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Abstract: In this paper, stress distribution is examined in the case where infi-
nite length co-phase periodically curved two neighboring hollow fibers are
contained by an infinite elastic body. The midline of the fibers is assumed
to be in the same plane. Using the three-dimensional geometric linear exact
equations of the elasticity theory, research is carried out by use of the piecewise
homogeneous body model. Moreover, the body is assumed to be loaded at
infinity by uniformly distributed normal forces along the hollow fibers. On the
inter-medium between the hollow fibers and matrix surfaces, complete cohe-
sion conditions are satisfied. The boundary form perturbation method is used
to solve the boundary value problem. In this investigation, numerical results
are obtained by considering the zeroth and first approximations to calculate
the self-equilibrium shear stresses and normal stress at the contact surfaces
between the hollow fibers and matrix. Numerous numerical results have been
obtained and interpreted about the effects of the interactions between the
hollow fibers on this distribution.

Keywords: Hollow fibers; stress distribution; fibrous composite; periodic
curvature

1 Introduction

Composite materials have increased in importance as they have superior properties than
the materials they are made of. Today, composites have numerous application areas such as
energy, sports, military, automotive, marine, aerospace, civil engineering, biomedical and even the
music industry [1]. Unidirectional fibrous composites have an important place among composite
materials. It is very important to create a mathematical model about the elastic behavior of these
materials so that they are used effectively in practice when exposed to various external influences,
and to examine them theoretically. These investigations will determine the rheological, mechanical,
thermal, electrical and morphological properties of the materials. For example, it has been found
that fibrous composites with well-dispersed reinforcing fibers have higher electrical and thermal
conductivity [1–3].
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As noted in [4–6], one of the main factors that determines the strength of unidirectional
fibrous composite is the fibers’ curvature. Curvature can occur as a result of design or as a result
of a technological process and is called periodic or local. Practical applications of these composite
materials require determination of the stress-strain state considering the curl of the fibers. Self-
balanced stresses arise due to the curvature of the fibers, and these stresses can cause the fibers to
separate from the matrix under uniaxial tension or stress along the fibers [5,7,8]. This separation
leads to the formation of macro cracks, whose accumulation can significantly alter the strength
and stiffness properties of the composites [9]. In addition, the initial minor curling of reinforcing
fibers is taken as a model for investigating various stability loss or fracture problems of uni-
directional composites [10]. Therefore, creating the mechanics of composite materials containing
curved structures is important both in terms of fundamental advances in the mechanics of rigid
deformable bodies and in modern engineering that uses special composite components. In [11], to
achieve this aim, using the three-dimensional exact equations of the elasticity theory together with
the piecewise homogenous body model, a method was developed for investigating the stress-strain
state produced in unidirectional fibrous composite materials. Fiber curving was considered periodic
in that study. Reviews of the numerical results obtained by using this method are given in [5].

The method discussed in [11] is proposed for the case where the concentration of fibers is
so small that the interactions between them are negligible. In [12], the method is developed to
be used in the problem of two neighboring periodically inclined fibers, and numerical results are
given taking into account the interaction between the fibers. In [13], this method is extended
to the nonlinear geometric state, and from here, the numerical results obtained for stresses in a
composite material containing one and two neighboring periodically inclined fibers are presented.
Studies on the loss of stability problems corresponding to these conditions are reviewed in [14].
In [15–18], this approach is developed for a periodically located row of fibers embedded in an
infinite matrix and the obtained numerical results are presented. In [19], the stability loss of
the related problem is studied. In addition, some similar studies in the local curvature case are
presented in publications [20–23].

However, in all the investigations given above, it is assumed that the fibers embedded in
the matrix are traditional materials. In [24], the reinforcing element is taken as a double-walled
carbon nanotube (DWCNT), and the loss of internal stability in composite materials containing a
straight infinitely long DWCNT is examined. In [25], the stress distribution is studied in an infinite
body containing an infinite length periodically curved hollow fiber with low concentration. In this
study, to calculate the effect of the interactions between the hollow fibers on the stresses, the
same situation is developed for the two neighboring hollow fiber cases. The problem is the stress
distribution in the infinite body containing infinite length, periodically curved two neighboring
hollow fibers. The investigations are made by using the three-dimensional geometric linear exact
equations of the elasticity theory with the piecewise homogeneous body model. In addition, it
is assumed that uniformly distributed normal forces are acting on the body at infinity along the
hollow fibers.

