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Abstract: The present paper aims to explore how the magnetic field, ramp
parameter, and rotation affect a generalizedmicropolar thermoelasticmedium
that is standardized isotropic within the half-space. By employing normal
mode analysis and Lame’s potential theory, the authors could express analyt-
ically the components of displacement, stress, couple stress, and temperature
field in the physical domain. They calculated such manners of expression
numerically and plotted the matching graphs to highlight and make compar-
isons with theoretical findings. The highlights of the paper cover the impacts
of various parameters on the rotating micropolar thermoelastic half-space.
Nevertheless, the non-dimensional temperature is not affected by the rotation
and the magnetic field. Specific attention is paid to studying the impact of
the magnetic field, rotation, and ramp parameter of the distribution of tem-
perature, displacement, stress, and couple stress. The study highlighted the
significant impact of the rotation, magnetic field, and ramp parameter on
the micropolar thermoelastic medium. In conclusion, graphical presentations
were provided to evaluate the impacts of different parameters on the propaga-
tion of plane waves in thermoelastic media of different nature. The study may
help the designers and engineers develop a structural control system in several
applied fields.
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Nomenclature

σij : Stress tensor components
mij : Couple stress tensor components
φ: Micro–rotation
λ, μ: Lame’s constants
α, β, γ , k: Micropolar material constants
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→
u : Components of the displacement vector
β1 = αt (3λ+ 2μ+ k)
αt: Linear thermal expansion coefficient
ρ: Density of the medium
e: Cubical dilatation
K∗: Thermal conductivity

K∗
1 =

cE (λ+ 2μ)
4

cE : Specific heat at constant strain
	: Angular temperature
θ =T −T0

T0: The medium’s temperature in its material state supposed to be

∣∣∣∣ θT0

∣∣∣∣<< 1

1 Introduction

Because it is relevant in several applications, researchers have paid due attention to generalized
thermoelasticity. Its theories include governing equations of the hyperbolic type and disclose
the thermal signals’ finite speed. In a standardized thermoelastic isotropic half-space, Abd-Alla
et al. [1] investigated how wave propagation is affected by a magnetic field. Abouelregal [2]
discussed the improved fractional photo-thermoelastic system for a magnetic field- subjected
rotating semiconductor half-space. Singh et al. [3] studied reflecting plane waves from a solid
thermoelastic micropolar half-space with impedance boundary circumstances. Said [4] studied
the propagation of waves in a two-temperature micropolar magnetothermoelastic medium for a
three-phase-lag system. The authors of [5] explored the impact of rotation on a two-temperature
micropolar standardized thermoelasticity utilizing a dual-phase lag system. Rupender [6] studied
the impact of rotation on a micropolar magnetothermoelastic medium because of thermal and
mechanical sources. Bayones et al. [7] investigated the impact of the magnetic field and rota-
tion on free vibrations within a non-standardized spherical within an elastic medium. Bayones
et al. [8] discussed the thermoelastic wave propagation within the half-space of an isotropic
standardized material affected by initial stress and rotation. Kalkal et al. [9] investigated reflecting
plane waves in a thermoelastic micropolar nonlocal medium affected by rotation. Lotfy [10]
explored two-temperature standardized magneto-thermoelastic responses within an elastic medium
under three models. Zakaria [11] discussed the effect of hall current on a standardized magneto-
thermoelasticity micropolar solid under heating of the ramp kind. Ezzata et al. [12] studied the
impacts of the fractional order of heat transfer and heat conduction on a substantially long
hollow cylinder that conducts perfectly. Morse et al. [13] employed Helmholtz’s theorem. The
authors of [14] investigated the transient magneto-thermoelasto-diffusive interactions of the rotat-
ing media with porous in the absence of the dissipation of energy influenced by thermal shock.
Kumar et al. [15] studied the axisymmetric issue within a thermoelastic micropolar standardized
half-space. The authors of [16] studied the free surface’s reflection of the thermoelastic rotating
medium reinforced with fibers with the phase-lag and two temperatures. Deswal et al. [17] studied
the law of fractional-order thermal conductivity within a two-temperature micropolar thermo-
viscoelastic. Using radial ribs, the authors of [18] examined the improved rigidity of fused circular
plates. The authors of [19] investigated the motion equation for a flexible element with one
dimension utilized for the dynamical analysis of a multimedia structure.

