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Abstract:An automated system is proposed for the detection and classification
of GI abnormalities. The proposedmethod operates under two pipeline proce-
dures: (a) segmentation of the bleeding infection region and (b) classification
of GI abnormalities by deep learning. The first bleeding region is segmented
using a hybrid approach. The threshold is applied to each channel extracted
from the original RGB image. Later, all channels are merged through mutual
information and pixel-based techniques. As a result, the image is segmented.
Texture and deep learning features are extracted in the proposed classification
task. The transfer learning (TL) approach is used for the extraction of deep
features. The Local Binary Pattern (LBP) method is used for texture features.
Later, an entropy-based feature selection approach is implemented to select the
best features of both deep learning and texture vectors. The selected optimal
features are combined with a serial-based technique and the resulting vector is
fed to the Ensemble Learning Classifier. The experimental process is evaluated
on the basis of two datasets: Private and KVASIR. The accuracy achieved is
99.8 per cent for the private data set and 86.4 percent for the KVASIR data
set. It can be confirmed that the proposed method is effective in detecting and
classifying GI abnormalities and exceeds other methods of comparison.

Keywords: Gastrointestinal tract; contrast stretching; segmentation; deep
learning; features selection

1 Introduction

Computerized detection of human diseases is an emerging research domain for the last two
decades [1,2]. In medical imaging, numerous remarkable methods were developed for automated
medical diagnosis systems [3]. Stomach infection is one of the most common types that caused a
large number of deaths every year [4]. The most common type of disease related to the stomach
is colorectal cancer. It affects both women and men [5]. Colorectal cancer consists of three
significant infections that are polyp, ulcer, and bleeding. In 2015, about 132,000 cases of colorectal
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cancer were recorded in the USA [6]. A survey conducted in 2017 showed that approximately
21% population of the USA is suffering from gastrointestinal infections, and 765,000 deaths are
noticed due to maladies found in the stomach [7]. According to the global cancer report of 2018
for 20 regions of the world, total estimated cases of cancer are 18.1 million. Among them, 9.2%
for deaths and 6.1% for new cases relate to colorectal cancer. According to the American cancer
society, in 2019, approximately 27,510 new stomach cancer cases of both genders (consisting of
10,280 women’s and 17,230 men’s) are observed in the US. A total of 11,140 deaths (consisting
of 4340 women’s and 6800 men’s) are noticed in 2019 due to colorectal cancer [8].

GI infections can be easily cured if they were diagnosed at an early stage. As small bowel
has a complex structure, that is why push gastroscopy is not considered as the best choice for the
diagnosis of small bowel infections like bleeding, polyp, and ulcer [9]. The traditional endoscopic
method is an invasive method that is not utilized by endoscopists and is also not recommended to
patients due to its high level of discomfort [10]. These problems were resolved by a new technology
introduced in the year 2000, namely, Wireless Capsule Endoscopy (WCE) [11]. WCE is a small pill
shaped device, consisting of batteries, a camera, and a light source [12]. While passing through the
gastrointestinal tract (GIT), WCE captures almost 50,000 images and releases them through the
anus. Mostly malignant diseases of GIT like bleeding, polyp, and ulcer are diagnosed through
WCE. WCE is proved to be an authentic modality for painless investigation and examination
of GIT [13]. This technique is more convenient to use than traditional endoscopies. Moreover,
it provides better diagnostic accuracy for bleeding and tumor detection, specifically in the small
intestine [14]. It is too difficult for an expert physician to thoroughly examine all of the captured
images as it is a chaotic and time taking task. The manual analysis of WCE frames is not an
easy process, and it takes much time [15]. To resolve this problem, researchers are working on
introducing several computer-aided diagnosis (CAD) methods [16]. The suggested methods will
help the doctors to detect the disease more accurately in less time. A typical CAD system consists
of five major steps that are image pre-processing, feature extraction, optimal feature selection,
feature fusion, and classification. The extraction of useful features is one of the most significant
tasks. Numerous features are extracted in the CAD systems for accurate diagnosis of disease.
These features include texture [17], color [18], and so on [19]. All of the extracted features are
not useful; there may exist some irrelevant. Therefore, it is essential to reduce the feature vector
to remove irrelevant features for better efficiency.