2 Mathematical Formulation of the Problem

Infinite length, periodically curved two neighboring hollow fibers embedded in an infinite
elastic body are taken into account. We assume that the perpendicular sections of the hollow
fibers are circles with radius R and thickness H and this does not change throughout the hollow
fibers. We also note that the midline of the hollow fibers is in the same plane and has co-phase
initial periodic tilting with respect to each other. In the aforementioned model, it is thought that
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there are normal forces with intensity p that are evenly distributed in the longitudinal direction
of the hollow fibers.

Let us select Omxm1xm2xm3 cartesian and Omrmθmzm cylindrical coordinate sets for the cen-
terline of each hollow fiber as the Lagrange coordinates (Fig. 1). Here, m= 1, 2, shows the first
and second hollow fibers, respectively. As can be seen from Fig. 1, between these coordinates the
following relations are satisfied:

x12 = x22, x13 = x23, r1e
iθ1 =R12+ r2e

iθ2, z1 = z2 = z (1)

Assuming that the midlines of the hollow fibers are in the x12 = x22 = 0 plane, the equations
of these lines are written as follows:

x11 =Lsin
(
2π
�
x13

)
, x21 =Lsin

(
2π
�
x23

)
(2)

Here, L is the bending amplitude of the hollow fibers and � is the period of bending.
Assuming that L is much smaller than �, let us define the ε = L/� parameter (0< ε << 1). The
degree of initial defect of the hollow fibers is characterized by this parameter.

In the following, we will show the values belonging to the first and second hollow fibers with
the superscript (21) and (22), respectively and the values belonging to the matrix (infinite elastic
medium) with the superscript (1).

Figure 1: Geometry and coordinate systems of the considered material structures



970 CMC, 2021, vol.69, no.1

Let us write the following governing field equations to be satisfied in each hollow fiber and
infinite elastic medium:

∇i
[
σ (k)in

(
gjn+∇nu(k)j

)]
= 0,

2ε(k)jm =∇ju(k)m +∇mu(k)j +∇ju(k)n∇mu(k)n ,

σ
(k)
(in)=

(
λ(k)e(k)

)
δni + 2

(
μ(k)ε

(k)
(in)

)
, e(k)= ε(k)rr + ε(k)θθ + ε(k)zz (3)

Let us denote the inner surface of the hollow fibers with S0k (k= 1, 2) and the outer surface
(the contact surface with the matrix) with Sk (k= 1, 2). We write the contact conditions below,
assuming that the inner radii of the hollow fibers remain constant and that there are ideal contact
conditions between the hollow fibers and the matrix.

σ (2k)in
(
gjn+∇nu(2k)j

)∣∣∣
S0k

nkj = 0,

σ (2k)in
(
gjn+∇nu(2k)j

)∣∣∣
Sk
nkj = σ (1)in

(
gjn+∇nu(1)j

)∣∣∣
Sk
nkj,

u(2k)j

∣∣∣
Sk

= u(1)j

∣∣∣
Sk

, k= 1, 2 (4)

In the case discussed, the following conditions are also provided:

σ (1)zz −→
z→∞ p, σ

(1)
(ij) −→

rk→∞ 0(ij) �= (zz) (5)

Tensor notation is used in the formulae given above. We should state that the sum cannot be
made according to the underlined indices.

Thus, the formulation of the addressed problem is completed. The problem is reduced to the
solution of Eq. (3) within the framework of (4) contact and (5) boundary conditions.

3 Solution of the Problem

We can write the equations of the surfaces Sk and S0k from the cross-sectional form condition
of the hollow fibers.

rk = (1+ ε2(δ′k(t3))2 sin 2θk)
−1
{
(εδk(t3)+ ε3δk(t3)(δ′k(t3))2) sin θk+

[
(R+H)2− ε2(δk(t3))2

−ε4(δ′k(t3))2(δk(t3))2(1+ ε2(δ
′
k(t3))

2) sin 2θk

] 1
2
}

zk = t3 − εδ′k (t3) rk (t3) sin θk+ ε2δk (t3) δ
′
k (t3) , δ

′
k(t3)=

dδk(t3)
dt3

, δk(t3)= � sin
(
2π
�
t3

)
(6)

Here, t3 ∈ (−∞, +∞) is a parameter. Using Eq. (6) and doing some known operations, we
obtain the following expressions for the components of the unit external normals of Sk surfaces:

nkr= rk(θk, t3)
∂zk(θk, t3)

∂t3

[
Ak(θk, t3)

]−1
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nkθ =
[
∂zk(θk, t3)

∂θk

∂rk(θk, t3)

∂t3
− ∂rk(θk, t3)

∂θk

∂zk(θk, t3)

∂t3

] [
Ak(θk, t3)

]−1

nkz =−rk(θk, t3)
∂rk(θk, t3)

∂t3

[
Ak(θk, t3)

]−1 (7)

Ak(θk, t3)=
[(

rk(θk, t3)
∂zk(θk, t3)

∂t3

)2

+
(
∂zk(θk, t3)

∂θk

∂rk(θk, t3)

∂t3
− ∂zk(θk, t3)

∂t3

∂rk(θk, t3)

∂θk

)2

+
(
rk(θk, t3)

∂rk(θk, t3)

∂t3

)2
] 1

2

(8)

The boundary-form perturbation method given in [5] will be used to examine this problem.
According to this method, all the expressions are searched in series form in terms of the small
parameter defined above.