The paper aims to study the thermoelastic interactions within an elastic standardized microp-
olar isotropic medium in the presence of rotation affected by a magnetic field. The authors could
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obtain accurate solutions of the measured factors using the Lame’s potential theory and the
normal mode analysis. They could obtain and present in graphs the numerical findings of the
distributions of stress, displacement, and temperature, for a crystal-like magnesium material.

2 Constitutive Relations and Field Equations

Constitutive relations and field equations are considered within a generalized micropolar
magneto-thermoelastic medium in the presence of rotation as:

(i) The Constitutive Relations

σij = λur,rδij+μ
(
ui, j+ uj, i

)+ k
(
uj, i− εijrφr

)−β1θδij, (1)

mij = αφr, rδij+βφi, j+ γ φj, i (2)

(ii) Motion’s Stress Equation

(λ+μ)∇
(
∇.

→
u
)
+ (μ+ k)∇2→u + k

(
∇x

→
φ

)
−β1∇θ +

→
f = ρ

(
∂2

→
u

∂t2
+

→
	x

(→
	x

→
u
)
+ 2

→
	x

→
u . (3)

(iii) Motion’s Couple Stress Equation

(α+β + γ )∇
(
∇.

→
φ

)
− γ∇x(∇x→φ )+ k∇x→u − 2k

→
φ = ρJ ∂

2
→
φ

∂t2
. (4)

(iv) The Equation of Thermal Conductivity

K∗
1

(
1+K∗ ∂

∂t

)
∇2θ = ρcE(θ̈ +β1T0ë (5)

For these equations, the authors use the summation convention and utilize the comma to
signify material derivative.

3 Formulating the Problem

Take into account an isotropic standardized micropolar generalized magneto-thermoelastic in
the presence of rotation. The rectangular Cartesian coordinate scheme (x, y, z) is used in which
the half-space surface plays the role of the plane z= 0 and the z−axis points vertically inwards.
There are two extra terms for the displacement motion equation within the rotating frame, i.e.,

the Coriolis acceleration 2	x
→
u̇ because of the moving frame of reference and the centripetal

acceleration
→
	x

(→
	x

→
u
)

because of the motion that varies over time. The analysis is restricted to

the x−z plane. Therefore, the quantities within the medium do not depend on the variable y. The

angular velocity
→
	, displacement vector

→
u , magnetic field vector

→
H and micro-rotation vector

→
φ

have the components

→
u = u (x, z, t) ,

→
w =w (x, z, t) ,

→
	= (0, 	, 0) ,

→
H = (0, H0, 0) ,

→
φ = (0, φ2, 0) . (5a)
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→
J = curl

→
h , (6a)

curl
→
E =−μe ∂

→
h
∂t

, (6b)

div
→
h = 0, (6c)

div
→
E = 0, (6d)

→
E =−μe

(
∂
→
u
∂t

×
→
H

)
, (6e)

→
h = curl

(
→
u x

→
H
)
. (6f)

in which
→
u represents the displacement vector,

→
H represents the magnetic field, μe represents the

magnetic permeability,
→
J represents the density of the electric current,

→
E represents the electric

intensity, and
→
h represents the perturbed magnetic field over the principal magnetic field. We apply

the initial magnetic field vector
→
H in Cartesian coordinates (x, y, z) to Eq. (1)

→
u = (u, 0, w) ,

→
H = (0, H0, 0) ,

→
E =−μe

(
−H0

∂w
∂t

, 0, H0
∂u
∂t

)
,

→
h = (−H0w, 0, H0u) ,

→
j =−H0

(
∂u
∂x

+ ∂w
∂z

)
,

→
f =μe

(→
j x

→
H
)
. (7)

where
→
f is the Lorentz force.