In this work, to detect and classify GI abnormalities, two pipeline procedures are considered:
bleeding segmentation and GI abnormality classification. The significant contributions of the work
are: i) in the bleeding detection step, a hybrid technique is implemented. In this method, the
original image is split into three channels and thresholding is applied for each color channel. After
that, pixel-by-pixel matching is performed, and a mask is generated for each channel. Finally,
combining all mask images in one image for final bleeding segmentation; ii) in the classification
procedure, transfer learning is ustilized for extracting deep learning features. The original images
are enhanced by using a unified method, which is a combination of chrominance weight map,
gamma correction, haze reduction, and YCbCr color conversion. Later, deep learning features are
extracted by using a pre-trained CNN model. Further, the LBP features are also obtained for tex-
tural information of each abnormal regions; iii) a new method named entropy controlled ensemble
learning is proposed and it selects the best learning features for correct prediction as well as fast
execution. The selected features are ensemble in one vector by using a concatenation approach;
iv) the performance of the proposed method is validated by several combinations of features.
Further, many classification methods are also used for validation of selected features vector.
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2 Related Work

Several machine learning and computer vision-based techniques are introduced for the diag-
nosis of human diseases like lung cancer, brain tumor, GIT infections from WCE images, and
so on [20,21]. The stomach is one of the most significant organs of the human body. The
most conspicuous diseases of the stomach are ulcer, bleeding, and polyp. In the study [22], the
authors have utilized six features of different color spaces for the classification of non-ulcer and
ulcerous regions. The used color spaces are CMYK, YUV, RGB, HSV, LAB, and XYZ. After the
extraction of features, the cross-correlation method is utilized for the fusion of extracted features.
Finally, 97.89% accuracy is obtained by utilizing the support vector machine (SVM) for the
classification. Suman et al. [23] proposed a new method for the classification of bleeding images
from non-bleeding ones. Their suggested method is mainly based on the statistical color features
obtained from the RGB images. Charfi et al. [24] presented another methodology for colon
irregularity detection from WCE images utilizing variance, LBP, and DWT features. They have
been used a multilayer perceptron (MLP) and SVM for the classification. The suggested method
performed well than existing methods and achieved 85.86% accuracy on linear SVM and 89.43%
accuracy on MLP. In [25], authors have proposed a CAD method for bleeding classification.
They have used unsupervised and supervised learning algorithms. Souaidi et al. [26] proposed a
unique approach named multiscale complete LBP (MS-CLBP) for ulcer detection which is mainly
based on the Laplacian pyramid and completed LBP (CLBP). In this method, ulcer detection is
performed using two-color spaces (YCbCr and RGB). They have used the G channel of RGB
and Cr of YCbCr for the detection of ulcers. Classification is performed using SVM and attained
an average accuracy of 93.88% and 95.11% for both datasets. According to the survey conducted
by Fan et al. [27], different pre-trained models of deep learning have covered numerous aspects
of the medical imaging domain. Many researchers have utilized CNN models for the accurate
classification and segmentation of disease or infections.

In contrast, the images that have the same category should share the same learned features.
The overall achieved recognition accuracy of this method is 98%. Sharif et al. [28] have used
the contrast-enhanced color features for the segmentation of the infected region from the image.
After that, geometric features are pull-out from the resultant segmented portion of the image.
Two deep CNN models VGG19 and VGG16, are also used in this method. Extracted deep
features of both models are fused using the Euclidean fisher vector (EFV) that are later combined
with the geometric characteristics to obtain strong features. Conditional entropy is employed
on the resultant feature vector for optimal feature selection, which is classified using the KNN
classifier and achieved the highest accuracy of 99.42%. Diamantis et al. [29] have proposed a novel
method named as LB-FCN (Look Behind Fully Convolutional Neural Network). The proposed
method has performed well than existing methods and achieved better GI abnormality detection
results. Alaskar et al. [30] have utilized GoogleNet and AlexNet for the ulcer and non-ulcer
images classification. Khan et al. [31] have suggested a technique for the ulcer detection and GI
abnormality classification. ResNet101 is utilized by the authors for features extraction. Moreover,
they optimized features by utilizing distance fitness function along with grasshopper optimization.
They have utilized C-SVM and achieved 99.13% classification accuracy. The literature depicts that
CAD systems for disease recognition mostly rely on handcrafted features (shape, color, and texture
information). However, impressed by the performance of CNN in other domains, some researchers
have employed CNN models in the medical field for disease segmentation and classification [32,33].
Inspired by these studies, we utilized deep learning for better classification accuracy.
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3 Proposed Methodology

