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Abstract: Despite advances in technological complexity and efforts, software
repositorymaintenance requires reusing the data to reduce the effort and com-
plexity. However, increasing ambiguity, irrelevance, and bugs while extracting
similar data during software development generate a large amount of data
from those data that reside in repositories. Thus, there is a need for a repos-
itory mining technique for relevant and bug-free data prediction. This paper
proposes a fault prediction approach using a data-mining technique to find
good predictors for high-quality software. To predict errors in mining data,
the Apriori algorithm was used to discover association rules by fixing confi-
dence at more than 40% and support at least 30%. The pruning strategy was
adopted based on evaluation measures. Next, the rules were extracted from
three projects of different domains; the extracted rules were then combined
to obtain the most popular rules based on the evaluation measure values.
To evaluate the proposed approach, we conducted an experimental study to
compare the proposed rules with existing ones using four different industrial
projects. The evaluation showed that the results of our proposal are promising.
Practitioners and developers can utilize these rules for defect prediction during
early software development.

Keywords: Fault prediction; association rule; data mining; frequent pattern
mining

1 Introduction

Mining software repositories is a procedure for examining data based on software develop-
ment history. This is a developing field for supporting software development teams in performing
daily tasks. Mining software repositories discovers interesting and actionable patterns for software
development from the rich data available in the repository. Many open-source software reposi-
tories, such as source code control systems, archived communications among project personnel,
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and fault tracking systems, are available for this purpose. Software engineers and researchers
recognize the benefits of mining software repositories for software system maintenance, reuse,
and authenticating new ideas and techniques. Numerous approaches to data mining have been
implemented in various data-mining applications [1]. The overall objective is to make accurate
predictions or classify repositories to improve the decision-making process from data [2]. Data-
mining approaches, such as support vector machines, nearest neighbors, neural networks, Naive
Bayes, and logistic regression, can provide exact predictions but still be deficient in clarifying the
relationship between objects in a class.

The decision tree algorithm builds a tree in which each node of the tree is an input variable
and the path that follows a series of nodes leads to a decision-category label [3]. The Apriori
algorithm can generate association rules for each category that requires classified features [4] by
looking for frequent items in the data with individual category tags. These algorithms can provide
comparable classification accuracies and interpretable results. However, the disadvantages are that
the models become complicated if the amount of data increases significantly and takes consider-
able time, which is not effective for timely prediction [5]. Software quality measures are essential to
building high-quality software within a time frame and budget [6]. The best predictor is a model
that predicts software defects and has been proven to help quality software development [7,8].
The approach that deals with discovering interesting patterns and correlations among the data in
software repositories is known as frequent pattern mining; the most important frequent pattern
mining application is mining association rules [9].

Association rule mining (ARM) creates associations among variables in repositories [10] and
is used to correlate the presence of one set of objects with another set. It generates the rules
that follow set criteria with minimal support and confidence. ARM is applied in many fields such
as process mining, protein sequencing, logistic regression, scientific analysis, bio-scientific litera-
ture, and customer relationship management (CRM) of credit card enterprises. Existing literature
describes that the right decision is critical for extracting practicable patterns among information
available using different algorithms (e.g., Apriori, Éclat, and FP-growth) [11–14]. Other than ARM
algorithm evaluation measures (e.g., support, confidence, and correlation), Jaccard and F-measure
are also calculated and evaluated. Correlation can be calculated with the help of the “lift” mea-
sure. The values of other evaluation measures can be generated using mathematical and statistical
formulas. The value of the F-measure defines the power of the association rules: the greater the
F-measure, the stronger are the rules. These algorithms have some challenges in improving the
performance and complexity of mining information, as there is a need to cope with large and
complex datasets. Some existing algorithms involve using correlation measures [15], and a few
existing algorithms use ARM [16,17]. The Apriori algorithm generates an iterative set of rules
to locate the frequent pattern in a dataset and avoid unnecessary transactional statistics [13,14].
Frequent extraction of information from relevant repositories requires error-free relevant data to
be reused during ARM software development, which is essential for mining bug-free data. This
study applies ARM using the Apriori algorithm to extract the rules for defect prediction. There
is a need for a mining algorithm that can clean and discover bug-free relevant data from the
repository for correct reuse based on the frequently extracted data. Supporting the allocation of
resources for software development and maintenance accurately is necessary to predict error-based
information.

To maintain high project quality, project managers and engineers must screen faults during
software development. Therefore, software defect prediction tasks should classify software modules
as faulty or clean using metric-based classification methods, especially ARM. Software modules
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comprise many characteristic metrics (predictors) that can determine whether a module or class
is defective or clean. Software modules and classes can be considered as multidimensional vectors
and a software system as a dataset. In the dataset, a record is a software module, and a feature
is a software index; rich information can be extracted from the module or class. The main
contributions of this study are as follows:

• We analyzed defect data extracted from many projects by applying ARM to determine
whether a software entity (class) is defective or clean. Association rules that identify buggy
or clean classes are evaluated by different interestingness measures such as lift, support,
correlations Jaccard, and F-measure.

