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Abstract: Because charge carriers of many organic semiconductors (OSCs)
exhibit fractional drift diffusion (Fr-DD) transport properties, the need to
develop a Fr-DDmodel solver becomes more apparent. However, the current
research on solving the governing equations of the Fr-DDmodel is practically
nonexistent. In this paper, an iterative solver with high precision is devel-
oped to solve both the transient and steady-state Fr-DD model for organic
semiconductor devices. The Fr-DD model is composed of two fractional-
order carriers (i.e., electrons and holes) continuity equations coupled with
Poisson’s equation. By treating the current density as constants within each
pair of consecutive grid nodes, a linear Caputo’s fractional-order ordinary
differential equation (FrODE) can be produced, and its analytic solution gives
an approximation to the carrier concentration. The convergence of the solver
is guaranteed by implementing a successive over-relaxation (SOR) mechanism
on each loop of Gummel’s iteration. Based on our derivations, it can be shown
that the Scharfetter–Gummel discretizationmethod is essentially a special case
of our scheme. In addition, the consistency and convergence of the two core
algorithms are proved, with three numerical examples designed to demon-
strate the accuracy and computational performance of this solver. Finally,
we validate the Fr-DD model for a steady-state organic field effect transistor
(OFET) by fitting the simulated transconductance and output curves to the
experimental data.

Keywords: Fractional drift diffusion model; Gummel’s iteration; Caputo’s
fractional-order ordinary differential equation; organic field effect transistor

1 Introduction

The mathematical modeling of the electrons and holes transports in an inorganic semi-
conductor (ISC) is established by a system of coupled partial differential equations (PDEs),
which are formulated by Gauss’ law applied to the electrical potential ϕ, and the continuity
of the electron and hole current densities, Jn and Jp, respectively [1,2]. Besides modeling of
ISCs, this system of coupled PDEs, namely, the drift diffusion (DD) model, has also found
extensive applications in modeling other diffusion-reaction processes, such as ion exchanges in
the electrochemical solvents [3,4], and the transports of positive/negative particles within cell
membranes [5,6]. Depending on different application scenarios, the DD model can be represented
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in various forms. In the Van Roosbroeck representation of the DD model, the current density
equation can be augmented by Einstein’s relation, which gives a fixed proportional relationship
between the diffusion coefficients Dp, Dn and the drift mobilities μp, μn [7]. In this paper, the Van
Roosbroeck representation of the DD model can be expressed in a closed-form as Eqs. (1)–(3),

−�(εϕ)= q
(
p− n+N+

D −N−
A

)
(1)

∂n
∂t

= 1
q
∇ · Jn+Gn (2)

∂p
∂t

=−1
q
∇ · Jp+Gp (3)

where current densities are given by Jn = −qμnn∇ϕ + qDn∇n and Jp = −qμpp∇ϕ − qDp∇p,
Einstein’s relations are

Dn

μn
= Dp

μp
=VT = kT

q
, VT is the thermal voltage, k is Boltzmann constant,

T is the thermal temperature, q is the charge of an electron, ε is semiconductor’s absolute
dielectric permittivity, N+

D and N−
A are ionized donor and acceptor concentrations. Gn and Gp

are the net electron and hole generation rates, respectively. Previous research data collected from
Silicon/Germanium test experiments have revealed the effectiveness of the DD model for mod-
eling the charge carrier transports in ISCs [8]. In the past several decades, plentiful numerical
algorithms have been developed for solving Eqs. (1)–(3), including the finite element method [9],
finite difference fractional step method [10], mixed finite volume and modified upwind fractional
difference method [11], and monotone iterative method based on the adaptive finite element
discretization [12,13], etc. All of those numerical methods have one thing in common: an efficient
iterative method, e.g., Newton’s iteration, Gauss–Seidel iteration, or Gummel’s iteration was uti-
lized to decouple Eqs. (1)–(3). Among these iteration methods, Gummel’s approach is generally
more effective than other methods due to its flexibility in finding its initial guess and customizing
the update formulas to improve the convergence speed and computational performance. Moreover,
the effectiveness, stability and convergence of Gummel’s decoupling method and iteration for
its application to DD simulations were also thoroughly and rigorously proved by mathemati-
cians [14–17]. Recent research revealed that the conventional (integer-order) DD model may not
be able to characterize the charge carrier transports in organic semiconductors (OSCs), evident
from the long-tail behavior of the photocurrent curve observed in OSCs [18]. Based on the DD
model, Reference [19] showed that the mean squared displacement (MSD) of the carrier trajectory
should be proportional to its diffusion time, i.e., E

(
x2 (t)

) ∝ t. However, the long-tail behavior
of the photocurrent curve observed in OSCs implies that the MSD in this scenario is given by
E
(
x2 (t)

)∝ tα, for α termed as the dispersive parameter of the OSC, 0< α < 1, depending on the
temperature and band structure disorders [20–23]. This long-tail photocurrent phenomenon was
first observed by using time-of-flight measurements [24], and the mechanism that underpins the
dispersive carrier transports can be precisely explained by the “multiple trapping model” [23,25],
the “single trapping model” [26] and the “hopping model” [27–29], respectively. Based on the
“multiple trapping model,” the charge carriers in OSCs can be classified as free (delocalized)
charge carriers pf , nf and trap (localized) charge carriers pt, nt. The free charge carrier is the
carrier that can hop freely between two trap centers and the trap charge carrier is the carrier that
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is permanently captured by a localized trap center. References [18,30] proved that the free hole
density and the trap hole density in the p-type OSCs have a relationship as given in Eq. (4),

∂pt(x, t)
∂t

= 1
τ0cα

RL
0 Dα

t
(
pf (x, t)

)= 1
τ0cα

1
�(1−α)

∂

∂t

∫ t

0

pf (x, s)

(t− s)α
ds (4)

where RL
0 Dα

t is Riemann–Liouville (RL) fractional derivative of order 0 < α < 1, τ0 is the mean
time of delocalization (mean free time for a free charge carrier moving between two entrapments),
c is the charge carrier capture coefficient defined as c= ω0 [sin (πα)/πα]α, ω0 is the capture rate
of the trap charge carriers, and α = kT/E0 is the dispersive parameter which depends on the
temperature T and the expected value of the exponential density of trap states E0. The 1D
continuity equation for free charge carriers in p-type OSCs was also derived by References [18,30]
as given in Eq. (5),

∂pf (x, t)

∂t
+ 1

τ0cα
RL
0 Dα

t
(
pf (x, t)

)+ ∂

∂x

[
μpE (x, t)pf (x, t)

]−Dp
∂2pf (x, t)

∂x2
= p (x, 0) δ(t) (5)

where E (x, t)=−∂ϕ(x, t)
∂x

is the intensity of the electric field in the 1D domain, and p (x, 0) δ(t)

is the initial charge carriers agitated by impacting of photon beams. Consider that p= pf +pt and
pt � pf in OSCs. Substituting Eq. (4) into Eq. (5) can derive the continuity equation for total
charge carrier density, as given in Eq. (6),

RL
0 Dα

t (p(x, t))+ ∂

∂x
[Fα(x, t)p(x, t)]−Dα

∂2p (x, t)
∂x2

= p (x, 0)
t−α

�(1−α)
(6)

where Fα (x, t) = τ0cαμpE (x, t) is the anomalous advection coefficient and Dα = τ0cαDp is the
anomalous diffusion coefficient. The hole mobility μp and hole diffusion coefficient Dp satisfies
the Einstein relation. Eq. (6) coupled with the 1D Poisson equation forms the 1D fractional drift
diffusion (Fr-DD) model.1 A discretization scheme, which discretizes the time-fractional derivative
with backward finite difference method and the integer-order spatial derivatives with finite center
difference method, was proposed to solve the 1D Fr-DD model [20–31]. Reference [20] showed
that the photocurrent curves obtained from the 1D Fr-DD model are in good agreement with the
recorded transient photocurrents from regio-random OSCs poly(3-hexylthiophene) (RRa-P3HT)
and regio-regular poly(3-hexylthiophene) (RR-P3HT). In addition, Reference [32] introduced the
fractional reduced differential transform method to solve the 1D Fr-DD model and also suggested
the existence of a more general Fr-DD model with both time derivative and spatial derivatives
fractionalized. As the Fr-DD model emerges as a useful tool for understanding the dispersive
transport behavior of the charge carriers in OSCs, investigating how to solve it is instrumental for
predicting the steady-state and transient electrical responses of OSC devices. Up to now, far too
little attention has been paid to the development of a general Fr-DD model solver. Although a
certain number of researches have been carried out on developing the solvers for the conventional
DD model, the resulting solvers often have low accuracy and high computational complexity. The
goal of this research is to develop a solver with high precision and computational performance for

1 This was initially a simplified Fr-DD model with only time-derivative fractionalized, the order of spatial derivatives
remained integer.
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the Fr-DD model. The Fr-DD model is described by a group of coupled fractional-order PDEs
as presented in Eqs. (7)–(9),

−�(εϕ)= q (p− n) (7)

C
0 Dα

t (n(x, y, z, t))= 1
q
∇ · I +Gn (8)

