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Abstract: Software-defined networking (SDN) makes network agile and flex-
ible due to its programmable approach. An extensive network has multiple
domains in SDN for the scalability and performance of the network. However,
the inter-domain link is also crucial for the stability of the entire network on
the data plane layer. More than one inter-domain connection enhances the
scalability of the data plane layer. However, it faces a reachability problem
with the principal root, which causes forwarding loops and packet drops in
the network, thereby degrading network performance. The proposed solution
is a multiple controller architecture; however, this approach increases the
complexity and affects network performance. Thus, in this study, we propose
a framework that avoids forwarding loops and packet drops without the syn-
chronization of multiple-domain controllers in the network using an avoid
loopwith test packet scheme.Moreover, we collect the link status for improved
routing and load balancing for the upcoming flow across inter-domain links
to prevent congestion and increase throughput in real time. Our proposed
methodology can significantly reduce the controller workload against multiple
controller architecture, minimize flow setup latency, and improve throughput.

Keywords: Multiple domain; packet drop; forwarding loop; load balancing;
SDN; multiple controller

1 Introduction

In the last decade, software-defined networking (SDN) technology has attracted considerably
increasing attention in industries and the academia. It is a nascent technology that has been
adopted in data center networks and wide-area networks (WAN), such as Internet2 and Google
B4 [1,2]. SDN depends on a central controller to hold a global view of the entire network
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and perform fine-grained traffic engineering in a centralized manner. It has proven superior
performance in load balancing, maximizing system throughput, and dynamic adaptability of traffic
changes [3]. It also enhances the simplicity in network configuration and management due to its
centralized architecture. Moreover, SDN enhances innovation and flexibility with programmable
networks by decoupling the control plane from the data plane [4]. The traditional distributed
computer network has many problems than can be overcome by SDN. However, innovation in
the conventional network is a challenge due to its nonprogrammable approach [5].

The controller contains the authority of high-level policy decisions to construct the high-speed
data plane of network devices [2]. The OpenFlow protocol is used to communicate with the con-
troller and the data plane through the southbound application programming interface (API) [6].
The controller uses OpenFlow to install the forwarding rules in network devices (i.e., switches and
routers). OpenFlow has several versions that have been released, from its first version (1.1) in 2011
to the latest one (1.6). Every new version of the OpenFlow protocol adds new functions [7]. In
addition to the control and data planes, SDN has a third plane called management or application
plane. This plane interacts with the controller through the northbound API. With this plane, the
administrator and network engineer can deploy their network applications, such as load balancers
and routing protocols, which allow them to control the data plane according to their requirements.
The SDN is not only limited to the enterprise or the data center network but it also has a
beneficial effect on the improvement of the performance of wireless technologies, such as 5G.
Previous research has shown its footprint in the upcoming 6G technology [8].

In SDN, multiple-domain concepts make large-scale networks, such as carrier-grade networks,
stable and efficient. In a conventional network, the carrier-grade network is divided into multiple
autonomous systems to monitor and efficiently route and reduce each router processor over-
head [9]. The same concept of multiple domains is applied in SDN to make the network stable
and offload the network controller with multiple physical controllers’ deployment. The single-
controller SDN is inappropriate for the whole network due to the degradation of controller
computational performance, which affects the network performance [10]. The distributed physical
control plane in the control layer reduces the events of the data plane. Chunks of the network
should be created into multiple domains to make the network scalable. In this manner, the small
portion of the network will be managed excellently to improve the performance of the data
traffic throughput, minimize the computational overhead, and reduce the flow insertion latency
delay [11].

The problem in multiple domains without controller synchronization creates forwarding loops
and packet drops in the network, which lead to reachability problems across multiple domains in
end-to-end services [12]. Given a flow, its forwarding path forms a loop, such that the packets of
the flow will ultimately be forwarded to their originating domain due to the non-update of the
control plane. If a loop exists, then a single looped frame can sufficiently decrease the performance
of the entire network by consuming the bandwidth and CPU power of the affected devices [13,14].
To overcome such problems, distributed hierarchical and flat-controller architectures have been
proposed; however, some limitations exist in the distributed architecture of controllers, such as
flow setup latency in the hierarchical architecture and controller CPU computational overhead in
the flat architecture of SDN [11]. In the present study, we primarily focus on the reachability
problem without loop intervention and packet drops in the inter-domain communication during
the absence of inter-controller communication in SDN. We propose the avoid loop with test
packet (ALTP) mechanism to prevent loop intervention and measure the end-to-end latency
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in the network from the source to the destination in the absence of multi-domain controller
synchronization.