• Although there is much work in software defect prediction, more focus is needed on
accurate software defect predictors; the limitations of current methods need to overcome.
As yet, few studies have been presented based on ARM predictors. Therefore, this study
developed an ARM for fault prediction and evaluated its effectiveness through experimental
results.

• Evaluating an algorithm using the proposed approach rules identified performance metrics
for mining repositories using an experimental study of four industrial projects.

• The results showed that the proposed approach efficiently mines error-free information
during development using an ARM-based algorithm and provides software practitioners
with a guideline for mining repositories.

The remainder of the paper is organized as follows. Section 2 presents related work. The
experimental design is discussed in Section 3, and the research methodology is presented in
Section 4. Section 5 presents the results and discussions. Section 6 concludes the paper by offering
a direction for future work.

2 Related Work

Association rules [18] are commonly implemented in unsupervised scenarios. Numerous clas-
sification extensions have been proposed, such as classification based on the association (CBA)
method [4], in which class association rules are mined, and the results are class labels. Liu
et al. [19] proposed CBA2 to resolve data imbalance issues. Here, the rules have different minimum
supports that predict different classes. Ma et al. [4] proposed another CBA2 method to predict
faulty modules by performing tests on the NASA dataset [20], and the results were compared
with those of other classification models. It was also found that the association rule generated
from the data of one project can be used only for similar projects and that cross defect prediction
cannot be performed [21]. Kamei et al. [22] proposed a hybrid model based on ARM and
logistic regression that checks the rule suitability for a given instance. If suitable, the rules are
implemented; if not, then a logistic regression model is implemented to obtain results. In [23],
the authors introduced a subgroup discovery (SD) algorithm called the evolutionary decision
rules (EDER) for detecting subcategories. This approach depends on evolutionary calculations
to generate rules that further describe error-prone modules—tests were conducted on NASA’s
dataset. The results of the EDER-SD algorithm were better than those of the three other popular
SD algorithms. Analysis of different machine learning (ML) algorithms, such as the naive Bayes
classifier, One R, and J48, was carried out by Menzies et al. [20]. The results show that log
filtering and the naive Bayes algorithm yield superior results on NASA datasets. A literature
review focusing on defect prediction methods shows that clustering, classification, and association
mining are commonly used for defect prediction [24].
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In another approach [25], prediction models for real-time defect datasets of software [20] were
evaluated. The results confirmed that the hybrid model of one-rule classification [26] and instance-
based learning produced better results in fault prediction than other models. Haghighi et al. [27]
performed a comparative study of 37 models of fault detection systems on the NASA dataset;
it was shown that the bagging classifier performed better than other classifiers. ROCUS [28] is a
semi-supervised learning model that depends on divergence. The authors tested it on eight datasets
of the NASA repository. Results were compared with those of other semi-supervised methods.
Semi-supervised learning was used because the amount of labeled data in defect prediction is
limited, whereas it is easy to collect unlabeled data. Zhang et al. [29] proposed a semi-supervised
learning model based on divergence, called ACoForest. This model only needs to mark a part
of the module; it then attempts to mark the remaining modules based on the model built from
the marking data. Tests on publicly available datasets show that this method is superior to tradi-
tional ML algorithms. In [30], the authors suggested using the random forest method to predict
whether a module comprises a defect. They applied the method to NASA datasets, analyzed
its performance, and found that, compared with other ML algorithms, random forest performed
better and was particularly effective on large datasets. Recently, defect prediction has shifted to
method formalization and standardization [31]. For data preprocessing, attribute selection methods
consisting of a framework were defined for defect prediction. D’Ambros et al. [32] proposed a
standard for predicting defects using public datasets. Menzies et al. [20] studied the instability of
the outcomes of prediction systems. They suggested the possible causes and solutions that tend
to correct for one project but not for other projects. Ma et al. [21] claim that the area under the
curve (AUC) approach provides a more suitable indicator, whereas Gray et al. [33] proved that
the accuracy should also be reported. However, almost all approaches agree that accuracy alone
is not sufficient when the data is skewed.

3 Experimental Design

This study’s principal objective was to identify software metrics that can serve as suitable
predictors of software fault and find the best association rules for fault prediction using the
Apriori algorithm. To achieve this, we first needed to decide which metrics to choose and how
data would be extracted and mined.