A hybrid architecture is proposed in this work for automated detection and classification
of stomach abnormalities. The proposed architecture follows two pipeline procedures: Bleeding
abnormality segmentation and GI infections classification. The proposed bleeding segmentation
procedure is illustrated in Fig. 1. First, select the RGB bleeding images from the Database, then,
extract all three channels and apply thresholding. Output images produced by a threshold function
are compared by pixel-wise and used for generating a mask for each channel. Later, combined the
mask of all three channels, as a result, a segmented image is obtained. The detail description of
each step given as follows.

Database

Channel Extraction from RGB
Bleeding image

R Channel

G Channel

B Channel

Bleeding Images

Threshold Selection

Pixel based comparison

Mask
Combination

Mapping on Original
image

Bleeding
Segmentation

Mask of R Channel

Mask of G Channel

Mask of B Channel

Mask Generation

Figure 1: Flow diagram of proposed segmentation method

3.1 Bleeding Abnormality Segmentation
Consider X(i, j) is an original RGB WCE image of dimension 256× 256× 3. Consider δR,

δG, and δB denotes extracted channels, namely red channel, green channel, and blue channel,
respectively, and illustrated in Fig. 2. After splitting all channels, applying a threshold on each
channel. The Otsu thresholding is used for each channel. Mathematically, the thresholding process
is defined as follows.
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Figure 2: Visualization of the original image and extracted channels: δR, δG, and δB

Considering three channels δR, δG, and δB having Δ gray levels (0, 1, 2, . . .), and maximum

pixels are N=∑�−1
j=0 ξj. Here, ξj is a specific grey-level pixel. The variance is using for segmenta-

tion process and define as it is a sum of the difference between two classes and denoted by δu (p1)
and can be expressed as:

δu (p1)=Pro(1) (p1) (M1 (p1)−M)2+Pro(2) (p1) (M2 (p1)−M)2 (1)

where, Pro(1) (p1) and Pro(2) (p1) denotes pixels probabilities and it can be calculated through the
following formulas:

Pro(1) (p1)=
p1∑
j=1

Pro(j) (2)

Pro(2) (p1)= 1−Pro(p1)(R−1); where R ∈ [0, 1] (3)

where, M1 (p1) and M2 (p1) denotes the mean value between the two classes. And can be
calculated as:

M1 (p1)=
(

1
Pro(1) (p1)

) p1∑
j=1

jPro(1), (4)

M2 (p1)=
(

1
Pro(2) (p1)

) G̃∑
j=1+p1

jPro(2). (5)

Bi-class variance can be expressed as:

δ1 (p1)=
p1∑
j=1

( j−M1 (p1))
2 Proj
Pro1(p1)

, (6)

δ2 (p1)=
G̃−1∑

j=1+p1
( j−M2 (p1))

2 Proj
Pro2(p1)

, (7)
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In Ostu segmentation, threshold selection is based on the cost function and can be calcu-
lated as:

ϕ (yi)= arg0≤ p1 < �MaxδR (p1) , (8)

where, ϕ (yi) is a thresholded image and i denotes three thresholded images for channels δR, δG,
and δB. After that, each channel is compared with corresponding threshold channels. As a result,
the mask is generated for each color channel. Later, it combines all channels information through
the following equation. Consider ϕ (y1) denote a thresholded image of the red channel, ϕ (y2)
denote a thresholded image of the green channel and ϕ (y3) denote a thresholded image of the
blue channel, respectively.

Suppose, ϕ (y1)∈ S1, ϕ (y2) ∈ S2, and ϕ (y3) ∈ S3 represent three threshold channels, as shown
in Fig. 3; then the fusion formula is defined as follows:

P (R1∩R2 ∩R3)=P (R1 ∩R2)∩R3) (9)

P (R1∩R2 ∩R3)=P (R3 | (R1 ∩R2))P(R1 ∩R2) (10)

P (R1∩R2 ∩R3)=P(R3 | (R1∩R2))P(R2 |R1)P(R1)) (11)

P (R1∩R2 ∩R3)=P(R1)P(R2 |R1)P(R3 |R1 ∩R2) (12)

where P (R1∩R2 ∩R3) denotes the final bleeding segmented image, and visible results are shown
in Fig. 4.