The other problem in SDN controller is its routing. SDN can use a single-path shortest-
path first (SPF) algorithm, which creates congestion on inter-domain links because the controller
instructs the switches to forward all flows from the source to the destination on the same path [15].
If redundant inter-domain links exists, then the controller uses the single link, and the other
link remains unoccupied. In the SPF algorithm, packets may be dropped if the inter-domain link
is congested. All flows belong to one link during the inter-domain data traffic. In this study,
splitting the flow from the source to the destination is made possible. In the inter-domain flow, the
controller accommodates multiple flows across multiple paths from the source to the destination,
and the throughput is increased.

This study also investigates the concerns mentioned above. It assesses how packet drops/loops
occur if the source and destination belong to different domains. Moreover, this study enhances
our previous work [16] with the main contributions as follows:

• Detailed description of the proposed methodology;
• Updated topology module to handle the real-time link bandwidth availability;
• Load balancing among inter domains to improve the overall throughput of the entire
network;

• Flow installation on switches according to flow demand;
• Analysis of multiple controller architecture and default inter-domain routing performance
using the proposed framework.

In the production network, the network designing team suggests redundant links in the core
layer, and the important egress node makes the network scalable and reliable in case of link
failure. On the basis of this principle, a single inter-domain link is not appropriate for the
scalability of the entire network, which contains multiple domains. If one link in the inter-domain
connection fails, then it will create the end-to-end reachability problem across all the domains of
the network. We analyze that one inter-domain link does not create a loop. We install two links
among the domains for reliability purposes, and we analyze whether a reachability problem in the
multi-domain system occurs. After the excavation of the problem, we obtain two root causes of
the forwarding loops and black hole problems in the network.

In Fig. 1, the controller has its own entire domain information. Thus, the entire domain
topology tree can be constructed quickly [5]. Packet drop may occur due to the inter-domain
communication without controller synchronization because the controller has broadcasted ARP
packets inside and outside the topology, which mislead the controller about the host location.
Thus, in this manner, wrong flow entries will be incorporated due to the NIB table of controllers
not being updated. The redundant link has the same properties as Link 1 in Fig. 1. In this step,
the controller misleads and constructs a wrong topology. That is, it installs the outflow forwarding
rules on Switch H instead of Switch E.

The packet drops on Switch E, and Host B cannot receive the packets; or if the host is not
present in the network, then it will create a forwarding loop. The cases mentioned above indicate
that if the controller does not know the complete network view, then avoiding the loops/packet
drops between domains will be difficult, as well as drawing the right tree topology for the data
traffic in their domain. Loop also occurs in the three domains due to the NIB table of controllers
being not updated [12,17]. Acronyms used in this paper are presented in Tab. 1.
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Figure 1: Forwarding loops and packet drops among the inter domain with dual link

Table 1: List of acronyms

Parameters Description

C.T Current data flow
T.C Total amount of traffic
C.Time Current time of data flow
PQT Previous query time
RBW Residual bandwidth of link
BW Bandwidth
PRT Previous recorded traffic
RT Flow demand rate
ODL Open day light
TCP Transmission control protocol
UDP User datagram Protocol
IP address Internet protocol address
MAC address Media access control address

The remainder of this paper is structured as follows. Section 2 describes the related works.
Section 3 briefly explains the proposed methodology. Section 4 presents the results and discussions.
Finally, Section 5 concludes the paper.

2 Related Works

Several works have been conducted to make the reachability of one host in one domain to
another domain with multiple controller architecture possible. HyperFlow [18] and ASIC [10] were
proposed, in which several distributed controllers work together in the flat topology of controllers.
This approach enables end-to-end services, provides control layer scalability, and sustains the
flexibility of the centralized system. However, flat architecture controllers need supplementary
protocols, such as the Border Gateway Protocol (BGP). The detail of other domain information
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acquired by every controller in the network brings the computational overhead with additional
resource utilization. Its computational overhead is linear to the topology size [19]. HyperFlow [15]
uses a distributed file system and hash table for spreading the information across the various
controllers to sustain logical centralization. The other distributed controller approach, DISCO, is
a multi-domain, distributed SDN controller with intra-and inter-domain functions [20]. The intra
domain manages network control and flow prioritization. With the module package, the intra
domain addresses several network problems. The inter domain provides connectivity and has two
modules among different controllers. First is the messenger module for building channels between
the controllers to exchange data with each other. The AMPQ protocol, which provides routing,
prioritized querying, and orientation messaging, is used in this approach. The controller has high
workload and CPU overhead in this strategy because each controller carries the entire network
information and performs routing for inter and intra domains [11].