3.1 Selection of Software Metrics
The selection of suitable software metrics was a challenge because there are many metrics

available. Several studies have employed Chidamber & Kemere (CK) metrics and fault-proneness
prediction. Basili et al. [34] used multivariate linear regression (LR) for fault-prone classes. By
contrast, Kanmani et al. [35] used a general regression neural network for the fault ratio and
multiple linear regression for the fault ratio applied in [36,37]. In this work, we used the CK
metrics to measure object-oriented behavior, which helps in software evolution. They are as
follows:

• Weighted methods per class (WMC) are the aggregate complexity of methods, which can
predict the time and effort needed for the maturity of a class.

• Depth of the inheritance tree (DIT) uses the maximum distance between a node and the
root of a tree to evaluate complexity. A high value indicates high complexity, and a low
value shows simplicity.

• Number of children (NOC) is a direct subclass in a class ladder. A low value shows a
deficiency in communication, and a high value indicates the need for sophisticated tests.
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• Coupling between object classes (CBO) uses the count of classes to which it is attached.
Low CBO values show ease in reuse and testing.

• Response for a class (RFC) is a count of class methods and other methods that are called.
A high RFC value indicates difficulty in testing and maintenance of the class.

• Lack of cohesion of methods (LCOM) tests the variation of procedures in a class using
instance variables. High values indicate complexity.

3.2 Selection of Dataset
For this study, we used the GitHub bug database [38] to extract the datasets. This database

is useful for working and analyzing defect prediction areas. Java projects were selected with
different domains, and features of these projects were mined from the GitHub repository using
the SourceMeter tool. Fifteen projects were analyzed to answer different research questions. The
SZZ algorithm [39] was used for analyzing commit logs and extracting bug data. Release versions
at six-month intervals were used to create a bug database.

4 Research Methodology

This section describes the process for analyzing the selected metrics as the best predictor of
software faults for classes, covering steps such as preprocessing, ARM, the Apriori algorithm,
receiver operating characteristic curve (ROC) analysis, and rule evaluation. Fig. 1 shows that, first,
data extracted from repositories were preprocessed according to the requirements. Next, a data-
mining technique was applied to achieve desired objectives. In this study, we applied ARM and
generated rules regarding the bugs. Last, the rules were evaluated and tested on the bug dataset
of a different project using the GitHub repository.

Figure 1: Process to analyze selected metrics

4.1 Data Preprocessing
The Apriori algorithm was used to find the best predictor of software faults. This algorithm

requires the nominal values of the selected datasets; hence, the quantitative value of data had
to be changed to the nominal values by preprocessing for compatibility with the algorithm. The
preprocessing algorithm is as follows.
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Algorithm
Input: Dataset of required metrics with numerical data
Output: Dataset of required metrics with nominal data
Step 1: For each xi ∈ di where d are the datasets
Step 2: Mmin ∈ xi (Minimum value of xi)
Step 3: Mmax ∈ xi (Maximum value of xi)
Step 4: Calculate quartiles of metric Q ∈ x (Quartiles of xi)
Step 5: Q= q1, q2, q3 (q1, q2, q3 are 1st, 2nd, and 3rd quartiles of metric x)
Step 6: If xi ≤ q1 then xi = “N”
Step 7: If xi ≤ q2 then xi = “L”
Step 8: If xi ≤ q3 then xi = “M”
Step 9: If xi ≤Mmax then xi = “H”
Step 10: Repeat the above for each xi ∈ di

4.2 Association Rule Mining (ARM)
Association rules are the characteristics that often occur in an assumed dataset. An ARM can

be stated as X →Z, where X and Z are item sets representing the predecessor and the resulting
part of the rules, while X and Z do not intersect. ARM discovers the existing relations and
correlations between the variables of a given dataset [40]. According to the evaluation criteria, the
rules are evaluated as correlation, support, confidence, lift, and F-measure.

4.2.1 Apriori Algorithm
In this study, the Apriori algorithm is used to produce association rules by finding a repeated

pattern in the data. An item is regarded as frequent if its support and confidence are higher than
the threshold values. The support rate is the frequency of item set x that exceeds its occurrence
in the exercise dataset; confidence is the frequency of item set x with z that satisfies the rule and
exceeds the rate of item set x.

4.2.2 Why Use Apriori Algorithm
The FP-growth algorithm finds the frequent itemsets using a divide-and-conquer strategy; it

then encodes the training data into an FP-tree to represent the frequent itemsets. However, it is
expensive to build and may not fit in memory. Prediction using a decision tree starts with the
root and proceeds through the nodes until a leaf node (the final class) is found. The drawback of
the FP-growth algorithm is that it is easily overfitted. The support vector machine discriminates
between classes by creating a separating hyperactive plane or a set of hyperactive schemes in a
large dimension space and finds the best hyperactive scheme that attains the maximum margins
between the classes. However, it does not work well with many samples and requires many
parameters to be tuned. Logistic regression describes the association between the contributing
classes and estimates the probabilities for the category-dependent variable using a logit function
based on one or more features. Its disadvantages include being prone to overfitting and requiring
more training time. The K-nearest neighbor algorithm assigns categories by a majority vote of
k neighboring test samples. It uses such similarity measures as distance functions to determine
the closeness of the samples. The drawbacks of the algorithm are that it is hard to classify with
high dimensionality and that it has weak performance with imbalanced data and large amounts
of memory. The Naive Bayes algorithm is successful in a variety of data-mining tasks. It estimates
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P(X | Y ) and P(Y ) and classifies new instances into the highest posterior. However, it assumes
the independence of features and robustness of outliers.

