processing,” in 18th IEEE Int. Conf. on Image Processing, Brussels, Belgium, pp. 2045–2048, 2011.

[29] F. Scotti, “Robust segmentation and measurements techniques of white cells in blood microscope
images,” in 2006 IEEE Instrumentation andMeasurement Technology Conf. Proc., Sorrento, Italy, pp. 43–
48, 2006.

[30] F. Scotti, “Automatic morphological analysis for acute leukemia identification in peripheral blood
microscope images,” in CIMSA. IEEE Int. Conf. on Computational Intelligence for Measurement Systems
and Applications, Giardini Naxos, Italy, pp. 96–101, 2005.

[31] V. Piuri and F. Scotti, “Morphological classification of blood leucocytes by microscope images,” in 2004
IEEE Int. Conf. on Computational Intelligence for Measurement Systems and Applications, Boston, MA,
USA, pp. 103–108, 2004.

[32] S. H. Rezatofighi, K. Khaksari and H. Soltanian-Zadeh, “Automatic recognition of five types of
white blood cells in peripheral blood,” in Int. Conf. Image Analysis and Recognition, Berlin, Heidelberg,
pp. 161–172, 2010.

[33] L. C. de Faria, L. F. Rodrigues and J. F. Mari, “Cell classification using handcrafted features and bag
of visual words,” in Anais do XIV Workshop de Visão Computacional, Brasil, pp. 1–6, 2018.

[34] S. Shafique and S. Tehsin, “Acute lymphoblastic leukemia detection and classification of its subtypes
using pretrained deep convolutional neural networks,” Technology in Cancer Research & Treatment,
vol. 17, pp. 1–7, 2018.

[35] Z. F. Mohammed and A. A. Abdulla, “An efficient CAD system for all cell identification from
microscopic blood images,” Multimedia Tools and Applications, vol. 80, pp. 6355–6368, 2020.

[36] L. H. Vogado, R. M. Veras and K. R. Aires, “LeukNet-A model of convolutional neural network for
the diagnosis of leukemia,” in Anais Estendidos do XXXIII Conf. on Graphics, Patterns and Images, Bairro
Agronomia, Porto Alegre, pp. 119–125, 2020.

[37] C. Di Ruberto, A. Loddo and G. Puglisi, “Blob detection and deep learning for leukemic blood image
analysis,” Applied Sciences, vol. 10, pp. 1–13, 2020.