Google also has inter-domain experience with B4 [1,2], a global SDN deployment that con-
nects its data centers to each data center with unified traffic engineering services and controller
clusters. Contact between controllers allows the exchange of information between the various
controllers of SDN. Inter-controller communication can be implemented in various ways. One is
the SDN east–west interface approach. The SDN east–west interface is used under the jurisdiction
of single- or multiple-network operators to share information between SDN domains. In between
two controllers, a session needs to be formed by adopting either the BGP or the Session Initiation
Protocol (SIP) over the Transmission Control Protocol (TCP) to transfer information. If it needs
to handle more than the adjacent controllers, then it cannot be used. The SIP can be used to
set up an SIP; that is, for initiating and controlling communication, SIP is a request–response
protocol [10].

Conversely, in Kandoo [21], the hierarchical distribution of controllers is defined based on
two layers of controllers. First is the lower layer, which is a group of controllers without inter-
dependence and network-wide state information. Second is the upper layers, which are a central
management controller that maintains the network-wide state and inter-domain flows through the
root controller for inter-domain traffic. These layers have high flow setup latency for inter-domain
routing because the local controller consults with the controller at each new inter-domain flow
setup, thereby affecting network performance [11].

Existing studies [22–24] have proposed solutions to distribute the load on the control plane
through load balancing and QOS approaches across multiple controllers. These techniques aim
to alleviate the load on the controller in flat and hierarchal controller architectures. Previous
studies have focused on the load but have not extended their research to different domains and
geographical locations where the controller maximizes the flow setup latency due to long distance.
However, our work is different from these studies, as we offload the controller and avoid the
complexity of multiple controller interactions. Our proposed work is also feasible to the controller
for different geographical locations because every controller is free from other domain workloads.

In SDN-based networks, load balancing in data planes can be classified into two parts: servers
and links. In server-based load balancing, traffic is allocated to different servers to avoid network
congestion. Conversely, link load balancing intends to distribute the flows to different paths to
adjust link utilization [25].

The equal-cost multi-path (ECMP) algorithm has also been proposed in SDN, as well as other
well-known techniques in the traditional network for load balancing [26]. However, this algorithm
works on the static link cost, which is proportional to the link bandwidth and is preferable for
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data centers. Another study formulated a dynamic flow scheduling algorithm based on elephant
and mice flow in data centers [15]. In [27], the authors proposed an architecture that uses the
distribution of the network link utilization and periodic probe packet in the data center network.
In [28], difflow design was proposed to use the ECMP strategy for short-term flows and random
packet spraying; the design is based on the distribution of the long- and short-term flows in the
data center. The above data plane load balancing strategy has been suggested for splittable flows
in the enterprise or in the data center network.

In this study, we address the inter-domain link load balancing strategy, which focuses on the
real-time availability of the link cost and the unsplittable flow problem in a WAN under multiple
domains. However, the above proposed algorithms are not tested in this study experimentation.

The objective of our proposed methodology is to solve the reachability problem and enable
end-to-end services in the whole network without the synchronization of control planes. The
proposed method can offload the controller from other domain information and improve network
performance. To the best of our knowledge, this study is the first to enable reachability without
controller synchronization

3 Proposed Methodology

The overview workflow of our proposed approach is shown in Fig. 4. The proposed approach
includes four modules, namely, topology discovery and update module, ALTP scheme (test packet
and delay module), flow installation module, and load balance module. These modules are briefly
described as follows.

• Topology Discovery and Update: The approach proposes a two-level topology discovery.
The first level is the intra-domain level that discovers the internal topology of a domain
and identifies the border switches and links. The controller obtains the information from
switches among the link bandwidth utilization and updates the topology. This result is also
used as the input in the load balancing module.

• Flow Classifier: This submodule classifies the flow into inter and intra domains.