4.3 Receiver Operating Characteristic (ROC) Curve
The ROC is used as a test of diagnostic accuracy [41]. It is shaped by scheming the true-

positive rate contrary to the false-positive rate at multiple predefined values. Thus, the ROC is
recalled as a function of fall-out. The ROC is an assessment tool for choosing optimal models
and is linked in an ordinary mode to the cost and benefit investigation of analytical results.
Initially, the ROC curve was established by electrical and radar engineers to search for opponents
on battlefields in the Second World War. ROC studies are now used in medicine, radiology,
biometrics, model evaluation, meteorology, ML, and data mining. Its performance through an
AUC is assessed as follows: AUC = 0.5, no right category; 0.6 ≤ ‘AUC’ < 0.7, fair category;
0.7≤ ‘AUC’< 0.8, suitable type; 0.8≤ ‘AUC’< 0.9, superb type; and ‘AUC’≥ 0.9, manner superb
category.

4.4 Proposed Algorithm
The steps of the proposed algorithm are as follows:

Proposed Algorithm
Step 1: Adjust minimum confidence (40%) and minimum support (30%) to generate association

rules with the help of the Apriori algorithm.
Step 2: Apply the ROC curve for evaluating suitable metrics.
Step 3: Adjust criteria of selecting rules having confidence >= 0.95
Step 4: Calculate the confidence, support, and correlation of each generated and selected rule,

and calculate the F-measure by statistical methods.
Step 5: Adjust F-value as it is significant for producing better association rules.
Step 6: Compare the top generated rules reusing all evaluation measures previously used.
Step 7: Test the association rules by applying them to experimental projects.
Step 8: Find the results of the experimentations.

The metrics used for the rules’ evaluation are as follows:

• Recall = (support * lift)/confidence
• F-measure = 2 * (confidence * recall)/(confidence + recall)
• Correlation (X and Z) = (support − P(X) * P(Z))/SQRT(P(X) * P(Z) * (1 − P(X)) * (1 −
P(Z)))

• P(X) = support/confidence
• P(Z) = confidence/lift
• Jaccard = support/(P(X) + P(Z) − support)
• Correlation: Correlation analysis deals with the relation between variables. Correla-
tion prunes out the negatively associated rules. Correlation = (support − P(A) *
P(B))/SQRT(P(A) * P(B) * (1 − P(A))*(1 − P(B)))

5 Results and Discussions

Correlation and F-measure evaluation were used to obtain the best ARM cleaning bugs. The
Apriori algorithm was used to produce rules based on support = 30% and confidence = 40%. CK
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metrics were used for this purpose because they contain the behaviors of cohesion, complexity,
coupling, inheritance, and size. Furthermore, we selected the AUC metric to evaluate the predictive
power of each CK metric.

5.1 Predictor Analysis in Representative Projects
This section presents the comparative and predictor analysis using three industrial projects

employing the aforementioned metrics. The projects were selected because the repositories are
mainly used to develop products by reusing their features.

5.1.1 Android Universal Image Loader (AUIL) Project
The Android universal image loader (AUIL) is a library suitable for processing images on an

Android device, such as uploading, hiding, and displaying. It delivers many configuration choices
and consists of many advanced features for image processing and memory management. Figs. 2–6
show the ROC curve for different versions of the AUIL project.

Figure 2: ROC curve for AUIL version 13-1

Figure 3: ROC curve for AUIL version 13-7

5.1.2 ANother Tool for Language Recognition (ANTLR) Project
Another tool for language recognition (ANTLR) is a valuable parser that produces organized

text and binary files. It is applied in shaping languages, language tools, and language frameworks.
ANTLR works by building parse trees from a grammar and generates an interface for ease



CMC, 2021, vol.69, no.1 881

of acknowledgment expressions of requirements. Figs. 7–11 show the ROC curve for different
versions of the ANTLR project.