Figure 3: Extracted thresholding channels

3.2 Abnormalities Classification
In the classification task, we presented a deep learning-based architecture for GI abnormalities

classification such as bleeding, ulcer, and healthy. This task consists of three steps: enhancement
of original images, deep feature extraction, and selection of robust features for classification. The
flow diagram is presented in Fig. 5. The mathematical description of the proposed classification
task is given below.
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Figure 4: Segmentation output. (a) Original image, (b) detected red spots, (c) proposed binarized
segmented image, (d) ground truth image

3.2.1 Contrast Enhancement
WCE images may suffer from non-uniform lighting, low visibility, diminished colors, blurring,

and low contrast of image characteristics [34]. In the very first step, we have applied a chromatic
weight map to improve the saturation in the images. Thus, the color can be an essential indicator
of image value. Let, X(i, j) be the input image of dimension 256× 256. For each input image
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distance of each pixel saturation with most of the congestion, the series is calculated to get this
weight map. Mathematically, the chromatic weight map is expressing as follows:

Xc (i, j)= exp

(
−1× (X (i, j)− (Smax)2

2σ 2

)
(13)

where, Xc (i, j) is the output image of the chromatic weight map, σ represents the standard
deviation, and its default value is 0.3. The Smax denote is the highest value of the saturation
range. Therefore the small amount of saturation is allocated to the pixels. After chromatic weight
computation, gamma correction is applying to control the brightness and contrast ratio of an
image Xc (i, j). Generally, the value of input and output ranges between 0 and 1. In the proposed
preprocessing approach, we have used γ = 0.4 because, at this value, images are enhanced suitably
without losing important information. Mathematically gamma correction is formulated as follows:

XGM (i, j)=A×VXc(i, j)
γ (14)

where, A is a constant, VXc(i, j) is the positive real value of chromatic weight map image, raised
to the power of γ multiplied by a constant value A (generally A = 1). Input and output range
typically from 0 to 1. Further, we are applying image dehazing. The main objective of Image
dehazing is to recover the flawless image from a blurry image. However, it may be deficient in
capturing the essential features of hazy images fully. Mathematically image dehazing is formulated
as follows:

XHZ (i, j)= XGM(m, n)−A(XGM(i, j))(1− t(XGM(i, j)))
t(XGM(i, j))

(15)

The foundation of a hazy image can be presented as a curved combination of the image
radiance J and the light A, which can be formulated as where XGM (m, n) is a pixel from the
hazy image XGM and t(XGM(i, j)) is its transmission. As a consequence, by recovering the image
radiance XGM (i, j) from hazy pixel XGM(m, n) the problem of image hazing is resolved. The visual
effects of this formulation are illustrated in Fig. 6. Finally, the YCbCr color transformations are
applying and select the Y channel based on peak pixel values. This channel is further utilized for
features extraction task.

Figure 5: Flow diagram of proposed classification method
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Figure 6: (a) Output images of gamma correction, (b) output images of haze reduction

3.2.2 Features Extraction (FE)
Deep Learning Features: For deep learning features, we have utilized a pre-trained inceptionV3

model. This model is trained on an enhanced WCE dataset. InceptionV3 model consists of
316 layers and 350 × 2 connections. Fig. 7 gives the generalized Visual representation of the
layers of inceptionV3 model. The input size for this model is 299 × 299 × 2; the output of
the first Inceptionv3 layer is to the next layer. It consists of a series of layers, such as scaling
layer, AveragePooling layer, convolutional layers, Depth Concatenation layer, ReLU layer, Batch
normalization layer, MaxPooling layer, softmax layer, and a classification layer. Each layer in the
inceptionV3 model has several parameters.

Figure 7: Detailed model of inceptionV3
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Using this model, the ratio that we have used for training and testing is 70:30. This feature
extraction process is conducted using the transfer learning method. In the TL, a pre-trained model
was trained on GI WCE images. For this purpose, we required an input layer and an output
layer. For input layer, we are using the first convolution layer, while in the output; we select the
average pool layer. We have obtained a feature vector of dimension 1× 2048, after activation of
the average pool layer. For N images, the vector should be N × 2048.