• ALTP Scheme: The module calculates the shortest delay path(s) between the source and
border nodes for inter-domain flow by using test packets. The result is used in the flow
installation and load balance modules.

• Load Balance: If several shortest paths with a dynamic cost exist between the source–
destination host pair from the path computation, then this module will balance the flow
according to its demand among the shortest paths’ status from one domain source to other
domain destination.

• Flow Installation: The module pushes flows in the related border switches along the domain-
level shortest path between source–destination host pairs, and it pushes inter-domain flows
in the relevant border switches along the shortest path within a domain.

3.1 Topology Discovery and Update
This module obtains information about the switches, such as attached host ID, MAC

addresses, and IP addresses, from an underlined infrastructure layer through a controller. The
controller obtains this information through Link Layer Discovery Protocol (LLDP) to identify
the topology [5]. The LLDP packets are sent by switches through the controller instructions. The
importance of LLDP packets is the same as in a conventional network because it propagates
the source switch outport, identities, and other capabilities. In SDN, when the controller receives



CMC, 2021, vol.69, no.1 951

LLDP from the switches, the controller analyzes the packets, identifies how many switches and
hosts are connected in the domain, and builds the topology graph according to the information
it obtained.

Figure 2: Proposed framework for end-to-end services across multiple domains without controller
synchronization

The precise network states information availability. The controller manages the topology by
updating the residual connection capabilities in this module after installing a flow. For a given
flow demand, the controller computes a route for flow demand. It then subtracts the requested
demand from each link’s residual capacity on the computed route. Therefore, the controller will
always have the current residual graph to compute a path for a new request. Clearly, if only one
physical controller exists and no background traffic is present when we execute our simulation,
then we can use this idealistic approach.

In our work, the controller sends the port statistics requests to all OpenFlow switches every
2 s. Upon receiving this request from the controller, each switch sends the total amount of traffic
sent on its ports until the request comes. The controller keeps following the quantities [29].

C.T (u, v)=T .C (u, v)− T .C (u, v)
C.Time–PQT

, (1)

RBW (u, v)=BW (u, v)−C.T (u, v) , (2)

PQT = (C.Time) , (3)
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PRT (u, v)=CTR (u, v) , (4)

where T.C (u, v) is the total amount of traffic sent through link (u, v) until the current time tc,
and PRT (u, v)is the previously recorded total amount of traffic sent through link (u, v) until
the previous query time PQT. By using these quantities, the controller can update the residual
bandwidth of link (u, v) as follows. In Eq. (1), C.T (u, v) is the average current traffic rate.
Then, in Eq. (2), RBW (u, v) denotes the residual bandwidth and is calculated by subtracting
C.T (u, v) from BW (u, v), which is the initial capacity of the link. Finally, the controller uses
the following equations to save the current quantities as previous quantities for the calculations
in the next period. In Eq. (3), {PRT(u, v)} is the previously recorded total amount of traffic sent
through the link. To provide the bandwidth aggregation policy in real time, the controller queries
the bandwidth parameter information of each connection in the underlying network. In addition,
depending on the bandwidth aggregation policy, which can dynamically change the inter-domain
routing and load balancing in a timely manner, the efficiency of the flow transmission should be
guaranteed to ensure the high reliability and adaptability of the flow transmission [30].

Algorithm 1: Topology update algorithm for inter- and intra-domain flow across multiple domains
in SDN
INPUT: Data: f→F (inter-domain flow) and inter-and intra-domain link states
OUTPUT: Link state new

1. While True ( f � F)
2. Do
3. Calculate f current, available bandwidth
4. If (link status≈ link state NEW )
5. Calculate the bandwidth of new f
6. Output the new topology
7. else
8. Calculate the available bandwidth

This algorithm achieves the most recent link state information from the underlying network
and updates the link information in real time.

a. Flow Classifier

In the implementation, one job is to identify the application data for inter-domain flow level
services. Generally, methods that are commonly used to distinguish flows are based on source IP
address, source port, MAC address, service type (ToS) bits, and traffic class header field in the
MPLS [31]. We classify user data flow in our inter-domain routing strategy into inter and intra
domains. The variable may differentiate data flow by setting the match fields (i.e., source IP and
MAC addresses and destination IP and MAC addresses) of the flow entries in OpenFlow switches.