Figure 4: ROC curve for AUIL version 13-12

Figure 5: ROC curve for AUIL version 14-05

Figure 6: ROC curve for AUIL version 14-09
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Figure 7: ROC curve for ANTLR4 version 2013-01

Figure 8: ROC curve for ANTLR4 version 2013-06

Figure 9: ROC curve for ANTLR4 version 2014-02

5.1.3 Broadleaf Commerce (BC) Project
The Broadleaf Commerce (BC) project is an e-commerce platform written entirely in the

Java language. It facilitates the development of commerce-driven websites and provides a robust
data model and the required tools. The BC platform is gradually increasing its features for more
facilitation. Figs. 12–16 show the ROC curve for different versions of the BC project.
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Figure 10: ROC curve for ANTLR4 version 2014-07

Figure 11: ROC curve for ANTLR4 version 2015-01

Figure 12: ROC curve for BC version 2013-02

Further, for all the aforementioned three projects (i.e., AUIL, ANTLR4, and BC), the average
of averages was calculated for comparison. Tab. 1 shows the average values of metrics for each
project as well as the average of the averages. The results show that metrics such as NOC and
DIT have a low AUC and are weak predictors, whereas LOC, WMC, RFC, and so on have a
comparatively high AUC, and hence are strong predictors. The experiment was performed on three
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different real-world projects to overcome cross-project variations. Because NOC and DIT are weak
predictors, they were excluded from the association rules. Only those metrics were selected for
analysis that have high predictive power for defects. For this part, the R tool and rules with a
high evaluation value were used. Evaluation measures such as support, confidence, correlation,
Jaccard, and F-measure were used. The value of the evaluation of each rule for analysis of each
project is given in Tab. 1.

Figure 13: ROC curve for BC version 2013-09

Figure 14: ROC curve for BC version 2014-03

Figure 15: ROC curve for BC version 2014-10
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Figure 16: ROC curve for BC version 2015-03

Table 1: Average AUC of all projects

Metric AUIL ANTLR4 BC AVE-AUC

LOC 0.840 0.847 0.802 0.830
WMC 0.805 0.852 0.812 0.823
RFC 0.810 0.834 0.784 0.809
CBO 0.807 0.802 0.717 0.775
LCOM5 0.589 0.728 0.669 0.662
NOC 0.459 0.581 0.528 0.522
DIT 0.443 0.371 0.637 0.484

5.2 Analysis of Rules for Cleaning Bugs
This section presents the analysis of rules for cleaning bugs in all projects.

5.2.1 Analysis of Rules for Cleaning Bugs—BC Project
Tab. 2 shows the best rules for bug prediction using data from the BC project. This table

shows different evaluation measures for each rule.

Table 2: Analysis of rules for cleaning bugs using BC project data

Rule
No.

LHS RHS SUPPORT CONF COUNT F-measure Correlation Jaccard

1 {LCOM5= N} ⇒ {bugs = CLEAN} 0.811 0.971 1545 0.906 0.172 0.828
2 {LCOM5= L} ⇒ {bugs = CLEAN} 0.439 0.773 700 0.634 −0.131 0.464
3 {CBO= N} ⇒ {bugs = CLEAN} 0.375 0.965 587 0.589 0.201 0.417
4 {LCOM5= N, CBO = N} ⇒ {bugs = CLEAN} 0.346 0.970 542 0.557 0.197 0.386
5 {WMC = N} ⇒ {bugs = CLEAN} 0.349 0.993 665 0.534 0.133 0.365
6 {LCOM5= N, WMC = N} ⇒ {bugs = CLEAN} 0.345 0.992 656 0.529 0.131 0.360

5.2.2 Analysis of Rules for Cleaning Bugs—AUIL Project
Tab. 3 shows the best rules for bug prediction using data from the AUIL project. This table

shows different evaluation measures for each rule.
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Table 3: Analysis of rules for cleaning bugs using AUIL project data

Rule
No.

LHS RHS SUPPORT CONF COUNT F-measure Correlation Jaccard

1 {LCOM5 = N} ⇒ {bugs = CLEAN} 0.633 0.838 62.000 0.800 0.052 0.667
2 {LCOM5 = N} ⇒ {bugs = CLEAR} 0.521 0.704 38.000 0.710 −0.084 0.551
3 {CBO = N} ⇒ {bugs = CLEAR} 0.329 0.857 24.000 0.593 0.232 0.421
4 {LCOM5 = N, CBO = N} ⇒ {bugs = CLEAN} 0.388 0.978 45.000 0.581 0.131 0.409
5 {LCOM5 = N, CBO = N} ⇒ {bugs = CLEAR} 0.301 0.846 22.000 0.557 0.200 0.386
6 {LOC = M} ⇒ {bugs = CLEAN} 0.364 1.000 40.000 0.544 0.127 0.374
7 {WMC = N} ⇒ {bugs = CLEAN} 0.336 1.000 39.000 0.527 0.180 0.358
8 {LCOM5 = N, WMC = N} ⇒ {bugs = CLEAN} 0.336 1.000 39.000 0.527 0.180 0.358

5.2.3 Analysis of Rules for Cleaning Bugs—ANTLR4 Project
Tab. 4 shows the best rules for bug prediction using data from the ANTLR4 project. In this

table, different evaluation measures for each rule are also shown. Tab. 5 lists the best rules for
bug prediction by

Table 4: Analysis of rules for cleaning bugs using ANTLR4 project data

Rule
No.