Texture Oriented Features—For the sake of texture oriented features, we are extracting Local
Binary Patterns (LBP). LBP is a significant method used for object identification and detec-
tion [35]. Basically, LBP features consist of two bitwise transitions from 0 to 1 and 1 to 0.
LBP use a greyscale image as input, then calculate mean and variance for each pixel intensity.
Mathematical representation of LBP is formulated as follow:

LBP (P, R)=
P−1∑
P=0

S (kP− kC)2P (16)

Here, the number of neighborhood intensities are represented byP,R is the radius, kp is the
variance of the neighboring pixel intensity, KC represents the contrast of intensity calculated from
(P, R).

dn(P)=
{
1, if P≥ t

0, Otherwise
(17)

where neighboring pixels dn(P) are compared with the central pixel t. It obtains a feature vector
of 1× 59 dimension for one image and N× 59 for N number of images.

3.2.3 Features Selection
After the extraction of texture and deep learning features, the next phase involves the optimal

features selection. In this work, we have utilized Shannon entropy along with an ensemble learning
classifier for best features selection. A heuristic approach has opted for feature selection. The
Shannon Entropy is computed from both vectors separately and set a target function based on
the mean value of original entropy vectors. The features that are equal or higher than mean
features are selects as robust features and passed to ensemble classifiers. However, this process is
to continue until the error rate of the ensemble classifier is below 0.1. Mathematically Shannon
entropy is ratified by the equation as follow:

Let nkj be the number of occurrences of tj in the category ck and, tf kj the frequency of tj in

this category ck:

tf kj =
nkj∑
k n

k
j

(18)

The Shannon entropy E(tj) of the term tj is given by:

E
(
tj
)=−

r∑
k=1

(tf kj )× (log2(tf
k
j )) (19)
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Through this process, approximately 50% of features are removed from both vectors-deep
learning and texture oriented. Later on, these selected vectors are fused in one vector by simple
concatenation approach as given as: Let A and B be two feature spaces that are defined on the
sample space �, where A represents selected LBP features and B represents selected inceptionV3
features. An arbitrary sample ξ is selected from the sample space such that ξ ∈�, the correspond-
ing two FVs are αlbp ∈A and βincep ∈B. Then, the fusion of feature ξ is defined by γ = αlbpβincep,
if αlbp is n dimensional and βincep is m dimensional then the fused FV γ is (n+m)-dimensional.
All combined feature FVs form a (n+m)-dimensional feature space.

4 Experimental Results and Comparison

Two datasets are used in this work for the assessment of suggested GI infections detection
and classification method. The description of each dataset is given as:

KVASIRDataset contains a total of 4000 images, which are confirmed by expert doctors [36].
Eight different types of infections are included in this dataset, such as Dyed-Lifted-Polyp (DLP),
Dyed-Resection-Margin (DRM), Esophagitis (ESO), Normal-Cecum (NC), Normal-Pylorus (NP),
Normal Z-Line (NZL), Polyps (P), and Ulcerative-Colities (UCE). Every class contains 500 images
of different resolution-720× 576 up to 1920× 1072 pixels. Sample images are shown in Fig. 8a.

Private Dataset was collected from COMSATS Computer Vision Lab [37], and it includes a
total of 2326 clinical sample images. These images consist of three categories-ulcer, bleeding, and
healthy. The image size is 512× 512. Some sample images are presented in Fig. 8b.

Figure 8: Sample images selected from the datasets: (a) KVASIR dataset [36], (b) Private
dataset [37]

4.1 Results
A detailed description of classification results in quantitative and graphical form is given in

this section. For experimental results, seven different classifiers are used for the evaluation of sug-
gested methods that are Linear Discriminant (L-Disc), Fine Tree (F-Tree), Cubic SVM (C-SVM),
Medium Gaussian SVM (M-G-SVM), Linear SVM (L-SVM), Fine KNN (F-KNN), and ENSEM
subspace discriminant (ESDA). In this research, we have utilized different performance measures
for the evaluation of suggested methods, including Specificity (SPE), FNR, Precision (PRE),
FPR, Sensitivity (SEN), Accuracy (ACC), F1-Score, Jaccard index, and Dice. All the tests are
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implemented on MATLAB 2019b using Core i5-7thGen, 4 GB RAM. Further, an 8 GB graphics
card is also used for the evaluation of results.