C
0 Dα

t (p(x, y, z, t))=−1
q
∇ · J +Gp (9)

where C
0 Dα

t is the Caputo’s time-fractional derivative of order 0 < α ≤ 1, the fractional-order

electron current density I and hole current density J are given by I =−qμnn∇ϕ + qDn
C∇β

r n and

J = −qμpp∇ϕ − qDp
C∇β

r p, and C∇β
r =

(
C
0 Dβ

x
C
0 Dβ

y
C
0 Dβ

z

)
is the Caputo’s fractional gradient

operator of order 0 < β ≤ 1 in 3D. Since the OSCs are typically treated as intrinsic mate-
rials without dopants, the ionized donors N+

D and acceptors N−
A can be omitted in Poisson’s

equation [33]. If the fractional-order gradient operator is defined with Riemann–Liouville’s (RL)
fractional derivatives, the divergence of current density function ∇ ·J in Eq. (9) can be expanded

as ∇ · J = −qμp (p�ϕ +∇p · ∇ϕ) − qDp
RL∇β+1

r p, similarly for ∇ · I in Eq. (8) [34,35]. As that
defining the fractional derivatives using RL’s definition may not be convenient for us to specify
and assign physical meanings to the initial values and boundary conditions, we adopt Caputo’s
(C) fractional derivatives to replace RL’s in Eqs. (7)–(9). Since composing Caputo’s fractional
derivative with an integer-order gradient operator from its left side may not result in the same
expansion as defined by RL’s derivative (See Lemma 2.2), it requires us to show that the trunca-
tion error from the discretized divergence term ∇ ·J will vanish as spatial step size reduces to zero
to guarantee the consistency of the discretized divergence terms under two different definitions of
fractional derivatives (RL’s and Caputo’s). In this paper, we propose Theorem 4.1 to illustrate the
consistency of the discretized divergence term ∇ ·J under RL’s and Caputo’s fractional definitions.

Here, we set up a general-form Fr-DD model to simulate the anomalous transport behavior
of charge carriers in OSCs. Equipped with proper initial values and boundary conditions, the
Fr-DD model can handle the transient or steady-state dynamics of any-type OSC device. In
addition, we develop an iterative solver for the Fr-DD model based on two novel algorithms
and propose Theorem 4.2 to show the convergence of the model solver. It can be shown that
the discretized DD model equation via our discretization scheme coincides with the discrete-form
Fr-DD equations derived from the Scharfetter–Gummel (SG) discretization method [9], which
implies that our Fr-DD model solver has wider applicability than the DD model solver based on
SG method. Finally, we design three numerical examples to demonstrate the high accuracy and
computational performance of the Fr-DD model solver, and experimentally validate the Fr-DD
model for a steady-state OFET.

The remainder of the paper is organized as follows. Section 2 presents preliminaries in
fractional calculus. Section 3 develops the solver in detail. Section 4 discusses the consistency and
convergence analysis of the algorithms. Three numerical examples are provided in Section 5 to
support our theoretical analysis and demonstrate the computational performance of our method.
In Section 6, we adjust the parameters in the Fr-DD model to fit the experimental characteristic
curves measured from a DNTT-based OFET [36]. In Section 7, we show the conclusions of this
work.
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2 Preliminaries

2.1 Definition of Fractional Operators
The Riemann–Liouville (RL) fractional derivative with order γ > 0 is defined in Eq. (10) [34],

RL
0 Dγ

t (f (t))= 1
� (n− γ )

dn

dtn

∫ t

0

f (τ )

(t− τ )γ+1−n dτ , n− 1< γ < n (10)

where � (n− γ ) denotes the gamma function. Similarly, Caputo’s fractional derivative with order
γ > 0 is defined as Eq. (11) [34].

C
0 Dγ

t (f (t))= 1
�(n− γ )

∫ t

0

f (n)(τ )

(t− τ )γ+1−n dτ , n− 1< γ < n (11)

Both RL and Caputo’s fractional derivatives can be considered as interpolation to integer-
order derivatives, which means RL

0 Dn
t (f (t)) = C

0 Dn
t (f (t)) = f (n)(t). The relationship between RL

can Caputo’s fractional derivatives can be expressed as the following lemma.

Lemma 2.1 Assume f ∈Cn−1 ([a, t]) and n− 1< γ ≤ n, then the following equality holds

C
a Dγ

t (f (t))= RL
a Dγ

t (f (t))−
n−1∑
k=0

f (k)(a)
�(k− γ + 1)

(t− a)k−γ (12)

Proof. See [35].

By directly employing the definitions, the composition rules for fractional derivatives can be
given as the following lemma.

Lemma 2.2 Assume f ∈Cn+m−1 ([a, t]), n− 1< γ ≤ n, and m> 0 is an integer, then the following
relations hold

dm

dtm

[
RL
a Dγ

t (f (t))
]
= RL

a Dγ+m
t (f (t)) (13)

C
a Dγ

t

(
dm

dtm
f (t)

)
= C

a Dγ+m
t (f (t)) (14)

RL
a Dγ

t

(
dm

dtm
f (t)

)
= RL

a Dγ+m
t (f (t))−

m−1∑
k=0

f (k)(a)
�(1+ k− γ −m)

(t− a)k−γ−m (15)

dm

dtm

[
C
a Dγ

t (f (t))
]
= C

a Dγ+m
t (f (t))+

n+m−1∑
k=n

f (k)(a)
�(1+ k− γ −m)

(t− a)k−γ−m (16)

Proof. Eqs. (13) and (14) can be inferred from RL and Caputo’s definitions, and the proof
for Eq. (15) is given in [35]. From Lemma 2.1, we have

dm

dtm

[
C
a Dγ

t (f (t))
]
= dm

dtm

[
RL
a Dγ

t (f (t))−
n−1∑
k=0

f (k) (a)
� (k− γ + 1)

(t− a)k−γ

]
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= RL
a Dγ+m

t (f (t))−
n−1∑
k=0

f (k) (a) · (k− γ ) · · · (1+ k− γ −m)

� (k− γ + 1)
(t− a)k−γ−m

= C
a Dγ+m

t (f (t))+
n+m−1∑
k=n

f (k) (a)
� (1+ k− γ −m)

(t− a)k−γ−m

which completes the proof for Eq. (16).

It can be observed that both RL’s and Caputo’s fractional derivatives can be composed with
an integer-order derivative from two sides, but the composition is not commutative. Next, let us
give the Laplace transformation on RL and Caputo’s fractional derivatives as the following lemma.

Lemma 2.3 Assume f ∈Cn−1 ([a, t]) and n− 1< γ ≤ n, then the Laplace transform of Riemann–
Liouville and Caputo’s fractional derivatives are given by

L
{
RL
a Dγ

t (f (t))
}
= sγF(s)−

n−1∑
k=0

sk ·RLa Dγ−k−1
t f (a) (17)

L
{
C
a Dγ

t (f (t))
}
= sγF(s)−

n−1∑
k=0

sγ−k−1 · f (k)(a) (18)

Proof. See [35].

One important formula relating the Laplace transform and two-parameter Mittag–Leffler
function is given in Eq. (19), and its proof can be found in [37].

L
{
tβ−1Eα,β

(±atα)}= sα−β

sα ∓ a
, R (s) > 0, R (α) > 0, R (β) > 0 (19)

Subsequently, we will present the analytic solution for Caputo’s fractional linear time-invariant
(LTI) state equation.

2.2 Analytic Solution of Caputo’s Linear Fractional-Order ODE
If we let 0< γ ≤ 1, the analytic solution of Caputo’s linear fractional-order ODE is given in

the following theorem.

Theorem 2.4 Consider the Caputo’s linear fractional-order ODE defined in a discrete 1D space
domain with x ∈ [xi−1, xi] and 0 < γ ≤ 1, as given in Eq. (20), where u(x) is the state variable and
v(x) is the input variable.
C
xi−1

Dγ
x u (x)=Au (x)+Bv(x) (20)

Then, its solution is given by

u (x)=�(x−xi−1)u (xi−1)+
∫ x−xi−1

0
�(x−xi−1 − y)Bv̂(y)dy (21)

where �(x)= Eγ (Axγ ) is the generalized state transition function, Eγ (t) is the one-parameter Mittag–

Leffler function, and the fictitious input function v̂(y) is obtained by v̂ (x)=L−1
{
V (s) s1−γ

}
.
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Proof. Apply Laplace transform on both sides of Eq. (20), it gives

sγU (s)− sγ−1u (xi−1)=AU (s)+BV(s) (22)

Rearrange both sides of Eq. (22) and take the inverse Laplace transform, we have

u (x)=L−1
{(
sγ Id−A

)−1BV (s)+ (sγ Id−A
)−1 sγ−1u (xi−1)

}
=L−1

{(
sγ Id−A

)−1 sγ−1
}
u (xi−1)+L−1

{(
sγ Id−A

)−1 sγ−1
}
∗BL−1

{
s1−γV (s)

}

= Eγ

(
A (x−xi)γ

)
u (xi−1)+

∫ x−xi

0
Eγ

(
A (x−xi−1 − y)γ

)
Bv̂ (y)dy

where Id = 1 or Id is the identity matrix in case u, v are vectorized variables. The last step comes
from Eq. (19), i.e., the inverse Laplace transform of the Mittag–Leffler function, by letting α = γ

and β = 1. We also apply the convolution theorem in the last step derivation, and this completes
our proof.