LHS RHS SUPPORT CONF COUNT F-measure Correlation Jaccard

1 {LCOM5= N} ⇒ {bugs = CLEAR} 0.521 0.704 38.000 0.710 −0.084 0.551
2 {CBO= N} ⇒ {bugs = CLEAR} 0.329 0.857 24.000 0.593 0.232 0.421
3 {LCOM5= N, CBO = N} ⇒ {bugs = CLEAR} 0.301 0.846 22.000 0.557 0.200 0.386
4 {LCOM5= L} ⇒ {bugs = CLEAN} 0.378 0.982 165.000 0.552 −0.028 0.381
5 {RFC= N} ⇒ {bugs = CLEAN} 0.342 1.000 149.000 0.515 0.085 0.347

Table 5: Combination of all projects’ rules for cleaning bugs

Rule
No.

LHS RHS SUPPORT CONF COUNT Recall F-measure Correlation Jaccard

1 {LCOM5=N} ⇒ {bugs = CLEAN} 0.811 0.971 1545 0.849 0.906 0.172 0.828
2 {LCOM5= L} ⇒ {bugs = CLEAN} 0.439 0.773 700 0.538 0.634 −0.131 0.464
3 {CBO =N} ⇒ {bugs = CLEAN} 0.375 0.965 587 0.424 0.589 0.201 0.417
4 {LCOM5=N, CBO = N} ⇒ {bugs = CLEAN} 0.346 0.970 542 0.391 0.557 0.197 0.386
5 {LOC = M} ⇒ {bugs = CLEAN} 0.364 1.000 40 0.374 0.544 0.127 0.374
6 {WMC =N} ⇒ {bugs = CLEAN} 0.349 0.993 665 0.366 0.534 0.133 0.365
7 {LCOM5=N, WMC = N} ⇒ {bugs = CLEAN} 0.345 0.992 656 0.361 0.529 0.131 0.360
8 {RFC =N} ⇒ {bugs = CLEAN} 0.342 1.000 149 0.347 0.515 0.085 0.347

combining the rules for all the projects. This table shows the different evaluation measures for
each rule. Rules 1–3 have the top values; hence, they are the best rules of our study. Tabs. 6–8
show the statistics of metrics LCOM5 and CBO for all three representative projects (i.e., AUIL,
ANTLR4, and BC).

5.3 Testing of Candidate Rules
The four projects described in this section were compared and analyzed statistically to

demonstrate the performance of the best-selected rules.
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Table 6: Statistics of LCOM5 and CBO metrics—AUIL project

Ver. 13-1 Ver. 13-7 Ver. 13-12 Ver. 14-5 Ver. 14-19

LCOM5 CBO LCOM5 CBO LCOM5 CBO LCOM5 CBO LCOM5 CBO

N Valid 73 73 98 98 109 109 116 116 119 119
Missing 0 0 0 0 0 0 0 0 0 0

Percentile 25 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
50 1.00 1.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00
75 2.00 2.00 1.25 4.00 1.00 4.00 1.00 4.75 2.00 5.00

Table 7: Statistics of LCOM5 and CBO metrics—ANTLR4 project

Ver. 13-1 Ver. 13-6 Ver. 14-2 Ver. 14-7 Ver. 15-1

LCOM5 CBO LCOM5 CBO LCOM5 CBO LCOM5 CBO LCOM5 CBO

N Valid 430 430 436 436 479 479 492 492 516 516
Missing 0 0 0 0 0 0 0 0 0 0

Percentile 25 0.00 2.00 0.00 2.00 0.00 2.00 0.00 2.00 0.00 2.00
50 1.00 3.00 1.00 3.00 1.00 3.00 1.00 3.00 1.00 3.00
75 2.00 7.00 1.75 7.00 2.00 7.00 2.00 7.00 1.00 7.00

Table 8: Statistics of LCOM5 and CBO metrics—BC project

Ver. 13-2 Ver. 13-9 Ver. 14-3 Ver. 14-10 Ver. 15-3

LCOM5 CBO LCOM5 CBO LCOM5 CBO LCOM5 CBO LCOM5 CBO

N Valid 1904 1904 1566 1566 1593 1593 1901 1901 1609 1609
Missing 0 0 0 0 0 0 0 0 0 0

Percentile 25 1.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00
50 1.00 3.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00
75 1.00 6.00 1.00 5.00 1.00 5.00 1.00 6.00 1.00 5.00

5.3.1 Test of Ceylon IDE for Eclipse Project
This project is a plugin for Eclipse. David Festal developed it from SERLI, a French software

house, and donated it to the Ceylon project. By employing ARM, we extracted the best rules
for each project and then filtered them using the selected rules from the previous analysis. Tab. 9
shows the best rules for bug prediction using data from the Ceylon IDE project for Eclipse. These
promising results are significant. Tab. 10 shows F-measures and other performance measures for
best rules discovered in the Ceylon IDE project for Eclipse. Here, we calculated the F-measure of
the selected rules and found that its values were outstanding. The F-measure for rule {LCOM5 =
N} is 0.811, which is excellent, and that for {CBO = N} is 0.655, which is very good. The rules
are also valid for the Ceylon IDE project.