Bleeding Segmentation Results: To validate segmentation accuracy, 20 sample images from the
Private dataset are randomly chosen for bleeding segmentation. In this research we have utilized
the ground truth images designed by an expert physician for the segmentation accuracy calcula-
tion. The ground truth images are compared with the proposed segmented images pixel-by-pixel.
Our proposed bleeding method has achieved the highest accuracy of 93.39%. Other calculated
measures are Jack-index (96.58%) and FNR (6.61). The selected image’s accuracy is given in
Tab. 1. In this table, it is shown that for all selected 20 images, Jack-Index, Dice, FNR, and
Time (s) is presented. The average dice rate is 87.59%, which is good for bleeding segmentation.

Table 1: Bleeding segmentation results

Image # Performance measures

Jack-index (%) Dice (%) FNR (%) Time (s)

1 95.32 91.05 8.95 5.865451
2 93.74 88.21 11.79 6.481893
3 88.25 78.98 21.02 6.109725
4 91.46 84.27 15.73 14.66179
5 95.02 90.51 9.49 5.103764
6 96.23 92.73 7.27 8.664483
7 96.58 93.39 6.61 4.845475
8 90.81 83.17 16.83 6.732851
9 94.34 89.29 5.66 9.608909
10 88.51 79.38 20.62 9.828089
11 93.66 88.08 11.92 9.818192
12 94.98 90.44 9.56 10.99683
13 93.62 88.01 11.99 8.654121
14 96.23 92.74 7.26 17.56766
15 90.38 82.44 17.56 13.99112
16 95.63 91.62 8.38 13.67921
17 93.46 87.72 12.28 7.435595
18 94.71 89.94 10.06 11.13178
19 95.25 90.94 9.06 8.380193
20 88.25 78.98 11.75 5.927833

Classification Results: For classification results, we have performed experiments for both selec-
tion and fusion processes separately. As mentioned above, two datasets named KVASIR and
Private datasets are used for the evaluation of the proposed method. As the Private Dataset
includes a total of 2326 RGB images consisting of three classes, namely ulcer, bleeding, and
healthy. Initially, robust deep learning features are selected using the proposed selected approach.
For robust deep learning features, maximum achieved accuracy of 99.7% on ESDA classifier, as
numerical results are given in Tab. 2. In this table, it is observed that the other calculated measures
are SEN (99.7%), SPE (99.88%), PRE (99.70%), F1 score (99.70%), FPR (zero), and FNR (0.3%).
Further, the accuracy of ESDA can also be validated by Tab. 3. Besides, the execution time of
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each classifier is noted during the testing, as given in Tab. 2. In this table, the best noted time is
16.818 s for the ESDA classifier. The worst execution time is 26.166 s for the M-G-SVM classifier.

Table 2: Propose classification results on selected deep learning features for private dataset. The
maximum accuracy is bold in the table

Classifier Performance measures

ACC (%) SEN (%) SPE (%) PRE (%) F1 score (%) FPR FNR (%) Execution
time (s)

F-Tree 88.1 86.83 94.19 86.32 86.55 0.06 11.9 22.82
L-Disc 99.4 99.30 99.68 99.39 99.34 0.00 0.6 25.88
L-SVM 98.8 98.57 99.34 98.86 98.72 0.01 1.2 18.14
C-SVM 99.4 99.30 99.68 99.39 99.34 0.00 0.6 18.01
M-G-SVM 99.5 99.39 99.70 99.55 99.47 0.00 0.5 26.16
F-KNN 99.4 99.28 99.72 99.39 99.33 0.00 0.6 111.2
ESDA 99.7 99.70 99.88 99.70 99.70 0.00 0.3 16.81

Table 3: Confusion matrix using selected inceptionV3 features for private dataset

Classes Classification classes

Bleeding Healthy Ulcer

Bleeding >99% <1%
Healthy >99% <1%
Ulcer 1% 99%

Tab. 4 shows the classification results using robust deep learning features for KVASIR dataset.
The 10-fold cross-validation was used for testing results and achieved the best accuracy of 86.6%
on the ESDA classifier, as numerical results can be seen in Tab. 4. In this table, it is observed that
the other calculated measures of ESDA classifier are SEN (86.62%), SPE (98.08%), PRE (87.08%),
F1 score (86.60%), FPR (0.04) and FNR (13.4%). The accuracy of this classifier can also be
validated by Tab. 5. The minimum noted time is 27.67 s for F-Tree, while 43.01 s for ESDA
classifier. However, the accuracy of the ESDA classifier is better as compared to all other methods.