3.2 ALTP Scheme
Controllers know their inter-domain switches and status connections based on the analysis

of the problem. In their domain, they prevent loops and assess an optimal path within the
domain. However, controllers cannot compute the path outside their domain. We use test packets
to prevent loops and packet drops among multiple SDN domains and obtain delay routes. While
transmitting the data from the source to the destination, it chooses an optimal connection from
the inter-domain links. The new data plane and the split definition of SDN are not introduced
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in this study. The ALTP is added to the switches without any modifications. Echo and response
packets are the test packets in our scheme. The proposed scheme is presented in Fig. 4. The
ALTP’s characteristics are as follows. First, the source sends packets to the destination. If the
destination belongs to another domain, then the controller sends a test packet to another domain
in the network using inter-domain links. The source domain controller will be responsible for the
source domain and test packet transmission. The controller holds one inter-domain connection
and will block the rest of the inter-domain links. If no other domain exists, then the packets
are dropped by the controller. The inter-domain links follow the same procedure on the second
link to N, and the controller keeps the response time value of the test packets. The controller
determines and matches up the test packets’ delay rate, and it selects that link for data traffic
based on the rapid response and lower delay rate of the test packet. The controller randomly
selects any link in the event of an equal response time. It injects a test packet to Switch A in
Fig. 3, where the request initially comes to the controller of Domain A to select an optimized
path to the destination. At that point, the controller checks its RIB. Suppose that the IP and
MAC addresses do not match. The controller will find the MAC address by using ARP broadcast
and will forward outside Domain B. When the domain controller obtains the MAC address of
the following destination, it will set forwarding rules from source Switch A to egress Switch B for
Test Packet 1. Thus, the test packet will send through Link 1. The path of the metric for Test
Packet 1 is A–B–D–F (echo packet path). The reply path for the test packet path is recursive of
the echo path F–D–B–A.

Test packet Path latency=
j∑

i

αi,j+βi,j+ γi,j (5)

Delay rate of test packet− 1=EC_time+RP_time (6)

Delay rate of test packet− 2=EC_time+RP_time (7)

All the steps for Test Packet 2 are similar to those of Test Packet 1. The metric for the echo
path of Test Packet 2 is A–B–E–H, and the reply packet path is H–E–B–A. Consider the test
packet path latency by the propagation delay (ai,j) and the sum of link latency

(
βi,j

)
and switch

delay γi,j in Eq. (5). In Eq. 6, the delay rate is calculated by the packet. EC_time is the travel
time from the source node to the destination node. RP_time is the traverse time of packets on the
same path from the destination node. In Eq. (7), the delay rate of Test Packet 2 is also calculated
similarly. Test Packets 1 and 2 are checked by Domain A’s controller from their latency delay. In
this case, the test packets are used for both inter-domain links step by step. The controller will
obtain the test packets’ latency and store the test packets’ response time in their database. It will
check the comparison of both results if Test Packet 1’s response time is higher than that of Test
Packet 2. Then, the traffic of Host A will send data traffic through Link 2; otherwise, the data
traffic will pass through Link 1. In the given case presented in Fig. 3, suppose that the path delays
of the test packet on inter-domain Link 1 are shorter than those on inter-domain Link 2. Then,
the traffic sends on Link 1.
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Figure 3: ALTP scheme flowchart

3.3 Inter-Domain Load Balancing Module
In our proposed framework, the controller categorizes the flow into inter- and intra-domain

flows, as shown in Fig. 2. In this case, we are interested the inter-domain flow. The test packet
obtains the end-to-end delay path from the source node to the destination node and selects
the least delay path, which includes the inter-domain link. This approach results in the flow
installation module and installs the source node’s flow to select the border switch. The inter-
domain link is selected among the inter domains, as shown in Fig. 5. Thus, all flows from Sources
1 and 2 forward the flow on this link. However, we assume the load balancing problem and
maximize the path for inter-domain flow. In this case, we assume the inter-domain flow in the
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network with the absence of intra-domain flow. We also assume here in the network that the test
packet selects the least inter-domain link for inter-domain flows, where it selects one of the border
switches as the gateway. We consider multiple flows simultaneously. The problem becomes related
to the integer multi-service flow problem, which is known to be NP-hard. Moreover, in many
applications, each flow must be transferred through a single path. Suppose Flows 1 and 2 have the
same demand cost likewise, Flow 3 has 10, and Flow 4 has 5 cost demand bandwidths. Thus, f1–f3
have their demands fulfilled, whereas the other flows have demanded more and will be rejected.
We sort out such problem through a multi-flow path heuristic routing algorithm called rate-based
dynamic shortest path [32], which is also known as multiple shortest paths first (MSPF) [29]. This
algorithm works on the dynamic cost of the link. The proposed algorithm for a single domain
with a dynamic cost is used for the multiple-domain problem in this study.