Combining Eqs. (3), (4) and Eqs. (5a), (7) provides

(λ+μ) ∂
∂x

(
∂u
∂x

+ ∂w
∂z

)
+ (μ+ k)∇2u− k

∂φ2

∂z
−β1 ∂θ

∂x
+μeH2

0

(
∂2u
∂x2

+ ∂2w
∂x∂z

)

= ρ
(
∂2u
∂t2

−	2u+ 2	
∂w
∂t

)
, (8)

(λ+μ) ∂
∂z

(
∂u
∂x

+ ∂w
∂z

)
+ (μ+ k)∇2w− k

∂φ2

∂x
+β1 ∂θ

∂z
+μeH2

0

(
∂2w
∂z2

+ ∂2u
∂x∂z

)

= ρ
(
∂2w
∂t2

−	2w− 2	
∂u
∂t

)
, (9)

γ∇2φ2+ k
(
∂u
∂z

− ∂w
∂x

)
− 2kφ2 = ρ j ∂

2φ2

∂t2
. (10)
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The following form expresses Eq. (5) of thermal conductivity given expression (5a)

(K∗
1

(
1+K∗ ∂

∂t

)
∇2θ = ∂2

∂t2
(ρcEθ +β∗1T0e). (11)

Substituting (5a) into (1) and (2), we can express the arising stress as

σxx = (λ+ 2μ+ k)
∂u
∂x

+λ∂w
∂z

−β1θ , (12)

σzz = (λ+ 2μ+ k)
∂w
∂z

+λ∂u
∂x

−β1θ , (13)

τzx =μ∂w
∂x

+ (μ+ k)
∂u
∂z

− kφ2, (14)

mzy = γ ∂φ2
∂z

, mxy = γ ∂φ2
∂x

. (15)

where

e= ∂u
∂x

+ ∂w
∂z

, ∇2 = ∂2

∂x2
+ ∂2

∂z2
,

These variables that are non-dimensional are employed to change the previous equations into
non-dimensional structures(
x′, z′

)= ω∗

c1
(x, z) , t′ =ω∗t,

(
u′, w′)= ρω∗c1

T0β1
(u, w) , θ ′ = θ

T0
, 	′ = 	

ω∗ , σ ′
ij =

σij

T0β1
,

φ′2 =
ρc21
T0β1

φ2, m′
ij =

ω∗

c1T0β1
mij. (16)

where

ω∗ = ρc21cE
K∗ , c21 =

(λ+ 2μ+ k)
ρ

, β1 = (3λ+ 2μ+ k) αt.

Eqs. (8)–(11) concerning previous the variables that are non-dimensional decline to (dropping
the primes)

(λ+μ) ∂
∂x

(
∂u
∂x

+ ∂w
∂z

)
+ (μ+ k)∇2u− k

∂φ2

∂z
− β1ρc21

β1e

∂θ

∂x
+μeH2

0

(
∂2u
∂x2

+ ∂2w
∂x∂z

)

= ρc21
(
∂2u
∂t2

−	2u+ 2	
∂w
∂t

)
, (17)
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(λ+μ) ∂
∂z

(
∂u
∂x

+ ∂w
∂z

)
+ (μ+ k)∇2w+ k

∂φ2

∂z
− β1ρc21

β1e

∂θ

∂z
+μeH2

0

(
∂2w
∂z2

+ ∂2u
∂x∂z

)

= ρc21
(
∂2w
∂t2

−	2w− 2	
∂u
∂t

)
, (18)

γ

c21
∇2φ2+ k

ω∗2

(
∂u
∂z

− ∂w
∂x

− 2φ2

)
= ρ j ∂

2φ2

∂t2
, (19)

[
K∗
1 +K∗ω∗ ∂

∂t

]
ω∗2T0

c21
∇2θ =ω∗2 ∂2

∂t2
(ρcET0θ +

β∗1T
2
0β1e

ρc21
e (20)