The theorem we presented above establishes the precise relationship between states on two
consecutive grid points in a 1D discrete space �h = {xi = i�x, i= 0, 1, 2, . . . , N} with step size
�x=L/N. Letting x= xi, we see that two consecutive states have a relation expressed by

u (xi)=�(�x) u (xi−1)+
∫ �x

0
�(�x− y)Bv̂(y)dy (23)

Let us assume that the input function v (t)= 1, the fictitious input function is then evaluated

by v̂ (y) = L−1
{
s−γ

} = yγ−1

�(γ )
, and considering the commutative property of the convolution

integral, then Eq. (23) in this special case can be reformulated as

u (xi)=�(�x) u (xi−1)+B
∫ �x

0
�(y)

(�x− y)γ−1

�(γ )
dy (24)

We notice that the second term on the RHS of Eq. (24) involves a fractional integral of
order γ . The fractional integral (or the left Riemann–Liouville integral) of order γ is defined as
Eq. (25). [38]

J γ

0+f (x)= 1
�(γ )

∫ x

0

f (y)

(x− y)1−γ
dy (25)

In the next section, we present discrete approximation formula for the left Riemann–Liouville
integral and fractional derivatives.



244 CMC, 2021, vol.69, no.1

2.3 Discrete Approximation of Fractional Integrals and Fractional Derivatives
The fractional integral of the generalized state transition function cannot be evaluated

through an analytic formula. The following lemma gives the composite Simpson’s rule for
approximating a left Riemann–Liouville integral.

Lemma 2.5 Assume 0< γ ≤ 1 and f ∈C4 ([0,x]) then the following (3+ γ )-th order approximation
of the left Riemann–Liouville integral can be obtained

J γ

0+f (x)= (�x)γ
[

n∑
k=0

b(γ )

2k f (x2k)+
n∑

k=1

b(γ )

2k−1f (x2k−1)

]
+O

(
�x3+γ

)
(26)

where xj = j�x with a positive integer j and step size �x. Since we let x = x2n, the coefficients b
(γ )
j

satisfies following formula,

b(γ )

2k−1 =−2
(2n− 2k+ 2)2+γ − (2n− 2k)2+γ

� (3+ γ )
+ 2

(2n− 2k+ 2)1+γ + (2n− 2k)1+γ

�(2+ γ )
(27)

b(γ )

2k =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(2n)2+γ −(2n−2)2+γ

�(3+γ )
− 3(2n)1+γ +(2n−2)1+γ

2�(2+γ )
+ (2n)γ

�(1+γ )
, k=0

(2n−2k+2)2+γ −(2n−2k−2)2+γ

�(3+γ )
− (2n−2k+2)1+γ +6(2n−2k)1+γ +(2n−2k−2)1+γ

2�(2+γ )
,

k=1, ...,n−1

22+γ

�(3+�)
− 21+γ

2�(2+γ )
, k=n

(28)

Proof. See [39].

For the transient-state Fr-DD model, the discretization of the time-fractional derivative is
necessary, the following lemma gives a first-order approximation for Caputo’s fractional time
derivative of order 0< γ ≤ 1.

Lemma 2.6 Assume 0 < γ ≤ 1 and f ∈ C2 ([0, T ]) then the following first-order approximation of
the Caputo’s time-fractional derivative can be obtained

C
0 Dγ

t (f (t))= 1
�(2− γ )

k∑
m=0

f
(
tk+1−m

)− f (tk−m)

�tγ
b(γ )

m,k+1+O (�t) (29)

where tj = j�t with a positive integer j and step size �t. Since we let T = tk+1, the coefficients b
(γ )

m,k+1

is determined by

b(γ )

m,k+1 = (m+ 1)1−γ −m1−γ (30)
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Proof. The discrete approximation in Eq. (29) can be constructed by applying the piecewise
quadrature, the error estimates can be derived as follows,∣∣∣∣∣∣C0 Dγ

t (f (t))− 1
� (2− γ )

k∑
m=0

f
(
tk+1−m

)− f
(
tk−m

)
�tγ

b(γ )

m,k+1

∣∣∣∣∣∣
=
∣∣∣∣∣∣C0 Dγ

t (f (t))− 1
� (1− γ )

k∑
m=0

f (tm+1)− f (tm)

�t

∫ tm+1

tm

ds(
tk+1 − s

)γ
∣∣∣∣∣∣

=
∣∣∣∣∣∣

1
� (1− γ )

k∑
m=0

∫ tm+1

tm

(
f ′(s)− f (tm+1)− f (tm)

�t

)
ds(

tk+1 − s
)γ
∣∣∣∣∣∣

≤ 1
� (1− γ )

k∑
m=0

∫ tm+1

tm

∣∣ f ′(s)− f ′ (ξ1)
∣∣ ds(
tk+1− s

)γ

≤ 1
� (1− γ )

k∑
m=0

∫ tm+1

tm

ds(
tk+1− s

)γ ∣∣∣f (2) (ξ2)

∣∣∣�t

≤ 1
� (1− γ )

k∑
m=0

∫ tm+1

tm

Mds(
tk+1− s

)γ �t= C�t
�(1− γ )

where the mean value theorem is applied for f (t) and f ′(t) with ξ1, ξ2 ∈ (tm, tm+1), and the
continuous function f (2) on a compact domain [0, T ] assumes its maximum value, we let M =
maxt∈[0,T ] f (2)(t).

3 Derivation of the Computational Scheme

Without loss of the generality, we implement the discretization schemes in the two-
dimensional spatial domain, the equations and algorithms derived afterward can be extended to
one-dimensional and three-dimensional scenarios. Let the spatial step size in the x direction be
�x = Lx/(Nx + 1) and in the y direction be �y = Ly/(Ny + 1). The two-dimensional grids are
given by xi = i�x, i= 0, 1, . . . , Nx+ 1 and yj = j�y, j= 0, 1, . . . , Ny+ 1. In the temporal domain,
we let the temporal step size be �t= T/N, and the temporal girds are then determined by tn =
n�t, n= 0, 1, 2, . . . , N. For the sake of a clear demonstration, a set of notations for the charge
carrier concentrations and current densities in the 2D discrete domain are presented in Fig. 1. As
shown in Fig. 1a, the electron concentration n(tk, xi, yj) and the two components of the electron
current density vector

(
IX
(
tk, xi+1/2, yj

)
, IY (tk, xi, yj+1/2)

)
in the discretized electron continuity

equation are denoted by nki, j and
(
IXk

i+1/2, j, IY
k
i, j+1/2

)
, respectively. Also, Fig. 1b records a similar

set of notations employed in the discretized hole continuity equation for the hole concentration
p and two components of the hole current density vector (JX , JY ). In contrast to the charge
carrier concentration, it is required in the scheme that the current density should be specified
only in the semi-grids (the midpoints of two horizontally or vertically consecutive normal grids).
In the discretized Poisson equation, the electrostatic potentials ϕki, j are specified in the normal

grids. However, in case the underpinned material is inhomogeneous, the dielectric permittivity is
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not a constant within the material domain and its spatially distributed values εi+1/2, j+1/2 should
be assigned in the semi-grids (the midpoints of two diagonally consecutive normal grids) in
our discretization scheme. The notations for the discrete electrostatic potentials and the spatially
distributed dielectric permittivity values are not depicted in Fig. 1 due to the space limitation for
demonstration. In the following sections, we derive the computational schemes for the transient
and steady-state Fr-DD model separately.

(a) (b)

Figure 1: An illustration of notations in the discrete space for (a) discretized electron continu-
ity equation with electron concentration nki, j, x-direction component of electron current density
IXk

i, j, and y-direction component of electron current density IYk
i, j; (b) discretized hole continuity

equation with hole concentration pki, j, x-direction component of hole current density JXk
i, j, and

y-direction component of hole current density JYk
i, j

3.1 Discretization of Fr-DD Model in Transient State
For Poisson equation, we directly apply the second-order finite central difference on the

Laplace operator, then Eq. (7) becomes

ε̃i−1, jϕ
k
i−1, j− ε̃i, j, 1ϕ

k
i, j + ε̃i+1, jϕ

k
i+1, j

�x2
+

ε̃i, j−1ϕ
k
i, j−1− ε̃i, j, 2ϕ

k
i,j + ε̃i, j+1ϕ

k
i, j+1

�y2
=−q

(
pki, j− nki, j

)
(31)

where the generalized dielectric coefficients are given by ε̃i−1, j = εi−1/2, j−1/2+ εi−1/2, j+1/2

2
,

ε̃i+1, j =
εi+1/2, j−1/2+ εi+1/2, j+1/2

2
, ε̃i, j,1 = ε̃i−1, j + ε̃i+1, j, ε̃i, j−1 =

εi+1/2, j−1/2+ εi−1/2, j−1/2

2
, ε̃i, j+1 =

εi+1/2, j+1/2+ εi−1/2, j+1/2

2
, and ε̃i, j, 2 = ε̃i, j−1 + ε̃i, j+1. For i = 1, 2, . . . , Nx and j = 1, 2, . . . , Ny,

at each time step tk, k = 1, . . . , N, rearranging Eq. (31) gives a matrix equation Aϕϕ(k) = b(k)
ϕ ,

where Aϕ ∈ R
NxNy×NxNy is a pentadiagonal matrix composed of dielectric permittivity constants,
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ϕ(k) =
[
ϕk1, 1, ϕk2, 1, · · · , ϕkNx,Ny

]T
is the unknown electrostatic potentials inside the boundary and

b(k)
ϕ ∈ R

NxNy is the vector composed of electric charges and known electrostatic potentials on the
boundary. Depending on the types of boundary conditions, the electrostatic potentials on the
boundary should be either updated repeatedly at each time step or updated just once at the initial
time step. The Dirichlet boundary conditions are given as follows:

ϕk
∣∣∣
∂�D

= fϕ(∂�D), k= 0, 1, . . . , N (32)

where fϕ(∂�D) is a predefined function on the Dirichlet boundary ∂�D. The Neumann or Robin
boundary conditions, as given in Eq. (33), should be updated repeatedly at each time step.