Figure 4: Installation of test packets across inter-domains using links 1 and 2

Figure 5: Inter-domain flow installation from S1 and S2 across inter-domain Link 1 through SPF
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Consider a network represented by a directed sample graph G.

A= {vI , v2, v3, . . . ., vn} , L= {
e1′, e2, e3, . . . , em

}

Each link (i, j)EL is related with an existing BW (i, j).

Sk → source node of one domain, dk → boarder node of other domain,

rk → the bandwidth requirement of inter− domain flow

The MSPF works on a dynamic link cost metric as follows:

C (u, v) (Sk,dk)= F (u, v)
RT (u, v) (sk,dk) ∗RBW (u, v)

. (8)

To compute for RT(u, v)(Sk,dk), the algorithm relies on a pre-computed link parameter,
which is obtained from the topology update module. In essence, this parameter helps review each
link’s status for each flow. By foreseeing and considering this information, the algorithm prevents
considerable key links, at least if no other path is available. This algorithm is used to obtain a
higher throughput among inter-domain flows through its load balancing feature; moreover, it is
efficient in terms of computation. We will now illustrate the load balancing operation by using the
same example topology in Fig. 5. In the pre-computation phase, the BFS calculates the minimum-
hop disjoint paths. After using the ALTP scheme, we suppose that we have the following graph
in Fig. 6 from the above topology for the upcoming flow. The controller has a full view of its
topology. Thus, it knows that the border node is connected to another domain but does not know
the other border node. Domain A controller knows the destination for Source 1, whereas Source
2 belongs to destination Domain B, because the source domain receives the response packets
from the border node of Domain B. We replace the two-border node as a one-destination node
according to the controller’s perspective. Suppose the four flows in Fig. 5. The single-path SPF
algorithm uses inter-domain shared link (B, E) heavily without considering the link, resulting in
significant load. Thus, the multiple MSPF algorithm in Fig. 6 initially takes the path from the
ALTP scheme and makes the directed graph for flows. Accordingly, Z(U, V) considers the shared
link. In the first stage, the MSPF algorithm computes the rate parameter for each link. If any
of the pairs does not share a link, then its rate parameter is equal to 1. The load is distributed,
and link (C, D) is utilized. Thus, the approach avoids overload on the link. As shown in Fig. 6,
the MSPF balances the inter-domain flow among the inter-domain links in the network. The
computational complexity w.r.t. of the MSPF algorithm is O(K(N+LlogN)), where K, N, and L
represent the number of flows, number of nodes, and number of links, respectively.

Algorithm 2: MSPF algorithm for inter-domain flow
INPUT: Directed Graph G(N,L), topology module, test packet path pk
Inter− domain Flow= {(sk,dk, rk) : k= 1, 2, . . . ,K} ,
Z(u, v)= {(s,d)− pairs using the inter-domain link (u, v)} computed by BFS for
(u, v)∈L.
OUTPUT: Inter-domain link load balancing
Stage 1
1. for Each link(u, v)belong to L do
3: if fk ∃ inter− domain flow

(Continued)
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4: get link status ∀ links (topology module)
5: newZ (u, v) inter− domain link= 0∨ (

Sk∧′ dk
)
1: Z (u, v) then

6: RT (u, v) (Sk,dk)= 1
7: else
8: C (u,V) (Sk,dk)= 1/RBW (u, v)
9: end if.
10: end for
11: F (u, v)= 1
12: end for
Stage 2
13: for Each flow (sk,dk, rk)� F do
14: Get the link update status
16: While eliminating RBW (u, v) < rk, the shortest inter− domain path Pk using
15: C(u,V)(Sk,dk)= F(u, v)/(RT(u, v)(sk,dk) ∗RBW(u, v))
16: if Pk = φ then
17: for Each link (u, v)E Pk do
18: F (u, v)= F (u, v)+ 1
19: RBW (u, v)=RBW (u, v)∼ rk
20: end for
21 P=P