Utilizing Helmholtz decomposition [13] and providing the potential φ and
→
ψ through the

following equation

→
u =∇φ+

→
∇ ∧→

ψ ,
→
ψ = (0, −ψ , 0) . (21)

Using Eq. (5a), the components of displacement u and w take the following form

u= ∂φ

∂x
+ ∂ψ

∂z
, w= ∂φ

∂z
− ∂ψ

∂x
. (22)

where

φ (x, z, t) and ψ (x, z, t) represent scalar potential functions and
→
ψ represents the vector of

the potential function

Substituting Eq. (22) into Eqs. (17)–(20) gives us(
∇2− ∂2

∂t2
+	2

)
φ−

(
1+β1 ∂

∂t

)
θ + 2	

∂ψ

∂t
= 0, (23)

(
a0+ a2+ 4

∂

∂t

)
ψ − 2	

∂φ

∂t
− a0φ2 = 0, (24)

(
∇2− 2a3− a4

∂2

∂t2

)
φ2+ a3∇2ψ = 0, (25)

({
(a1+ 2a2)+ 4

∂

∂t

}
− 4

∂2

∂t2

)
θ − 4a5

∂2

∂t2
∇2φ = 0. (26)

where

a0 = k

ρc21
, a1 = λ

ρc21
, a2 = μ

ρc21
, a3 =

kc21
γω∗2 ,

a4 =
jρc21
γ

, a5 =
T0β

2
1

ρK∗ω∗ .
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4 Normal Mode Analysis

For resolving the governing equations, the authors measured physically the decomposed
variable concerning the normal modes in the following form:(
u, w, φ, ψ , θ , σij, φ2

)
(x, z, t)=

(
u∗, w∗, φ∗, ψ∗, θ∗, σ ∗

ij , φ
∗
2

)
(z)e(ωt+imx). (27)

in which ω represents the complex time constant (frequency), i represents the imaginary unit,
m represents the wave number in the x-direction, and u∗, w∗, φ∗, ψ∗, θ∗, σ ∗

ij and φ∗2 represent the

functions’ amplitudes.

Using (27), Eqs. (23)–(25) and Eq. (20) are, as follows(
D2 −A1

)
φ∗ (z)−A2θ

∗ (z)+A3ψ
∗ (z)= 0, (28)(

D2 −B1

)
ψ∗ (z)−B2φ

∗ (z)−B3φ
∗
2 (z)= 0, (29)(

D2 −C1

)
φ∗2 (z)+ a3

(
D2 −m2

)
ψ∗ (z)= 0, (30)(

D1

(
D2 −m2

)
−D3

)
θ∗ (z)−D2

(
D2 −m2

)
φ∗ (z)= 0. (31)

in which

A1 =m2 + ω2−	2

ε1
, A2 = 1+β1ω

ε1
, A3 = 2	ω

ε1
, B1 =m2 + ω2−	2

ε2
,

B2 = 2	ω
ε2

, B3 = a0
ε2

, C1 =m2+ 2a3+ a4ω2, D1 = (a1+ 2a2) (1+ τvω)+ 4ω (1+ τTω) ,

D2 = 4a5ω
2, D3 = 4ω2,

ε1 = 1+ μeH2
0

ρc21
, ε2 = a0+ a2.

Eliminating ψ∗ (z) , φ∗ (z) , φ∗2 (z) and θ∗ (z) from Eqs. (28)–(31), the differential equation
become(
D8−PD6 +QD4 −RD2 +S

) (
ψ∗ (z) , φ∗ (z) , φ∗2 (z) , θ

∗ (z)
)= 0. (32)

in which

P=A1+B1+C1 +m2+ ε3 (D3+A2D2)− a3B3,

Q=A1B1+A1C1+B1C1+
(
m2+ ε3D3

)
(A1+B1 +C1)+ ε3A2D2

(
B1+C1+m2

)
+A3B2− a3B3

(
2m2+A1+ ε3 (D3+A2D2)