ϕk
∣∣∣
∂�N

= gϕ(ϕk−1
∣∣∣
�
), k= 0, 1, . . . , N (33)

where gϕ(ϕk−1
∣∣
�
) is a function defined on the interior discrete points, and the form of gϕ is given

by discretizing the continuous Neumann or Robin boundary conditions.

For the electron continuity equation, the diffusion coefficient Dp, Dn and carrier mobility μp,
μn can be spatially distributed, so they can be parameterized as similar as the dielectric permit-
tivity and form four independent parameter matrices. Nevertheless, in the ensuing derivations, we
treat Dp, Dn, μp and μn as constants within the whole domain in order to reduce the indicial
complexity.

For Caputo’s space-fractional gradient operator in the electron continuity equation, firstly we
will treat the current density flowing through the interval of two consecutive normal grids as a
constant, which can result in two Caputo’s linear fractional-order ODEs (assume that the time
step is at k+ 1):

IXk+1
i−1/2, j =−qμnn

∂ϕ

∂x
+ qDn ·Cxi−1

Dβ
x n (34)

IYk+1
i, j−1/2 =−qμnn

∂ϕ

∂y
+ qDn ·Cyi−1

Dβ
x n (35)

Referring to Eq. (24) and Theorem 2.4, the solutions to these two fractional-order ODEs can
be obtained as follows:

nk+1
i, j =�2(�x)n

k+1
i−1, j +

IXk+1
i−1/2, j

qDn
J β

0+�2(�x) (36)

nk+1
i, j =�1(�y)n

k+1
i, j−1+

IYk+1
i, j−1/2

qDn
J β

0+�1(�y) (37)

where the generalized state transition functions are defined by

�2(t)= Eβ

(
ϕk+1
i, j −ϕk+1

i−1, j

VT
tβ−1

)
(38)

�1(t)= Eβ

(
ϕk+1
i, j −ϕk+1

i, j−1

VT
tβ−1

)
(39)
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In Eq. (8), the gradient of current density is approximated by ∇ · I =
IXk+1

i+1/2, j− IXk+1
i−1/2, j

�x
+

IYk+1
i, j+1/2− IYk+1

i, j−1/2

�y
. By substituting IXk+1

i+1/2, j, IX
k+1
i−1/2, j, IY

k+1
i, j+1/2 and IYk+1

i, j−1/2 into Eq. (8) and

approximating the time-fractional derivative using Lemma 2.6, we can get the discrete form of
Eq. (8) as follows:

1
�(2−α)

k∑
m=0

nk+1−m
i, j − nk−mi, j

�tα
b(α)

m,k+1 =Ck+1
i, j−1n

k+1
i, j−1+Ck+1

i−1, jn
k+1
i−1, j+Ck+1

i, j nk+1
i, j +Ck+1

i+1, jn
k+1
i+1, j

+Ck+1
i, j+1n

k+1
i, j+1+Gn (40)

where b(α)

m,k+1 = (m+ 1)1−α−m1−α, and coefficients Ck+1
i, j−1, C

k+1
i−1, j, C

k+1
i, j , Ck+1

i+1, j and Ck+1
i, j+1 are given

in Eqs. (41)–(45),

Ck+1
i, j−1 =

�1(�y)

J β

0+�1(�y)

Dn

�y
(41)

Ck+1
i−1, j =

�2(�x)

J β

0+�2(�x)

Dn

�x
(42)

Ck+1
i, j =

[
− 1

J β

0+�2 (�x)
− �3(�x)

J β

0+�3 (�x)

]
Dn

�x
+
[
− 1

J β

0+�1 (�y)
− �4(�y)

J β

0+�4 (�y)

]
Dn

�y
(43)

Ck+1
i+1, j =

1

J β

0+�3 (�x)

Dn

�x
(44)

Ck+1
i, j+1 =

1

J β

0+�4 (�y)

Dn

�y
(45)

where the generalized state transition functions �1(t) and �2 (t) are given in Eqs. (38) and (39),
while �3 (t) and �4 (t) are given by

�3(t)= Eβ

(
ϕk+1
i+1, j−ϕk+1

i, j

VT
tβ−1

)
(46)

�4(t)= Eβ

(
ϕk+1
i, j+1−ϕk+1

i, j

VT
tβ−1

)
(47)

For the left Riemann–Liouville integrals appearing in Eqs. (41)–(45), the three-point Simpson’s
rule inferred by Lemma 2.5 can be applied to obtain their approximated values to order of 3+β.

For instance, J β

0+�1(�y) is approximated by
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J β

0+�1 (�y)= (�y)β

2�(β)

[(
1− 2�1

(
�y
2

)
+�1(�y)

)(
4
β
− 8

β + 1
+ 4

β + 2

)

−
(
−3− 4�1

(
�y
2

)
+�1 (�y)

)(
2
β
− 2

β + 1

)
− 4

β

]
(48)

The other Riemann–Liouville integrals J β

0+�2(�x), J β

0+�3(�x), and J β

0+�4(�y) can thus
be approximated accordingly. As a result, Eq. (40) can then be arranged in a matrix form

A(k+1)
n n(k+1) = b(k+1)

n , where A(k+1)
n is a pentadiagonal matrix, n(k+1) is the unknown interior

electron concentrations at the (k + 1)-th time step, b(k+1)
n is a column vector composed of the

known boundary electron concentration at the (k+1)-th time step and the known interior electron
concentrations solved from the previous k time steps.

The hole continuity equation in Eq. (9) can also be discretized with a similar procedure, and
its discrete form is obtained in Eq. (49),

1
�(2−α)

k∑
m=0

pk+1−m
i, j − pk−mi, j

�tα
b(α)

m,k+1 =Dk+1
i, j−1p

k+1
i, j−1+Dk+1

i−1, jp
k+1
i−1, j+Dk+1

i, j pk+1
i, j +Dk+1

i+1, jp
k+1
i+1, j

+Dk+1
i, j+1p

k+1
i, j+1+Gp (49)

where coefficients Dk+1
i, j−1, D

k+1
i−1, j, D

k+1
i, j , Dk+1

i+1, j and Dk+1
i, j+1 are given in Eqs. (50)–(54).

Dk+1
i, j−1 =

�̂1(�y)

J β

0+�̂1(�y)

Dp

�y
(50)

Dk+1
i−1, j =

�̂2(�x)

J β

0+�̂2(�x)

Dp

�x
(51)

Dk+1
i, j =

[
− 1

J β

0+�̂2 (�x)
− �̂3(�x)

J β

0+�̂3 (�x)

]
Dp

�x
+
[
− 1

J β

0+�̂1 (�y)
− �̂4(�y)

J β

0+�̂4 (�y)

]
Dp

�y
(52)

Dk+1
i+1, j =

1

J β

0+�̂3 (�x)

Dp

�x
(53)

Dk+1
i, j+1 =

1

J β

0+�̂4 (�y)

Dp

�y
(54)

where we denote the generalized reversed state transition functions by �̂1(t), �̂2(t), �̂3(t) and
�̂4(t), and their definitions are given by Eqs. (55)–(58). Similarly, the left Riemann-Liouville
integrals of the generalized state transition functions can also be approximated by three-point
Simpson’s rule.

�̂1(t)= Eβ

(
−

ϕk+1
i, j −ϕk+1

i, j−1

VT
tβ−1

)
(55)



250 CMC, 2021, vol.69, no.1

�̂2(t)= Eβ

(
−

ϕk+1
i, j −ϕk+1

i−1, j

VT
tβ−1

)
(56)

�̂3(t)= Eβ

(
−

ϕk+1
i+1, j−ϕk+1

i, j

VT
tβ−1

)
(57)

�̂4(t)= Eβ

(
−

ϕk+1
i, j+1−ϕk+1

i, j

VT
tβ−1

)
(58)

As remarkably similar in format to Eqs. (40), (49) can also be transformed into a compact

matrix equation A(k+1)
p p(k+1) = b(k+1)

p . The boundary conditions for these linear matrix equations
are then specified as follows:

nk
∣∣∣
∂�D

= fn (∂�D) , nk
∣∣∣
∂�N

= gn
(
nk−1

∣∣∣
�

)
, k= 0, 1, . . . , N (59)

pk
∣∣∣
∂�D

= fp (∂�D) , pk
∣∣∣
∂�N

= gp
(
pk−1

∣∣∣
�

)
, k= 0, 1, . . . , N (60)

n0i, j = hn
(
xi, yj

)
, p0i, j = hp

(
xi, yj

)
, i= 0, 1, . . . , Nx+ 1; j= 0, 1, . . . , Ny+ 1 (61)

where fn, fp are the predefined functions in Dirichlet boundary conditions, and gn, gp are the
functions derived from the Neumann or Robin boundary conditions. Furthermore, the initial value
conditions are specified in Eq. (61). Given the discrete form of the transient-state Fr-DD model
in Eqs. (31), (40) and (49) and the consistency between the initial value and boundary conditions,
we propose Algorithm 1 to solve the unknowns ϕ, n and p for each time step.