Later on, the selected deep learning and LBP features are fused and performed evaluation.
Results are presented in Tab. 6 using a fused vector for Private Dataset. The maximum achieved
accuracy after the fusion process is reached to 99.8% for the ESDA classifier. In this table, it
is observed that the ESDA classifier shows better performance in terms of other performance
measures as compared to other classifiers. Other calculated measures of ESDA are SEN (99.83%),
SPE (99.92%), PRE (99.80%), F1 score (99.81%), FPR (zero), and FNR (0.2%). The accuracy
of this classifier can also be validated by Tab. 7. From the comparison with Tab. 2, it is shown
that after the fusion process, the results are a little bit improved. But on the other side, the
computational time is increased up to an average of 4 to 5 sec. The best noted time for this
experiment is 17.03 s, while the worst time is 42.39 s. In conclusion, ESDA performs better as
compared to other methods.
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Table 4: Propose classification results on selected deep learning features for KVASIR dataset. The
maximum accuracy is bold in the table

Classifier Performance measures

ACC (%) SEN (%) SPE (%) PRE (%) F1 Score (%) FPR FNR (%) Execution
time (s)

F-Tree 56.3 56.33 93.76 56.22 56.24 0.06 43.7 27.67
L-Disc 84.9 84.93 97.85 85.26 85.05 0.02 15.1 27.84
L-SVM 85.7 85.65 97.95 85.63 85.59 0.02 14.3 46.46
C-SVM 85.8 85.23 97.93 85.23 85.22 0.02 14.2 53.72
M-G-SVM 84.7 84.70 97.81 84.82 84.67 0.02 15.3 29.36
F-KNN 74.9 72.18 96.03 73.09 72.12 0.04 25.1 50.30
ESDA 86.6 86.62 98.08 87.08 86.80 0.02 13.4 43.01

Table 5: Confusion matrix using selected inception features for KVASIR dataset

Classes Classification classes

DLP DRM ESO NC NP NZL P UCE

DLP 77% 19% 3% 1%
DRM 20% 77% <1% 1% <1%
ESO 77% 1% 22% <1% <1%
NC 97% 2% 1%
NP 1% 98% 1%
NZL 13% 1% 85% 1%
P 1% 4% 1% <1% 88% 5%
UCE 1% 1% 1% 3% 94%

Table 6: Classification results of proposed classification architecture for private dataset. The
maximum accuracy is bold in the table

Classifier Performance measures

ACC (%) SEN (%) SPE (%) PRE (%) F1 score (%) FPR FNR (%) Execution
time (s)

F-Tree 87.7 86.23 94.02 85.85 86.03 0.06 12.3 27.373
L-Disc 99.5 99.47 99.75 99.52 99.49 0.00 0.5 19.944
L-SVM 98.8 98.65 99.36 98.89 98.77 0.01 1.2 20.426
C-SVM 99.6 99.65 99.69 99.67 99.66 0.00 0.4 18.217
M-G-SVM 99.4 99.34 99.68 99.52 99.43 0.00 0.6 25.439
F-KNN 99.6 99.50 99.81 99.58 99.54 0.00 0.4 42.39
ESDA 99.8 99.83 99.92 99.80 99.81 0.00 0.2 17.031

The fused vector is also applied to the KVASIR dataset and achieved maximum accuracy
of 87.8% for the ESDA classifier. Tab. 8 shows the results of the proposed architecture. The
other calculated measures of this classifier are SEN (86.4%), SPE (98.06%), PRE (86.99%), F1
score (86.63%), FPR (0.02), and FNR (13.6%). Moreover, Tab. 9 shows a confusion matrix of
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this classifier, which can be used as the authenticity of proposed ESDA accuracy. The diagonal
values show the correct prediction of each abnormality while the rest of the values are FNR.
After fusion process accuracy is improved. However, a little bit of increase occurs in the execution
time. After the fusion process, the best noted time is 26.06 s, while for ESDA classifier is 50.70 s.
Overall, it can be easily concluded that the ESDA classifier shows better performance.