)
,

R=A1B1C1+
(
m2 + ε3D3

)
(A1B1+B1C1+A1C1)+ ε3A2D2

(
m2 (B1+C1)+B1C1

)
+A3B2

(
m2 +C1+ ε3D3

)
− a3B3

(
m2A1+

(
m2 +A1

)(
m2+ ε3D3

)
+ 2ε3m

2A2D2

)
,
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S=
(
m2+ ε3D3

)
(A1B1C1+A3B2C1)+ ε3m2A2D2B1C1− a3B3

(
m2A1

(
m2+ ε3D3

)
+ ε3m4A2D2

)
.

in which ε3 = 1
D1

.

Eq. (27) is represented, as follows((
D2 −λ21

)(
D2 −λ22

)(
D2 −λ23

)(
D2 −λ24

))(
ψ∗ (z) , φ∗ (z) , φ∗2 (z) , θ

∗ (z)
)= 0. (33)

in which λ2n (n = 1, 2, 3, 4) represent the roots of the characteristic Eq. (32).

λ1 = 1

2
√
3

(√
(
√
3e1−

√
6e2)

)
, λ2 = 1

2
√
3

(√
(
√
3e1+

√
6e2)

)
,

λ3 = 1

2
√
3

(√
(
√
3e1−

√
6e2)

)
, λ4 = 1

2
√
3

(√
(
√
3e1+

√
6e2)

)
. (34)

where

�= 2Q3− 9PQR+ 27R2+ 27P2S− 72QS, �1 =Q2− 3PR+ 12S,

�2 = 3Q3− 9Q (PR+ 8S)+ 27
(
R2+P2S

)
, �3 =

(
�+

√
−�3

1 +�2
2

) 1
3

,

�4 = 4
√
3
(
P3− 4PQ+ 8R

)
, e1 =

√
(3P28Q− 2

7
3
�1

�3
+ 2

5
3�3),

e2 =
√
(3P2− 8Q− 2

4
3
�1

�3
− 2

2
3�3 − e3), e3 = �4

e1
.

The solution of Eq. (28) is written as

ψ∗ (z)=
4∑

n=1

Mn (m, ω)e−λnz, (35)

φ∗ (z)=
4∑

n=1

M′
n (m, ω) e

−λnz, (36)

φ∗2 (z)=
4∑

n=1

M′′
n (m, ω) e

−λnz, (37)

θ∗ (z)=
4∑

n=1

M′′′
n (m, ω)e

−λnz. (38)
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in which Mn,M′
n,M

′′
n and M′′′

n represent some parameters that depend on m and ω. Substitution
of Eqs. (35)–(38) into Eqs. (28)–(31) gives the following relations

φ∗2 (z)=
4∑

n=1

S1nMn (m, ω) e−λnz, (39)

φ∗ (z)=
4∑

n=1

S2nMn (m, ω) e−λnz, (40)

θ∗ (z)=
4∑

n=1

S3nMn (m, ω) e−λnz. (41)

where

S1n=
−a3

(
λ2n−m2)(

λ2n−C1
) , S2n=

(
λ2n−B1

)
B2

− B3

B2
S1n, S3n=

D3
(
λ2n−m2)S2n

D1
(
λ2n−m2

)−D3
.

5 Applications

Take into account a magneto-thermoelastic micropolar solid having a half-space that rotates
z≥ 0. M′

ns, as constants, are defined by imposing the proper boundary settings.

5.1 Thermal Boundary Conditions
The authors apply a heat shock of the ramp kind to the isothermal boundary of the plane

z= 0, as follows

θ (x, 0, t)= φ∗δ (x)H (t) . (42)

in which δ (x) represents Dirac-delta function and φ∗ represents a constant temperature. Moreover,
H (t) represents a Heaviside function defined as

H (t)=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 t≤ 0

t
t0

0≺ t≤ t0

1 t≥ t0

(43)

In this equation, t0 represents a ramp parameter that shows the time required for raising the
heat.