Algorithm 1: To evaluate the numerical solution of the Fr-DD model in transient state

Input: Constant damping parameters ωn, ωp ∈ [0, 1]; Initial guess 0nki, j and
0pki, j for i= 1, 2, . . . , Nx;

j= 1, 2, . . . , Ny; k= 1, . . . , N
Output: Unknown interior variables at each time step ϕki, j, nki, j, pki, j for i = 1, 2, . . . , Nx;
j= 1, 2, . . . , Ny; k= 0, 1, . . . , N

Step-1.0 Obtain initial potentials ϕ0
i, j by solving Eq. (31) in presence of the initial conditions of

electron and hole concentrations in Eq. (61) and the boundary conditions of potentials
in Eqs. (32) and (33).

For each time step k= 0, 1, . . . , N− 1, do
Initialize Gummel iteration counts g= 0, old error Err0 = 1, and divergence counts d = 0.
While Err>Tol, do Gummel iterations

Step-1.1 Generate (g)ϕk+1
i, j by solving Eq. (31) with the initial guess (g)nk+1

i, j , (g)pk+1
i, j and the

boundary conditions of potentials in Eqs. (32) and (33).
Step-1.2 Generate second guess (g+1)nk+1

i, j , (g+1)pk+1
i, j by solving Eqs. (40) and (49) with

the boundary conditions in Eqs. (59) and (60) and initial conditions (convergent
solution from previous time steps) nli, j, p

l
i, j, where l= 0, 1, . . . , k.

(Continued)
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Step-1.3 Update (g+1)nk+1
i, j = ωn · (g+1)nk+1

i, j + (1−ωn) · (g)nk+1
i, j and (g+1)pk+1

i, j =
ωp · (g+1)pk+1

i, j + (
1−ωp

) · (g)pk+1
i, j by damping results to improve the convergence

rate.

Step-1.4 Compute error Err1 =
∥∥∥∥∥

(g+1)nk+1
i, j − gnk+1

i, j

gnk+1
i, j

∥∥∥∥∥, Err2 =
∥∥∥∥∥

(g+1)pk+1
i, j − gpk+1

i, j

gpk+1
i, j

∥∥∥∥∥ and

Err=max(Err1, Err2). Update iteration counts g= g+ 1.

Step-1.5 If Err>Err0
Update divergence counts d = d+ 1 and old error Err0 =Err.

Step-1.6 If d > 1000
Update damping parameter ωn=ωn/2 and ωp=ωp/2 to improve the
convergence ability, then reset divergence counts d = 0.

3.2 Discretization of Fr-DD Model in Steady State
Since Caputo’s fractional derivative of any constant is zero, the time-derivative term with

Caputo’s fractional derivatives vanishes in steady state. In contrast to the transient-state Fr-DD
model, the discretized steady-state Fr-DD model is formed by Eqs. (31), (62) and (63).

Ck+1
i, j−1n

k+1
i, j−1+Ck+1

i−1, jn
k+1
i−1, j+Ck+1

i, j nk+1
i, j +Ck+1

i+1, jn
k+1
i+1, j+Ck+1

i, j+1n
k+1
i, j+1 =−Gn (62)

Dk+1
i, j−1p

k+1
i, j−1+Dk+1

i−1, jp
k+1
i−1, j+Dk+1

i, j pk+1
i, j +Dk+1

i+1, jp
k+1
i+1, j+Dk+1

i, j+1p
k+1
i, j+1 =−Gp (63)

The boundary conditions for Poisson’s equation and the carrier continuity equations are
specified in Eqs. (32), (33), (59) and (60). By rearranging Eqs. (31), (62) and (63), three matrix
equations, i.e., Aϕϕ = bϕ, Ann= bn and App= bp, can be formed for algebraic computations. As a
result, we propose Algorithm 2 to solve the numerical solution of the steady-state Fr-DD model.

Algorithm 2: To evaluate the numerical solution of the Fr-DD model in steady state

Input: Constant damping parameters ωn, ωp ∈ [0, 1]; Initial guess 0ni, j and 0pi, j for i= 1, 2, . . . , Nx;
j= 1, 2, . . . , Ny
Output: Unknown interior variables in steady state ϕi, j, ni, j, pi, j for i = 1, 2, . . . , Nx;
j= 1, 2, . . . , Ny
Initialize Gummel iteration counts g= 0, old error Err0 = 1, and divergence counts d = 0.
While Err>Tol, do Gummel iterations

Step-1.1 Generate (g)ϕi, j by solving Eq. (31) with the initial guess (g)ni, j, (g)pi, j and the boundary
conditions of potentials in Eqs. (32) and (33).

Step-1.2 Generate second guess (g+1)ni, j, (g+1)pi, j by solving Eqs. (62) and (63) with the boundary
conditions in Eqs. (59) and (60).

Step-1.3 Update (g+1)ni, j =ωn · (g+1)ni, j+(1−ωn) · (g)ni, j and (g+1)pi, j =ωp · (g+1)pi, j+
(
1−ωp

) · (g)pi, j
by damping results to improve the convergence rate.

(Continued)
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Step-1.4 Compute error Err1 =
∥∥∥∥∥

(g+1)ni, j− gni, j
gni, j

∥∥∥∥∥, Err2 =
∥∥∥∥∥

(g+1)pi, j− gpi, j
gpi, j

∥∥∥∥∥ and Err =
max(Err1, Err2). Update iteration counts g= g+ 1.

Step-1.5 If Err>Err0
Update divergence counts d = d+ 1 and old error Err0 =Err.

Step-1.6 If d > 1000
Update damping parameter ωn=ωn/2 and ωp =ωp/2 to improve the convergence
ability, then reset divergence counts d = 0.

3.3 Special Case when α = 1 and β = 1
When α = 1 and β = 1, the Fr-DD model becomes the conventional DD model which is

universally employed in the modeling of crystalline semiconductors (e.g., Si, Ge, etc.). In this case,
through simple calculations and substitutions, it can be verified that Eqs. (40) and (49) degenerate
into Eqs. (64) and (65), respectively.

nk+1
i, j − nki, j

�t
=−μnVT

�x2

[
Bk+1

(i−1, i), jn
k+1
i−1, j−

(
Bk+1

(i, i−1), j+Bk+1
(i, i+1), j

)
nk+1
i, j +Bk+1

(i+1, i), jn
k+1
i+1, j

]

− μnVT
�y2

[
Bk+1
i, (j−1, j)n

k+1
i, j−1−

(
Bk+1
i, (j, j−1) +Bk+1

i, (j, j+1)

)
nk+1
i, j +Bk+1

i, (j+1, j)n
k+1
i, j+1

]
+Gn (64)

pk+1
i, j − pki, j

�t
= μpVT

�x2

[
Bk+1

(i, i−1), jp
k+1
i−1, j−

(
Bk+1

(i−1, i), j+Bk+1
(i+1, i), j

)
pk+1
i, j +Bk+1

(i, i+1), jp
k+1
i+1, j

]

+ μpVT
�y2

[
Bk+1
i, (j, j−1)p

k+1
i, j−1−

(
Bk+1
i, (j−1, j) +Bk+1

i, (j+1, j)

)
pk+1
i, j +Bk+1

i, (j, j+1)p
k+1
i, j+1

]
+Gp (65)

where the new coefficients are defined as Bk+1
(n,m), j = B

(
ϕk+1
n, j −ϕk+1

m, j

VT

)
and Bk+1

i, (n,m)
=

B
(

ϕk+1
i,n −ϕk+1

i,m
VT

)
, within which B (x) = x

exp (x)− 1
is the Bernoulli function. Here the discretized

system of equations formed by Eqs. (31), (64) and (65) is identical to the discretized system of
equations derived from the well-known Scharfetter–Gummel method [9]. Likewise, Algorithm 1
and 2 can be easily modified to solve the numerical solution of the conventional DD model.

4 Consistency and Convergence Analysis

The proposed discretization scheme is consistent if the truncation error terms can be made to
vanish as the mesh and time step size is reduced to zero. First of all, the consistency of the finite
center difference scheme applied to the Poisson equation can be easily proved [40]. Furthermore,
it can be inferred from Lemma 2.5 and Lemma 2.6 that the truncation error of the discretized
carrier continuity equations in Eqs. (40) and (49) will vanish as the spatial and time step sizes
shrink to zero. Nevertheless, Eq. (16) hints that an additional truncation error can be generated
by composing Caputo’s fractional derivative terms in the current density with an integer-order
gradient operator on the left side of the equation. To test the influence of this truncation error on
the consistency of Eqs. (40) and (49), we propose Theorem 4.1, which gives the shrinking order
of this truncation error with the spatial step sizes.
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Theorem 4.1 Consider the two-dimensional divergence terms ∇ · I and ∇ · J in Eqs. (8) and (9)

with I =−qμnn∇ϕ + qDn
C∇β

r n and J =−qμpp∇ϕ − qDp
C∇β

r p, then the following equations hold for
0< β < 1.

∇ · I =−qμn (n�ϕ +∇n · ∇ϕ)+ qDn
C∇β+1

r n+∇ ·

⎡
⎢⎣ ∂n

∂x

∣∣
0 x

1−β

�(2−β)
ix+

∂n
∂y

∣∣∣
0
y1−β

�(2−β)
iy

⎤
⎥⎦ (66)

∇ · J =−qμp (p�ϕ +∇p · ∇ϕ)− qDp
C∇β+1

r p−∇ ·

⎡
⎢⎣

∂p
∂x

∣∣∣
0
x1−β

�(2−β)
ix+

∂p
∂y

∣∣∣
0
y1−β

�(2−β)
iy

⎤
⎥⎦ (67)

where ix, iy are unit vector in the x and y direction.