Table 7: Confusion matrix for proposed classification architecture for private dataset

Classes Classification classes

Bleeding Healthy Ulcer

Bleeding 100%
Healthy >99% <1%
Ulcer <1% >99%

Table 8: Classification results of proposed classification architecture for KVASIR Dataset. The
maximum accuracy is bold in the table

Classifier Performance measures

ACC (%) SEN (%) SPE (%) PRE (%) F1 score (%) FPR FNR (%) Execution
time (s)

F-Tree 60.4 60.40 94.34 60.29 60.34 0.06 39.6 72.29
L-Disc 84.8 84.80 97.83 85.23 84.98 0.02 15.2 32.34
L-SVM 86.1 86.05 98.01 86.19 86.05 0.02 13.9 94.90
C-SVM 85.7 85.73 97.96 85.79 85.73 0.02 14.3 79.03
M-G-SVM 84.6 84.60 97.80 84.82 84.64 0.02 15.4 46.95
F-KNN 75.3 72.83 96.12 73.8 72.83 0.04 24.7 26.06
ESDA 87.8 87.40 98.06 87.99 87.63 0.02 12.2 50.70

Table 9: Confusion matrix using selected fused LBP and inceptionV3 features for KVASIR dataset

Classes Classification classes

DLP DRM ESO NC NP NZL P UCE

DLP 78% 19% <1% 2%
DRM 21% 77% 1% <1%
ESO 78% 1% 21%
NC 96% 3% 1%
NP 1% 98% 1%
ZL 12% 1% 86% <1%
P 1% 4% 2% 1% 87% 5%
UCE 1% 1% 1% 3% 94%
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4.2 Comparison with Existing Methods
From the above review, it is noted that several methods are proposed by the researchers

for GI disease abnormality detection and classification. Most of the existing CAD methods are
based on traditional techniques and algorithms, such as most of them are based on only color
information or texture information. Although there exists some methods in which authors have
used a combination of features. Some methods are also based on deep CNN features. Despite
too many existing CAD methods, there exist some limitations in the old approaches such as low
contrast of captured frames, the same color of the infected and healthy region, the problem of
proper color model selection, hazy image, redundant information, etc. These limitations forced us
to develop a robust method for GI abnormality detection and classification with better accuracy.
The proposed deep learning method is evaluated on two datasets-Kvasir and Private and achieved
an accuracy of 99.80% and 87.80%. The comparison with existing techniques is given in Tab. 10.
In this table, the comparison is conducted based on the abnormality name or dataset. Because
most of the GI datasets are private, therefore, we mainly focused on disease type. From this table,
it is shown that the proposed architecture gives better accuracy as well as execution time.

Table 10: Comparison with existing methods

Ref. Year Disease/dataset Performance measures

ACC (%) SEN (%) SPE (%) PRE (%) Execution
time (s)

[28] 2019 Bleeding, Ulcer and Normal 99.54 100 – 99.51 12.59
[38] 2019 Ulcer, Cancer, Normal 96.49 – – – –
[37] 2018 Ulcer, bleeding 98.49 98.00 98.00 99.00 17.393
Proposed 2020 Private dataset: Bleeding,

Ulcer and Normal
99.80 99.83 99.92 99.80 17.031

2020 KVASIR dataset 87.80 87.40 98.06 87.99 50.7

5 Conclusion

In this article, we proposed a deep learning architecture for the detection and classification
of GI abnormalities. The proposed architecture consists of two procedures for pipeline detection
and classification. In the detection task, the bleeding region is segmented by a fusion of three
separate channels. In the classification task, deep learning features and texture-oriented features
are extracted and the best features are selected using the Shanon Entropy controlled ESDA
classifier. The selected features are concatenated and are classified. In the evaluation phase, the
segmentation process achieves an average accuracy of over 87% for abnormal bleeding regions. For
classification, the accuracy of the private data set is 99.80 percent, while for the Kvasir data set,
the accuracy is 87.80 percent. It is concluded from the results that the proposed selection method
shows better performance compared to the existing techniques. It also concludes that the merger
process is effective for more classes, such as the Kvasir dataset classification. In addition, texture
features also have a high impact on disease classification and deep learning fusion, addressing
the issue of texture variation. In future studies, we will focus on ulcer segmentation through
deep learning.
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