5.2 Mechanical Boundary Conditions
The boundary plane z = 0 is free of traction. In terms of mathematics, the boundary

conditions take the following form

σzz (x, 0, t)= 0, (44)

τzx (x, 0, t)= 0, (45)

mzy (x, 0, t)= 0. (46)
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Applying Eqs. (16)–(27) make the former boundary conditions represented, as follows

θ∗ (z)=R1, (47)

σ ∗
zz (z)= 0, (48)

τ ∗zx (z)= 0, (49)

m∗
zy (z)= 0. at z= 0 (50)

where R1 = φ∗1− e−ω0
t0ω2 .

Utilizing the non-dimensional quantities identified in (16), expressing stress Eqs. (12)–(15) and
displacement Eq. (22), as well as the relations (44)–(46) becomes:

u∗ (z)=
4∑

n=1

(imS2n−λn)Mn (m, ω)e−λnz, (51)

w∗ (z)=
4∑

n=1

(−λn− im)Mn (m, ω)e−λnz, (52)

σ ∗
zz (z)=

4∑
n=1

S4nMn (m, ω) e−λnz, (53)

τ ∗zx (z)=
4∑

n=1

S5nMn (m, ω)e−λnz, (54)

m∗
zy (z)=

4∑
n=1

S6nMn (m, ω)e−λnz. (55)

in which

S4n=
(
(a0+ a1 (1+α0ω)+ 2a2 (1+α1ω))λ2n−m2a1 (1+α0ω)

)
S2n

+ imλn(a0+ 2a2 (1+α1ω)− (1+β1ω)S3n,
S5n= (a0+ a2 (1+α1ω))λ2n− imλnS2n (a0+ 2a2 (1+α1ω))+m2a2 (1+α1ω))− a0S1n,

S6n=−a0
a3
λnS1n.

A four-equation non-homogeneous structure is yielded by the boundary conditions (47)–(50),
supported by expressions (51)–(55) and (38) as follows⎡
⎢⎢⎢⎢⎢⎣

S31 S32 S33 S34

S41 S42 S43 S44

S51 S52 S53 S54

S61 S62 S63 S64

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

M1

M2

M3

M4

⎤
⎥⎥⎥⎥⎥⎦=

⎡
⎢⎢⎢⎢⎢⎣

R1

0

0

0

⎤
⎥⎥⎥⎥⎥⎦ (56)
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The expressions of Mn, (n = 1, 2, 3, 4) attained by resolving the structure (56), when replaced
in Eq. (38) and Eqs. (51)–(55), give these expressions of field variables

u (x, z, t)= [(imS21−λ1)M1e
−λ1z+ (imS22−λ2)M2e

−λ2z+ (imS23−λ3)M3e
−λ3z

+ (imS24 −λ4)M4e
−λ4z] e(ωt+imx), (57)

w (x, z, t)=− [(λ1S21+ im)M1e
−λ1z+ (λ2S22+ im)M2e

−λ2z+ (λ3S23+ im)M3e
−λ3z

+ (λ4S24+ im)M4e
−λ4z] e(ωt+imx), (58)

θ (x, z, t)= [S31M1e−λ1z+S32M2e−λ2z+S33M3e−λ3z+S34M4e−λ4z
]
eωt+imx, (59)

σzz (x, z, t)=
[
S41M1e

−λ1z+S42M2e
−λ2z+S43M3e

−λ3z+S44M4e
−λ4z] eωt+imx, (60)