Proof. Observing that both equations are similar in structure and symmetric in x and y
directions, it is sufficient to prove Eq. (66) in only the x direction. From Eq. (12), we obtain

C
0 Dβ

x (n(x, y))= RL
0 Dβ

x (n(x, y))− n (0, y)
� (1−β)

x−β (68)

If we take the first derivative of both sides of Eq. (68), we can obtain

∂
[
C
0 Dβ

x (n(x, y))
]

∂x
= RL

0 Dβ+1
x (n(x, y))+ βn (0, y)

� (1−β)
x−β−1 (69)

According to Eq. (12), RL0 Dβ+1
x (n(x,y)) can be expanded as

RL
0 Dβ+1

x (n(x, y))= C
0 Dβ+1

x (n(x, y))+ n(0, y)
�(−β)

x−(β+1) +
∂n
∂x

∣∣
0

�(1−β)
x−β (70)

Substituting Eq. (70) into Eq. (69) and observing that � (1−β)=−β�(−β), we can obtain

∂
[
C
0 Dβ

x (n (x, y))
]

∂x
= C

0 Dβ+1
x (n (x, y))+

∂n
∂x

∣∣
0

� (1−β)
x−β (71)

Then we can see Eq. (66) as a corollary to Eq. (71). This completes the proof.

In the derivation of Eqs. (40) and (49), we treat current I and J as constants and solve
Caputo’s linear fractional-order ODE within two consecutive grid points. Therefore, from Theo-
rem 4.1, we can get

∇ ·

⎡
⎢⎣I − ∂n

∂x

∣∣
xi

�x1−β

� (2−β)
ix−

∂n
∂y

∣∣∣
yj

�y1−β

� (2−β)
iy

⎤
⎥⎦=

[
−qμn (n�ϕ +∇n · ∇ϕ)+ qDn

C∇β+1
r n

]
i, j

(72)

where I = (
IXi+1/2, j, IYi, j+1/2

)
is the augmented electron current density vector. Eq. (72) shows

that the discretized current density terms can be composed with an integer-order gradient operator
from the left with an inclusive truncation error. By forcing �x, �y→ 0, these truncation error
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terms will decay with the spatial step size to a fractional order 1−β. This then consolidates our
claims on the consistency of the proposed discretization scheme.

For convenience, the convergence analysis is only performed on Algorithm 2, but the con-
clusions of the analysis also apply to Algorithm 1 due to its structural similarity to Algo-
rithm 2 within each step of time advancement. Let us begin our analysis by setting up a
finite dimensional vector space V := {

ϕ ∈R
NxNy : ‖ϕ‖∞ <∞} and a product vector space Y :={

[n, p] ∈R
NxNy ×R

NxNy : ‖n‖∞ <∞, ‖p‖∞ <∞}. The Gummel map is a mapping A : Y −→V×Y
that relates a pair [n1, p1] to a triplet (ϕ, n2, p2). Therefore, the Gummel mapping in Algorithm 2
can be represented by a series of linear matrix computations in Eqs. (73)–(75),

Aϕ · (g)ϕ = bϕ((g)n, (g)p, ϕ|∂�) (73)

An
(

(g)ϕ
)
· (g+1)n̂= bn((g)ϕ, n|∂�) (74)

Ap
(

(g)ϕ
)
· (g+1)p̂= bp((g)ϕ, p|∂�) (75)

where
(
(g)ϕ, (g+1)n, (g+1)p

) = A [
(g)n, (g)p

]
. We need to show that the Gummel mapping is a

contraction mapping with contraction constant L< 1, and the fixed point theorem guarantees the
convergence of the algorithms.

Theorem 4.2 The Gummel mapping A is a contraction mapping if we consider the successively over
relaxation mechanism in the Gummel iteration.

Proof. substitute (g)ϕ into Eqs. (74) and (75), we have

(g+1)n̂=A−1
n

(
A−1

ϕ bϕ((g)n, (g)p, ϕ|∂�)
)
bn(A−1

ϕ bϕ((g)n, (g)p, ϕ|∂�), n|∂�) (76)

(g+1)p̂=A−1
p

(
A−1

ϕ bϕ((g)n, (g)p, ϕ|∂�)
)
bp(A−1

ϕ bϕ((g)n, (g)p, ϕ|∂�), p|∂�) (77)

By damping the intermediate results, we can get

(g+1)n=ωn ·A−1
n

(
A−1

ϕ bϕ((g)n, (g)p, ϕ|∂�)
)
bn(A−1

ϕ bϕ((g)n, (g)p, ϕ|∂�), n|∂�)+ (1−ωn) · (g)n (78)

(g+1)p=ωp ·A−1
p

(
A−1

ϕ bϕ((g)n, (g)p, ϕ|∂�)
)
bp(A−1

ϕ bϕ((g)n, (g)p, ϕ|∂�), p|∂�)+ (1−ωp
) · (g)p (79)

Taking quotient on both sides and applying triangular inequality yield

‖A‖ ≤ωn

∥∥A−1
n
(
A−1

ϕ bϕ

(
(g)n, (g)p, ϕ|∂�

))
bn
(
A−1

ϕ bϕ

(
(g)n, (g)p, ϕ|∂�

)
, n|∂�

)∥∥∥∥(g)n
∥∥ + 1−ωn (80)

‖A‖ ≤ωp

∥∥∥A−1
p
(
A−1

ϕ bϕ

(
(g)n, (g)p, ϕ|∂�

))
bp
(
A−1

ϕ bϕ

(
(g)n, (g)p, ϕ|∂�

)
, p|∂�

)∥∥∥∥∥(g)p
∥∥ + 1−ωp (81)

Since the relative sizes of (g+1)n̂ and (g+1)p̂ to (g)n and (g)p are indeterminable, we need to
discuss the following two cases. For

∥∥(g+1)n̂
∥∥ ≥ ∥∥(g)n

∥∥ and
∥∥(g+1)p̂

∥∥ ≥ ∥∥(g)p
∥∥, Steps 1.4–1.6 in

Algorithm 2 imply that ωn −→ 0 and ωp −→ 0 if divergence count d exceeds 1000. Therefore,
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‖A‖ ≤ 1 and iteration converge in large g. For
∥∥(g+1)n̂

∥∥ <
∥∥(g)n

∥∥ or
∥∥(g+1)p̂

∥∥ <
∥∥(g)p

∥∥, it can be
inferred from Eqs. (80) and (81) that ‖A‖< 1. This completes the proof.

5 Numerical Examples

In this section, we consider three numerical examples to evaluate the accuracy and demon-
strate the computational performance of our Fr-DD model solver. All the numerical computations
below are based on a MATLAB (R2019b) subroutine and performed on a laptop (MacBook Pro
2019) with Intel Core i9 CPU and 16 GB of RAM.

Example 5.1 Consider the following single-carrier transport problem with fractional derivatives
in both time and space for (x,y) ∈� and t> 0.

−�ϕ =∇ · u=−n (82)

∂αn
∂tα

− k∇ · (un)−
(

∂β+1

∂xβ+1 +
∂β+1

∂yβ+1

)
n= f (x, y, t) (83)

where �= (0, 1)× (0, 1), 0< α ≤ 1, and 0< β ≤ 1. The exact solution to this problem is prescribed

as ϕ =− 1
2π2 exp

(
−2π2t

)
sin (πx) sin(πy) and n= exp(−2π2t) sin(πx) sin(πy), where the nonlinear

term on the RHS of Eq. (83) is then given by

f (x, y, t)=−2π2t1−αE1, 2−α

(
−2π2t

)
sin (πx) sin (πy)− k

2
exp

(
−4π2t

)(
cos (2πx) sin2 (πy)

+ sin2 (πx) cos (2πy)
)
− exp(−2π2t)

[
πβ+1 sin (πx

+(β + 1)π

2

)
sin(πy)+πβ+1 sin

(
πy+ (β + 1)π

2

)
sin(πx)

]

Example 5.1 is a benchmark problem constructed by the method of manufactured solu-
tions [41]. The ground truth is known with its solutions at t = 0.02 s sketched in Fig. 2. The
ground truth is compared to the numerical solutions to evaluate the convergence order of our
algorithms. The error in this example is calculated by a variant form of the Frobenius norm acting

on the error matrix, i.e., e (τ , �x, k)= 1
N2

√√√√√ N∑
i=1

N∑
j=1

∣∣∣nki, j− n (i�x, j�x, kτ )

∣∣∣2. Here, the spatial step

sizes in x and y dimensions are both given by �x= 1/(N+1), where N is the number of internal
grid points in one dimension.