5.3.2 Test of Elasticsearch Project
Elasticsearch is a dispersed search engine specially made for the cloud environment. It

is reliable, real-time, consistent, and easy to use. Other characteristics are a distributed and
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highly accessible search engine. It is multi-tenanted and supports a variety of APIs. It is also
document-oriented and does not need

Table 9: Best rules found from Ceylon IDE project for eclipse

Rule
No.

LHS RHS Support Confidence Lift Count

2 {CBO = M} ⇒ {Number of bugs = CLEAN} 0.1080745 0.9613260 1.0037191 174
3 {CBO = L} ⇒ {Number of bugs = CLEAN} 0.1608696 0.9700375 1.0128147 259
4 {CBO = H} ⇒ {Number of bugs = CLEAN} 0.2167702 0.9064935 0.9464686 349
5 {CBO = N} ⇒ {Number of bugs = CLEAN} 0.4720497 0.9781210 1.0212547 760
1 {LCOM5 = L} ⇒ {Number of bugs = CLEAN} 0.9577640 0.9577640 1.0000000 1542
2 {LCOM5 = H} ⇒ {Number of bugs = CLEAN} 0.1229814 0.9166667 0.9570904 198
3 {LCOM5 = M} ⇒ {Number of bugs = CLEAN} 0.1670807 0.9438596 0.9854825 269
4 {LCOM5 = N} ⇒ {Number of bugs = CLEAN} 0.6677019 0.9693417 1.0120883 1075

Table 10: Performance measures for best rules from Ceylon IDE project for eclipse

Rule
No.

LHS RHS Support Confidence Lift F-measure Correlation

5 {CBO = N} ⇒ {bugs = CLEAN} 0.472 0.978 1.021 0.655 0.098
4 {LCOM5 = N} ⇒ {bugs = CLEAN} 0.668 0.969 1.012 0.811 0.086

upfront schema definition. Schemas can be defined for customizing the indexing process,
asynchronous write-behind for long-term persistency, near real-time search, and operational con-
sistency. Tab. 11 shows the best rules for bug prediction using data from the Elasticsearch project.
This table shows the evaluation for each rule using different performance metrics. Tab. 12 shows
the F-measure and other performance indicators for the best rules discovered for Elasticsearch.
The F-measure value for rule {LCOM5 = N} is 0.819, which is excellent, and for {CBO = N} it
is 0.457, which is significant. Hence, these rules are also valid for the Elasticsearch project.

Table 11: Best rules found–elasticsearch project

Rule
No.

LHS RHS Support Confidence Lift Count

2 {CBO = M} ⇒ {Number of bugs = CLEAN} 0.2194593 0.9535176 1.0128196 1518
3 {CBO = L} ⇒ {Number of bugs = CLEAN} 0.230013 0.970122 1.0304566 1591
4 {CBO = H} ⇒ {Number of bugs = CLEAN} 0.2115079 0.8525641 0.9055875 1463
5 {CBO = N} ⇒ {Number of bugs = CLEAN} 0.2804684 0.9852717 1.0465486 1940
1 {LCOM5 = L} ⇒ {Number of bugs = CLEAN} 0.9414486 0.9414486 1.0000000 6512
2 {LCOM5 = H} ⇒ {Number of bugs = CLEAN} 0.1178256 0.8679446 0.9219246 815
3 {LCOM5 = M} ⇒ {Number of bugs = CLEAN} 0.1516553 0.9258605 0.9834425 1049
4 {LCOM5 = N} ⇒ {Number of bugs = CLEAN} 0.6719676 0.9593395 1.0190036 4648
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Table 12: Performance measures for best rules–elasticsearch project

Rule
No.

LHS RHS Support Confidence Lift F-measure Correlation

5 {CBO = N} ⇒ {Number of bugs = CLEAN} 0.280 0.985272 1.047 0.457 0.118
4 {LCOM5 = N} ⇒ {Number of bugs = CLEAN} 0.672 0.95934 1.019 0.819 0.117

5.3.3 Test of Hazelcast Project
Hazelcast is an open-source distributed in-memory data store and computation platform. It

provides a wide variety of distributed data structures and concurrency primitives. Tab. 13 shows
the best rules for bug prediction using data from the Hazelcast project. This table shows the
different performance metrics evaluated for each rule. Tab. 14 shows the F-measure and other
performance measures for best rules discovered for the Hazelcast project. The F-measure for rule
{LCOM5 = N} is 0.852, which is excellent, whereas for {CBO = N}, it is 0.534, which is good.
Hence, these rules are also valid for Hazelcast.