⋃ {pk}
22: end if
23: end for
24: return P

Figure 6: Distribution of multiple flow across multiple shortest paths

We obtain the domain topology and then compute the shortest path on the domain level.
When the controller of the source domain receives the first packet sent by a source host to a
destination host in the other domain (packet in the event), it needs to install inter-domain flows
in the border switches according to the shortest path [33]. Normally, the controller will make a
forwarding decision based on the destination MAC address. However, for the inter-domain traffic,
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the forwarding decision is also based on the destination IP address. Thus, the controller needs
to distinguish the intra-domain traffic from the inter-domain traffic to process these types of
flow properly. According to the installation module, the MSPF uses the dynamically shortest path
according to the link status and balances the flow load across the domains. The test packets obtain
the best-optimized path end-to-end.

Algorithm 3: Flow installation from the host to the destination across the same and different
domains
INPUT: MSPF, SPF, source host, destination host
OUTPUT: Install flow according to flow demand along multiple shortest paths
1. If (s, d � different domain)
2. for domain in domain shortest path
3. if ( domain ⊆ source domain)
4. Determine the intra-domain shortest path between the source switch and the chosen border

switch through test packets
5. If (flow demand ≥ available link bandwidth)
6. Choose another shortest path with available bandwidth
7. else
8. Push flows along the same path
9. elseif (domain ⊆ destination domain)
10. Determine the intra-domain shortest path between the chosen border switch and the

destination switch
11. If (flow demand ≥ available link bandwidth)
12. Choose another shortest path by available bandwidth
13. Push flows along the intra-domain shortest path
14. else
15. RUN SPF
16. End for
17. End If

4 Results and Discussion

4.1 Parameters for Experimentation
This section evaluates the proposed methodology for dual domains in SDN. The simulation

contains one PC system with 2.1 GHZ Core i7 process and 32 GB main memory. The experiment
is performed in the Mininet emulator with the ODL controller [34]. We use a random number
of switches and a maximum of three controllers in the hierarchy architecture and two in flat-
controller architectures. In the data plane, domains are connected to the border switches. A
half-mesh ring topology is selected for the experiments. The two domains are connected by two
links (i.e., Links 1 and 2). Every link inside the domain is 1 Mbps, whereas the delay time of
every link in both domains is 10 ms. The experiment is performed a minimum of 10 times to
check the reliability of the proposed study and verify the performance. The proposed framework
minimizes the control plane workload, which also improves the end-to-end delay and increase the
throughput. The simulation paraments used in this experiment are listed in Tab. 2.

Endto End delay=
∑

Tdelay(Src) +Pdelay+Tdelay(dst) +Nodedelay (9)
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Controller CPU utilization=
∑n

i flow request (i)Executiontime
maximumNflowrequest (Executiontime)

(10)

Table 2: Parameters for experimentation

Simulation Parameters

Controller topology Single, flat, hierarchal
Intra-domain link bandwidth 1 Mbps
Routing algorithm SPF and MSPF
OpenFlow 1.3
Controller ODL
Switch Open virtual switch
Number of hosts 12
Emulator Mininet
Performance measurement tool Iperf (TCP and UDP), D-ITG, Sysbench

4.2 TCP and UDP Throughput Assessment
We set up 12 hosts for the TCP and UDP throughput assessment. Six hosts (h1–h6) are in

the source domain, whereas the other six hosts (h7–h12) are in the destination domain. Moreover,
we map a one-to-one relationship between the client and the server. The entity from h1 to h6
is the client in the source domain, whereas that from h7 to h12 is the server in the destination
domain. The first three hosts (h1–h3) include the UDP traffic generator client, whereas h4–h6 are
considered for a TCP client in the source domain. We use the Iperf tool to evaluate the TCP and
UDP traffic. After the evaluation for UDP and TCP traffic throughput, we take the average after
every 50 s. In Eq. (7), TT is the traffic throughput, and Tn is the last host traffic throughput,
which may be UDP or TCP.