To verify the convergence order in time, we make the spatial step size �x small enough, such
as �x = 0.01 in this case, to ensure that the spatial discretization error is much smaller than
the time discretization error. With different temporal step sizes τ , the numerical errors and the
CPU times can be obtained and are shown in Tabs. 1 and 2, respectively. In Tab. 1, we compare
three different combinations of α and β for fixed β = 1, and it is observed that most of the
numerical convergence orders in time lie within (1, 2). This observation gives an estimate for the
convergence order in time and shows its dependence on the time-derivative order α. In Tab. 2,
we compare three different combinations of α and β for fixed α = 1. With space-derivative order
β varying, the convergence orders in time approach zero, implying the negligent effect of β on
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the convergence order in time. The overall error of our discretization scheme is dominated by the
approximation error of the Riemann–Liouville integral (See Eq. (48)), as the approximation error
of the Riemann–Liouville integral is only determined by the β value and the spatial step size �x.
Therefore, as the temporal step size τ shrinks the error in Tab. 2 remains relatively unchanged.
The overall error can be further decreased by reducing the spatial step size �x, which is consistent
with the trend observed in Tab. 4. However, it should be mentioned that the approximation of the
Riemann–Liouville integral will not limit the overall accuracy of the scheme in the case of β = 1
(See Tab. 1) since we can analytically calculate the Riemann–Liouville integral when β = 1. In
addition, it can also be observed in Tabs. 1 and 2 that the speed at which the CPU time increases
is less than the speed at which the temporal step size shrinks suggesting that the computational
error of the solver can be reduced to any pre-set magnitude at the cost of a relatively small
increase in CPU time.

Figure 2: The contour plots (top) and surface plots (bottom) of the electric potentials (left) and
the electron concentrations (right) at t= 0.02 s

Table 1: The errors, numerical convergence orders in time and CPU times for different temporal
step sizes τ with fixed spatial step size �x= 0.01 and fixed space-derivative order β = 1

τ α = 1, β = 1 α = 0.9, β = 1 α = 0.8, β = 1

Error Order CPU time Error Order CPU time Error Order CPU time

1/100 1.118e−4 15.8 7.443e−5 15.6 4.443e−5 16.1
1/200 5.416e−5 1.046 26.4 3.085e−5 1.271 26.2 1.277e−5 1.799 27.3
1/400 2.300e−5 1.236 49.0 8.391e−6 1.878 48.9 3.033e−6 2.074 49.6
1/800 6.886e−6 1.740 89.5 3.141e−6 1.418 88.7 1.103e−6 1.459 91.4
1/1600 2.005e−6 1.780 156.8 9.358e−7 1.747 155.2 3.946e−7 1.483 162.8
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Table 2: The errors, numerical convergence orders in time and CPU times for different temporal
step sizes τ with fixed spatial step size �x= 0.01 and fixed time-derivative order α = 1

τ α = 1, β = 0.9 α = 1, β = 0.8 α = 1, β = 0.7

Error Order CPU time Error Order CPU time Error Order CPU time

1/100 5.936e−4 18.2 8.205e−4 17.8 8.828e−4 18.7
1/200 5.639e−4 0.074 27.9 7.976e−4 0.040 28.7 8.590e−4 0.039 31.7
1/400 5.485e−4 0.040 55.8 7.860e−4 0.021 53.4 8.472e−4 0.020 58.4
1/800 5.407e−4 0.020 111.5 7.802e−4 0.011 104.2 8.413e−4 0.010 109.1
1/1600 5.368e−4 0.010 181.4 7.773e−4 0.005 194.5 8.384e−4 0.005 201.5

To check the spatial convergence order, we take a sufficiently small temporal step size τ =
0.00001 to guarantee that the temporal discretization errors can be neglected compared with the
spatial errors. Similar to Tabs. 1 and 2, we record the errors and CPU times calculated under
different spatial step sizes in Tabs. 3 and 4. In Tab. 3, the space-derivative order β is fixed to 1
and then forms three different combinations with α. It is observed that the distribution of the
spatial convergence order is not uniform in α, and the order decreases dramatically as the spatial
step size decreases. In Tab. 4, we set three different combinations of α and β for fixed α = 1. It
can be noted that the spatial convergence order is very close to 1 regardless of the change in β,
which reveals the linear dependency of the scheme error on the spatial step size when β < 1. The
CPU time under different spatial step sizes does not exhibit a specific growth trend as what we
observed in Tabs. 1 and 2. However, considering that the growth rate of the number of discrete
spatial grids is the square of the reduction rate of the spatial step size, the CPU time still grows
at a slower rate relative to the growth of the number of discrete spatial grids. According to these
observations, we can infer that the solver precision can indeed be raised to a certain level at the
expense of a relatively small increase in computational complexity (CPU time).

Table 3: The errors, numerical spatial convergence orders and CPU times for different spatial step
sizes �x with fixed temporal step size τ= 1e− 5 and fixed space-derivative order β = 1

�x α = 1, β = 1 α = 0.9, β = 1 α = 0.8, β = 1

Error Order CPU time Error Order CPU time Error Order CPU time

0.2 1.605e−3 43.1 1.764e−3 41.2 2.037e−3 41.9
0.1 1.050e−4 3.934 106.5 8.078e−5 4.449 108.5 7.632e−5 4.738 116.7
0.05 1.084e−5 3.276 305.9 3.446e−5 1.229 298.7 5.169e−5 0.562 307.6

Table 4: The errors, numerical spatial convergence orders and CPU times for different spatial step
sizes �x with fixed temporal step size τ= 1e− 5 and fixed time-derivative order α = 1

�x α = 1, β = 0.9 α = 1, β = 0.8 α = 1, β = 0.7

Error Order CPU time Error Order CPU time Error Order CPU time

0.2 9.323e−3 48.3 1.346e−2 56.8 1.522e−2 52.2
0.1 4.146e−3 1.169 158.3 6.313e−3 1.092 170.4 7.220e−3 1.076 175.8
0.05 2.182e−3 0.926 343.2 3.296e−3 0.938 363.7 3.716e−3 0.958 396.4
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Example 5.2 Consider the following steady-state single-carrier transport problem in a 2D p-
type organic field effect transistor (OFET).

−�ϕ =∇ · u= qp
εε0

(84)

0=−μp∇ · (up)+Dp

(
∂β+1

∂xβ+1 +
∂β+1

∂yβ+1

)
p+Gp (85)

where the effective hole mobility μp and diffusion coefficient Dp are constants for homogeneous
materials. The net generation-recombination rate Gp ≈ 0 since the generation and recombination
activities are relatively unimportant in OFETs as a majority carrier device [33,37]. The solution
domain is defined in Fig. 3, where the size of the organic semiconductor (OSC) layer is 500 μm×
30 nm and the size of the dielectric layer is 500 μm×64 nm. The parameters for OFET simulation
are presented in Tab. 5, and the diffusion coefficient for OSC is determined by Einstein’s relation
Dp =VTμp. The geometric sizes and the material types of the OFET domain are the same as the
OFET fabricated in [36] and the material parameters are taken from [42,43]. The encapsulating
layer (Parylene) in [36] is not considered in this numerical example in order to simplify boundary
conditions.

source contact drain contact

gate contact

A

B

C
D E

F

G

H

Dielectric Layer

Organic Semiconductor

Figure 3: The solution domain of a 2D top-contact bottom-gate (TCBG) OFET device composed
of a p-type organic semiconductor layer and a dielectric layer

Table 5: The parameters for OFET simulation

q (C) εp εd μp (m2/Vs) VT (V)

Basic electric
charge

Relative permittivity
for OSC

Relative permittivity
for dielectric

Hole mobility
for OSC

Thermal voltage

1.60217646e−19 3.0 3.9 4.5e−5 0.0255
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Eqs. (84) and (85) are subject to proper boundary conditions for ϕ and p. To guarantee the
OFET is self-contained, the boundaries AB, BC, DE, FG and GH are constrained by Neumann

conditions, i.e.,
∂ϕ

∂n
= 0 and

∂p
∂n

= 0, where n is the unit norm vector to the boundary. Assume

that the metal-semiconductor (MS) contacts on CD and EF are ohmic contacts and the barrier
voltage is zero, the potentials on CD and EF are specified by ϕCD = 0 and ϕEF = −1.5 V.
Similarly, the boundary potential on AH is specified by ϕAH = −3.0 V. These electric potential
boundary values are all reasonably selected, and the OFET has been proven to work normally
under these boundary potentials [36,42]. If we assume the dielectric layer is a perfect isolator, the
hole concentration on region ABGH should be 0. The interface between OSC and the dielectric

layer (BG) requires the continuity of dielectric displacement, i.e., εp
∂ϕ

∂n

∣∣∣∣
BG

= εd
∂ϕ

∂n

∣∣∣∣
BG

. The hole

concentrations on MS contacts (i.e., boundaries CD and EF) are assumed to satisfy Dirichlet
conditions: pCD = pEF = 5e6 m−3.

Applying the above boundary conditions and Algorithm 2, we can obtain the simulated
steady-state electric potentials and hole concentrations within the solution domain for β = 1 and
0.8, as shown in Fig. 4. However, it should be noted that in Example 5.1 and 5.2 only cases where
β ≥ 0.7 can be simulated in our program since four generalized (reversed) state transition functions
�̂i(�x) (i= 1, 2, 3, 4) may blow up to infinity as �x is small and β < 0.7. For the cases of β = 1
and β = 0.8, we impose the specified boundary conditions and obtain the simulated surface plots
of electric potentials and hole concentrations in Fig. 4. It is observed that the distribution of
electric potentials is not significantly affected by the selection of different β. Nevertheless, the
profiles of hole concentration under different β are obviously shifted along the thickness direction,
which implies that different β values are related to the intensity of charge carriers’ diffusion
motions.