τzx (x, z, t)=
[
S51M1e

−λ1z+S52M2e
−λ2z+S53M3e

−λ3z+S54M4e
−λ4z] eωt+imx, (61)

mzy (x, z, t)=
[
S61M1e−λ1z+S62M2e−λ2z+S63M3e−λ3z+S64M4e−λ4z

]
eωt+imx. (62)

in which

M1 = �1

�
, M2 = �2

�
, M3 = �3

�
, M4 = �4

�
,

�= S31d1−S32d2+S33d3−S34d4,

�1 =R1d1, �2 =−R1d2, �3 =R1d3, �4 =−R1d4,

d1 = S42 (S53S64−S54S63)−S43 (S52S64−S54S62)+S44 (S52S63−S53S62) ,

d2 = S41 (S53S64−S54S63)−S43 (S51S64−S54S61)+S44 (S51S63−S53S61) ,

d3 = S41 (S52S64−S54S62)−S42 (S51S64−S54S61)+S44 (S51S62−S61S52) ,

d4 = S41 (S52S63−S53S62)−S42 (S51S63−S61S53)+S43 (S51S62−S61S52) .

6 Numerical Results and Discussion

With an aim to highlight the theoretical findings of the previous sections, the authors provide
some numerical findings using MATLAB. The material selected for this goal of magnesium crystal
whose physical data resemble those provided in [17]:

ρ = 1.74× 103 kgm−3, λ= 9.4× 1010 kgm−1s−2, μ= 4.0× 1010 kgm−1s−2,

k= 1.0× 1010 kgm−1s−2,

γ = 0.779× 10−9 kgms−2, j= 0.2× 10−19 m2, αt = 2.36× 10−5 K−1,

K∗ = 2.510 Wm−1K−1, T0 = 293 K, CE = 9.623× 102 J kg−1K−1,

z= 0.3 φ∗ = 1.0.

Taking into account the previous physical data, non-dimensional field variables are estimated,
and the findings are presented graphically at various positions of z at t = 0.1 and x = 1.0. The
motion range is 0≤ z≤ 1.0. Figs. 1–3 show variations, correspondingly.
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Figure 1: Various values of the magnitude of u, w, σzz, τzx, mzy, θ for various values of H0 in the
presence of distance 0≤ z≤ 1
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Figure 2: Various values of the magnitude of u, w, σzz, τzx, mzy, θ for various values of 	 in the
presence of distance 0≤ z≤ 1
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Figure 3: Various values of the magnitude of u, w, σzz, τzx, mzy, θ for various values of t0 in the
presence of distance 0≤ z≤ 1
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Fig. 1: displays the various values of the components of displacement |u| and |w|, stress |σzz|,
|τxz| ,

∣∣mzy
∣∣, as well as temperature |θ | in the presence of distance z for the various values of the

magnetic field H0. A zero value is the beginning. It agrees entirely with the boundary conditions.
The magnetic field demonstrates significant growing and declining impacts on the components
of stress and displacement. These impacts vanish when moving away from the point of the
application of the source. The temperature is not affected by the magnetic field. Nevertheless, the
qualitative performance is almost equal in the two values.

Variations in displacement components |u| , |w|, stress components |σzz|, |τxz| ,
∣∣mzy

∣∣ and tem-
perature |θ | with spatial coordinates z for various values of rotation 	 are shown in Fig. 2
that begins with the value of zero, which agrees totally with the boundary conditions. The
highest impact zone of rotation is about z= 0.3. Nevertheless, the temperature is not affected by
the rotation. The components of temperature, stress, and displacement increase numerically for
0≤ z≤ 1. Then, they decrease and moves to minimum value at z= 1.

In Fig. 3, we have depicted displacement components |u| , |w|, stress components |σzz|,
|τxz| ,

∣∣mzy
∣∣ and temperature |θ | in the presence of distance z to explore the impacts of ramp

parameter t0. The ramp parameter’s highest impact zone is about z= 0.3. Furthermore, all curves
share a corresponding zero value stating point to satisfy the boundary conditions.

7 Conclusion

The study concludes that:

a. The magnetic field and rotation play an influential part in distributing the physical quan-
tities whose amplitude varies (rise or decline) as the rotation and magnetic field increase.
With the rotation and the magnetic field, the quantities to surge near or away from the
application source point are restricted.

b. All physical quantities satisfy the boundary conditions.
c. The theoretical findings of the study can give stimulating information for seismologists,

researchers, and experimental scientists who are interested in the field.
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