Table 13: Best rules found—hazelcast project

Rule
No.

LHS RHS Support Confidence Lift Count

2 {CBO = L} ⇒ {Number of bugs = CLEAN} 0.1533453 0.9701705 1.049075 683
3 {CBO = M} ⇒ {Number of bugs = CLEAN} 0.2411316 0.9496021 1.026834 1074
4 {CBO = N} ⇒ {Number of bugs = CLEAN} 0.3403682 0.9711723 1.050158 1516
1 {LCOM5} ⇒ {Number of bugs = CLEAN} 0.9247867 0.9247867 1.000000 4119
2 {LCOM5 = H} ⇒ {Number of bugs = CLEAN} 0.2025146 0.8869223 0.9590561 902
3 {LCOM5 = N} ⇒ {Number of bugs = CLEAN} 0.7222721 0.9359907 1.0121152 3217

Table 14: Performance measures for best rules—hazelcast project

Rule
No.

LHS RHS Support Confidence Lift F-measure Correlation

4 {CBO = N} ⇒ {Number of bugs = CLEAN} 0.340 0.971 1.050 0.534 0.129
3 {LCOM5 = N} ⇒ {Number of bugs = CLEAN} 0.722 0.936 1.012 0.852 0.078

5.3.4 Test of JUnit Project
This project is used extensively for testing. Tab. 15 shows the best rules for bug prediction

using data from the JUnit project. This table shows the different performance metrics for each
rule. Tab. 16 shows the F-measure and other performance measures for the best rules discovered
for the JUnit project.

The F-measure for rule {LCOM5 = N} is 0.792, which is excellent, and for {CBO = N},
it is 0.414, which is significant. Hence, these rules are also valid for the JUnit project. The F-
measure of the two selected rules for each of the projects selected is very promising. Hence, these
rules provide the best guidelines for defect prediction to improve the quality of software projects.
We compared the results of the proposed approach with the results of the nearest neighbors
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and decision tree methods. The comparison shows a significant difference between the F-measure
values of the proposed approach (i.e., greater than 60%) and current methods (i.e., less than 60%).

Table 15: Best rules found—JUnit project

Rule
No.

LHS RHS Support Confidence Lift Count

2 {CBO = M} ⇒ {Number of bugs = CLEAN} 0.1668947 0.953125 1.001055 122
3 {CBO = H} ⇒ {Number of bugs = CLEAN} 0.1709986 0.8992806 0.944503 125
4 {CBO = N} ⇒ {Number of bugs = CLEAN} 0.250342 0.968254 1.016945 183
5 {CBO = L} ⇒ {Number of bugs = CLEAN} 0.3638851 0.9672727 1.015914 266
1 {LCOM5 = L} ⇒ {Number of bugs = CLEAN} 0.9521204 0.9521204 1 696
2 {LCOM5 = H} ⇒ {Number of bugs = CLEAN} 0.1354309 0.9166667 0.9627634 99
3 {LCOM5 = M} ⇒ {Number of bugs = CLEAN} 0.1737346 0.9621212 1.0105037 127
4 {LCOM5 = N} ⇒ {Number of bugs = CLEAN} 0.6429549 0.9572301 1.0053667 470

Table 16: Performance measures for best rules—JUnit project

Rule
No.

LHS RHS Support Confidence Lift F-measure Correlation

4 {CBO = N} ⇒ {Number of bugs = CLEAN} 0.2503 0.968254 1.017 0.414 0.045
4 {LCOM5 = N} ⇒ {Number of bugs = CLEAN} 0.643 0.95723 1.005 0.792 0.034

6 Conclusion and Future Work

In this study, we applied ARM and statistical analysis to determine whether a software class
can be classified as clean or buggy. The rules selected through ARM are further evaluated in
terms of their ability to classify the class as either impact error or zero impact error. Using the
selected rules to classify classes will help improve software quality and reduce project costs. The
rules were extracted from three projects according to their high-value F-measures and then tested
on four other projects for their effectiveness. The experimental results demonstrate the applicability
of the selected rules. Those metrics with a large AUC are used for extracting rules. This study also
proposes a heuristic method for ranking association rules according to four constraints – support,
confidence, F-measure, and correlation. The proposed approach produces the top association
rules for any type of field. The predictor selected from this method also demonstrated promise
in predicting the classes of the software projects selected using the ROC curve. Therefore, the
proposed approach is useful for software evolution. For example, a software quality manager can
allocate resources for any specific module based on the best association rules to save cost and
time. Our method can find commercial and industrial solutions or a solution where the best choice
is needed. We would like to extend this approach to future work by incorporating and analyzing
more metrics such as complexity, inheritance, coupling, and size.
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