Figure 4: The simulated steady-state electric potentials and hole concentrations within the thinner
solution domain for an OFET when space-derivative order β = 1 and β = 0.8, respectively
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The current density contains drift and diffusive components, i.e., J =−qμpp∇ϕ − qDp
C∇β

r p,

and the diffusive component is proportional to the fractional gradient operator C∇β
r p, where

C∇β
r p =

(
C
0 Dβ

x p C
0 Dβ

y p
)
. We can approximate the fractional derivative by C

0 Dβ
y p ≈

�p
�yβ

. Since

the concentration step changes and the spatial step sizes comply with �p1 > �p2 and �y< �y0.8,
we can have C

0 D1
yp> C

0 D0.8
y p. This result suggests that the charge carriers’ diffusive motions are

enhanced for larger β.

Since it is challenging in this example to find an initial value condition consistent with the
boundary conditions, even if we can get the steady-state solution for the OFET, it is almost impos-
sible to obtain a transient solution that approaches the steady-state solution over time. To explore
the effects of time-derivative order α on the transient dynamics of the organic semiconductor
devices, we consider a photo-agitated solar cell model in the next example.

Example 5.3 Consider the following single-carrier transport problem in a 2D p-type solar cell
in both time and space for (x, y)∈� and t> 0.

−�ϕ =∇ · u= qp
εε0

(86)

∂αp
∂tα

=−μp∇ · (up)+Dp

(
∂β+1

∂xβ+1 +
∂β+1

∂yβ+1

)
p+ p(x, y, 0)

t−α

�(1−α)
(87)

where � = (0, L) × (0, L), 0 < α ≤ 1, and 0 < β ≤ 1. The initial value condition is given by

p (x, y, 0)= 10000p0√
2πL

exp

(
−(x− 0.5L)2 + (y− 0.5L)2

2× 10−8L

)
, and the boundary conditions are specified

as p|∂� = 0,
∂ϕ

∂n

∣∣∣∣
∂�

= 0, where n is the unit normal vector to the boundary surfaces. The other

system parameters for this solar cell are presented in Tab. 6. For this example, we intentionally
make the kernel radius of the initial hole concentrations much smaller than the side length of the
solution domain, i.e., 0.00001L�L, thus the boundary condition (p|∂� = 0) is consistent with the
initial value condition. This consistency guarantees the solvability of the transient dynamics for
the solar cell problem.

Table 6: The parameters for solar cell simulation

L (m) ε0 (F/m) ε μp (m2/Vs) p0 (1/m3)

The side length
of the domain

Vacuum
permittivity

Relative permittivity
for OSC

Hole mobility
for OSC

Initial hole concentrations
agitated by the light pulse

1e–6 8.854e−12 3.0 4.5e−5 1e22

In Example 5.3, we let the spatial step size be 1e− 8 m and the temporal step size be 1e−
6 s. First, we fix β = 1 and set α = 0.8, 0.6 and 0.4 to solve for solutions at t = 1e − 5 s. As
shown in Fig. 5a, the hole concentration in this setting displays a decaying trend with the decrease
of α, while the electric potential remains almost the same for different α. The decay trend in
hole concentration can be easily predicted since the hole concentration with smaller α will reduce
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more within each step of time advancement (i.e., �p≈Cτα). For the second group of numerical
experiments, we fix α = 0.9 and set β = 1, 0.8 and 0.6 to solve for solutions at t = 1e− 5 s. It
is found in Fig. 5b that the decay rate for hole concentration reduces as the decrease of β, and
this phenomenon can be ascribed to the more inactive diffusive motions of charge carriers under
smaller β.

Figure 5: The simulated transient-state electric potentials and hole concentrations within the thin-
ner solution domain for the solar cell when (a) space-derivative order β = 1 fixed and α = 0.8, 0.6
and 0.4, respectively; (b) time-derivative order α = 0.9 fixed and β = 1, 0.8 and 0.6, respectively

6 Experimental Validation of the Fractional Drift-Diffusion OFET Model

In Example 5.2, we simplify boundary conditions to better discuss the influence of β values
on the charge carriers’ diffusive motions in the steady-state OFET. As an extension to Example
5.2, this section provides the experimental validation for the Fr-DD model. The fabrication and
the experimental characterization of the OFET that we model was discussed in [36]. As shown in
Fig. 6, compared to the simplified structure of the OFET in Example 5.2, the complete structure
of the OFET is encapsulated in a polymer layer made of Parylene and all the metallic electrodes
have a thickness of 30 nm. The material parameters are specified in Tab. 5. In addition to the
boundary conditions given in Example 5.2, we should also treat the encapsulating layer as a
perfect insulator, where no charge carrier is transmitted, and the dielectric displacement should be
continuous on its borders.
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Figure 6: The solution domain of a 2D top-contact bottom-gate (TCBG) OFET device composed
of a p-type organic semiconductor layer, a dielectric layer and encapsulating layers (top and
bottom)

Consider that the length of the source electrode LS and the drain electrode LD are both
200 μm and the width of the OFET (out-of-plane dimension) W is 1000 μm, the net current
flowing through the drain electrode is evaluated by

Ids=W
∫ LD

0
Jy(x)dx≈W

LD/�x∑
iD=1

JYiD, jD ·�x=W
LD/�x∑
iD=1

(
�̂1 (�y)piD, jD−1− piD, jD

)
qDp

J β

0+�̂1 (�y)
·�x (88)

where Jy is the y-component of the continuous current density at the Au-DNTT interface, iD is the
discrete grid index in the x-direction and jD is the discrete grid y index at the Au-DNTT interface.
In our case, the spatial step sizes �x= 5 μm and �y= 1 nm, so we can fix jD = 184 and calculate

the summation over iD = 1, . . . , 40. The fractional Riemann-Liouville integral J β

0+�̂1 (�y) is then
evaluated using Eq. (48).

The β value in the fractional drift diffusion OFET model depends on the spatial coordinates
and electrode potentials, i.e., β = B(x, y, Vgs, Vds). This inhomogeneity of β for different spatial
coordinates and boundary conditions is caused by the irregular crystalline structure of OSCs
and the electronic polarization under different boundary conditions [44,45]. If we ignore the
dependence of β on spatial coordinates and only consider its dependence on Vgs and Vds, we can
obtain the relationship curves for β = B(Vgs, Vds) in Figs. 7b and 8b by fitting the experimental
data.

When β is adjusted for a fixed Vds and varying Vgs according to Fig. 7b, we can utilize
Eq. (88) to calculate the drain current Ids under different Vgs and obtain the theoretical transcon-
ductance. In Fig. 7a, it is found that the theoretical transconductance curve (solid black line) is
in good agreement with the experimentally measured transconductance (red circles). Similarly, if
we adjust β for varying Vds and four fixed Vgs according to dependence curves in Fig. 8b, we can
notice that the theoretical output curves (black solid lines) can well fit with the experimentally
characterized outputs (Symbol, i.e., red circles, blue squares, etc.) as shown in Fig. 8a. These
results not only confirm the validity of the Fr-DD model for predicting the OFET characteristics,
but also suggest the highly nonlinear dependence of β value on the electrode potentials Vgs and
Vds. The relationship curves between β and electrode potentials can be constructed very quickly
by writing a simple optimization subroutine to minimize the error between the experimental data
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and the theoretical predictions. Due to the flexibility of adjusting β, the Fr-DD model avoids
considering the involuted trap states in OSCs, thus greatly improving the modeling efficiency
of OSC devices compared with the conventional OFET analytic models involving the trap or
impurity states.

Figure 7: (a) The experimentally measured transconductance at a fixed Vds=−5 V compared with
the fitted theoretical transconductance curve obtained from the fractional drift diffusion model;
(b) The adjusted β values at different Vgs and a fixed Vds=−5 V

Figure 8: (a) The experimentally measured output curve at a series of fixed Vgs = −5∼−2 V
compared with the fitted theoretical output curve obtained from the fractional drift diffusion
model; (b) The adjusted β values at different Vds and a series of fixed Vgs=−5∼−2 V
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7 Conclusion

This work aimed to develop a Fr-DD model solver for simulating the anomalous dynamics
of OSC devices. Two algorithms based on a novel discretization scheme and successively over-
relaxed Gummel’s iteration are proposed here to solve the transient and steady-state Fr-DD model
equations. This study has identified the consistency of the two algorithms by showing that the
truncation error from the discretized divergence of current density functions will vanish with
the spatial step size to a positive fractional order of 1 − β. The convergence analysis reveals
that the Gummel mapping is a contraction mapping if we consider the successive over-relaxation
mechanism in the Gummel’s iteration, which thus completes the proof of convergence. Three
numerical examples, including one benchmark example and two others constructed from the
perspective of engineering applications are employed to demonstrate the algorithms’ accuracy and
computational performance. It is found in the first example that altering α and β can impact
the spatial convergence order but only varying α will affect the convergence order in time. The
increase rate of CPU time is less than the shrinking rate of temporal step size and lower than
the growth rate of spatial grid points. These findings suggest that our solver has high precision
and fast computational speed as it limits the computational error to a predefined satisfactory
level (from ∼10−4 to ∼10−6) at a relatively small expense of CPU time (from ∼20 s to ∼100 s).
The results reported in two numerical examples reveal the prediction and characterization of the
transient-state and steady-state dynamics for any type of organic semiconductor device. Finally, we
provide experimental verification for the fractional drift diffusion model of a DNTT-OFET. We
stipulate that this is the first to date exploration of the Fr-DD model solver laying the groundwork
for future research into fractional drift diffusion modeling of flexible organic electronics.
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