Average TT =
∑n

i TTi+TTn
N

(11)

The average path throughput from the UDP source to its UDP destination is shown in Fig. 7.
Inter-domain links along the path are evaluated by using the data traffic UDP throughput. The
results indicate the difference among single-path SPF and MSPF throughput for UDP traffic.
Moreover, the MSPF improves the throughput due to the adoption of MSPF and load balance
among inter-domain links. We use the 50 s interval for datapoint. The simulation is run for 300 s
to gain measurement of the actual improvement of the throughput. Moreover, the traffic to the
controller from the TCP source uses the TCP traffic to a different destination, as shown in Fig. 8.
Thus, it will allocate the same inter-domain link to their destination, which is selected through
test packets for the UDP source data traffic. The controller keeps the delay of the test packets
and selects an inter-domain link with the lowest delay. The evaluation of both routing algorithm
throughputs for the TCP traffic is shown in Fig. 8. The MSPF shows improvement in throughput
due to its load balancing feature.
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Figure 7: Inter-domain UDP flow average throughput

Figure 8: Inter-domain TCP flow average throughput

4.3 Evaluation of the Proposed Single-Controller Approach with Multiple Controller Architectures
We use the D-itg tool to run dynamic traffic for random packet generation from the source

in one domain and the destination in another domain by using a random number of switches
in the whole network (S1–S20). We use a maximum of 20 switches in both domains. Moreover,
we increase the switches for the experiment in ascending order. Then, at every stage, we generate
the inter-domain traffic and record the end-to-end delay. As shown in Fig. 9, we perform an
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end-to-end delay measurement, where end-to-end flow delay is also correlated with the flow setup
latency. The single-controller architecture has an end-to-end delay that is relatively low compared
with the remaining two architectures because of the less flow setup latency. Moreover, according
to the five-switch topology, our proposed work’s end-to-end delay is two times less than the
hierarchal approach and one time less than the flat approach, as shown in Fig. 9. The same
trend of minimizing the delay is observed from 10 to 20 switches. Thus, some researchers have
concluded that the hierarchical controller architecture is suitable for inter-domain routing [21,35].
However, our proposed methodology with a single controller has not only avoided the forwarding
loop across the multiple domains but also improved the network performance.

Figure 9: End-to-end delay under single- and multiple-controller architecture

In the hierarchical architecture, the controller has sufficient time to install flow for the inter-
domain flow, which indicates that the interaction with the root controller will decrease the entire
performance. As shown in Fig. 10, the difference between the existing architecture and our pro-
posed approach with a single controller is that the former has relatively less flow setup latency in
a maximum of 20 switches in the topology. Our proposed work has 35 ms flow setup latency for
inter-domain flow, whereas the hierarchical architecture has quite a large flow setup latency at 70
ms, and the flat architecture has a latency of approximately 40 ms. Our proposed methodology
and the flat approach have less flow setup latency due to the independence for inter-domain path
calculation and flow installation along the path.

The Sysbench tool runs for 100 s for 5, 10, 15, and 20 switches individually. On every test,
we take the peak value of CPU utilization for the proposed controller architecture and the rest
of the architecture. The controller computational workload with our approach and the two other
controller architectures is shown in Fig. 11. As shown by the difference of the load, our proposed
approach also has less workload because it holds the information of its domain, and no other
routing protocol and collaboration exist with the other domain controllers. In this experiment, the
hierarchical controller has less workload because it is only used for inter and intra domains and
flat architecture. The controllers constantly update each other in both domains for inter-domain
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flows via inter-domain routing [36,37]. If one controller has a specific capacity for the nodes in
the network, then the hierarchical approach controller obtains half of that capacity.

Figure 10: Flow setup latency measurement with single- and multiple-controller architecture

Figure 11: CPU utilization under the proposed framework and multiple-controller architecture
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Our finding shows that the flat architecture framework is useful for network matrix per-
formance compared with the hierarchical approach. The hierarchical approach is useful in the
scalability of the network compared with single- and flat-controller architectures.

5 Conclusion

In this study, we enable the reachability across domains to avoid forwarding loops and packet
drops without controller synchronization and select an optimized path through the ALTP scheme,
which is based on a single-controller architecture for inter-domain flow. On the basis of the
selection of the best path, we also formulate the problem of congestion among the selected inter-
domain links, in which we include the dynamic cost load balancing strategy in our proposed
framework to avoid congestion for the inter-domain flow on the selected inter-domain links. The
extensive experiment result shows that our proposed methodology can minimize the flow setup
latency and utilize controller workload through the existing solution. Moreover, we improve the
throughput through link–load balancing under multiple domains. This work is limited in the
control layer failure recovery. In the case of controller failure, the entire domain of the network
will be disconnected from other domains. We will address these issues in future works.
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