{
σ
(m)
(ij) ; ε

(m)
(ij) ; u

(m)
(i)

}
=

∞∑
q=0

εq
{
σ
(m),q
(ij) ; ε(m),q

(ij) ; u(m),q
(i)

}
(9)

Expressions (6) and (7) are also written serially according to ε:

rk =R+
∞∑
q=1

εqakq(θk, t3),

zk = t3+
∞∑
q=1

εqbkq(θk, t3),

nkr= 1+
∞∑
q=1

εqckq(θk, t3),

nkθ =
∞∑
q=1

εqdkq(θk, t3),

nkz =
∞∑
q=1

εqgkq(θk, t3). (10)

The aqk
(
θq, t3

)
, bkq

(
θk, t3

)
, ckq

(
θk, t3

)
, dkq

(
θk, t3

)
, and gkq(θk, t3) in these expressions,

which are the coefficients of εk, can be easily obtained from (6)–(8). From (3), the governing field
equations provided separately for each approach in (9) are obtained. If we use (10), we open each
approach in (9) to a series around (rk = R+H, θk, t3) and (rk = R, θk, t3). If we substitute these
last statements in (4) and use the expressions of nqr, nqθ ,nqz in (10), then as a result of some
long but known operations, the contact conditions provided in rk = R+H and rk = R, for each
approach in (9) are obtained. In this case, the k-th contact condition includes the sizes of all the
previous k-1 approaches.
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We will deal with the case where the nonlinear terms in the equations related to the zeroth

approximation can be omitted, and since ∇nu(k)j, 0<< 1, δjn in the first and other approaches can

replace (gjn +∇nu(k)j, 0). In addition, we will assume that the σ (k), 0(ij) (ij) �= zz stresses in the zeroth

approximation can be neglected as well as the σ (k), 0zz stresses [15]. According to this assumption,
the governing field equations and contact conditions of the zeroth approach are obtained as
follows:

∇iσ (k)ij, 0 = 0,

2ε(k), 0ij =∇ju(k), 0i +∇iu(k), 0j ,

σ
(k), 0
(in) =

(
λ(k)e(k), 0

)
δni + 2

(
μ(k)ε

(k), 0
(in)

)
, e(k), 0 = ε(k), 0rr + ε(k), 0θθ + ε(k), 0zz (11)

σ
(2k), 0
(ij)

∣∣∣
rk=R

= 0,

σ
(2k), 0
(ij)

∣∣∣
rk=R+H

= σ
(1), 0
(ij)

∣∣∣
rk=R+H

,

u(2k), 0(i)

∣∣∣
rk=R+H

= u(1), 0(i)

∣∣∣
rk=R+H

; (ij)= rr, rθ , rz, (i)= r, θ , z; k= 1, 2 (12)

Thus, the zeroth approach is reduced to the solution of Eq. (11) within the framework of
contact conditions (12).

For the first approach, we can write the governing field equations as follows:

∇i
[
σ (k)ij, 1+ σ (k)in, 0∇nu(k)j, 1

]
= 0 (13)

2ε(k), 1ij =∇ju(k), 1i +∇iu(k), 1j (14)

σ
(k), 1
(in) =

(
λ(k)e(k), 1

)
δni + 2

(
μ(k)ε

(k), 1
(in)

)
, e(k), 1 = ε(k), 1rr + ε(k), 1θθ + ε(k), 1zz (15)

For this approach, we obtain the contact conditions as follows:

[
σ(i)r

]2k, 1+ f1k

[
∂σ(i)r

∂r

]2k, 0
+φ1k

[
∂σ(i)r

∂z

]2k, 0
+ γrk

[
σ(i)r

]2k, 0+ γθk [σ(i)θ ]2k, 0+ γzk [σ(i)z]2k, 0 = 0

[
σ(i)r

]2k, 1
1, 1 + f1k

[
∂σ(i)r

∂r

]2k, 0
1, 0

+φ1k
[
∂σ(i)r

∂z

]2k, 0
1, 0

+ γrk
[
σ(i)r

]2k, 0
1, 0 + γθk

[
σ(i)θ

]2k, 0
1, 0 + γzk

[
σ(i)z

]2k, 0
1, 0 = 0

[
u(i)
]2k, 1
1, 1 + f1k

[
∂u(i)
∂r

]2k, 0
1, 0

+φ1k
[
∂u(i)
∂z

]2k, 0
1, 0

= 0 (16)

where

[φ]2k, s= φ(2k), s, [φ]2k, s1, s = φ(2k), s−φ(1), s; f1k = δk (t3) cos θk; φ1k =−Rδ′k(t3) cos θk,

γrk=
(
δk(t3)

R
− δ′′k(t3)R

)
cos θk; γθk=−δk (t3)

R
sin θk; γzk =−δ′k (t3) cos θk; k= 1, 2 (17)
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In this section, we will obtain the solutions of the boundary-value problems of the zeroth
and first approaches formulated above. For simplicity, we will assume that both fiber materials are
the same and that Poisson’s ratio of ν(21)= ν(22)= ν(2) (ν(2k) k-th fiber to Poisson’s ratio) is equal
to Poisson’s ratio of the matrix material which we will show as ν(1).

In this case, we get the following solution for the zeroth approach:

σ (1), 0zz = p; σ (21), 0zz = σ (22), 0zz = E(2)

E(1)
p; ε(21), 0zz = ε(22), 0zz = ε(1), 0zz = p

E(1)
; z= z1 = z2

u(21), 0z = u(22), 0z = u(1), 0z = ε(1), 0zz z; σ
(2q),0
(ij) = σ (1), 0

(ij) = 0; (ij)= rr, θθ , rθ , θz, rz (18)

E(1) and E(2) in (18) are the elasticity moduli of the matrix and fiber materials, respectively.

Let us now consider the solution of the problem (13)–(17) belonging to the first approach.
Considering the above assumptions and the solution of the zeroth approach (18), the Eq. (13) are
obtained as follows:

∂σ
(k), 1
rr

∂rk
+ 1
rk

∂σ
(k), 1
rθ

∂θk
+ ∂σ

(k), 1
rz

∂zk
+ 1
rk

(
σ
(k), 1
rr − σ (k),1θθ

)
= 0,

∂σ
(k), 1
rθ

∂rk
+ 1
rk

∂σ
(k), 1
θθ

∂θk
+ ∂σ

(k),1
θz

∂zk
+ 2
rk
σ
(k), 1
rθ = 0,

∂σ
(k),1
rz

∂rk
+ 1
rk

∂σ
(k),1
θz

∂θk
+ ∂σ

(k),1
zz

∂zk
+ 1
rk
σ
(k),1
rz = 0 (19)

These equations coincide with the linearized three-dimensional elasticity equations. Similarly,
Eq. (14) become:

ε(k), 1rr = ∂u(
k), 1
r

∂rk
, ε

(k), 1
rθ = 1

2

⎛
⎝ 1
rk

∂u(
k), 1
r

∂θk
+ ∂u(

k), 1
θ

∂rk
− u(

k), 1
θ

rk

⎞
⎠ , ε(k), 1rz = 1

2

⎛
⎝∂u(k), 1z

∂rk
+ ∂u(

k), 1
r

∂zk

⎞
⎠

ε
(k), 1
θθ = 1

rk

∂u(k), 1θ

∂θk
+ u(k), 1r

rk
, ε

(k), 1
θz = 1

2

(
∂u(k), 1θ

∂zk
+ 1
rk

∂u(k), 1z

∂θk

)
ε(k), 1zz = ∂u(k), 1z

∂zk
(20)

Considering the solution obtained in the zeroth approach, the contact conditions of the first
approach (16) are obtained as follows:

[σrr]2k, 1 = 0, [σrθ ]2k, 1 = 0, [σrz]2k, 1 = δ′k(t3)σ (2), 0zz cos θk,

[σrr]
2k, 1
1,1 = 0, [σrθ ]

2k, 1
1, 1 = 0, [σrz]

2k, 1
1, 1 = δ′k(t3)

(
σ (1), 0zz − σ (2),0zz

)
cos θk,

[ur]
2k, 1
1, 1 = 0, [uθ ]

2k, 1
1, 1 = 0, [uz]

2k, 1
1, 1 = 0 (21)
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For the solution of Eq. (21), let us use the following representation given in [5], taking into
account (19):

u(k), 1r = 1
rk

∂

∂θk
ψ(k)− ∂2

∂rk∂z
χ(k),

u(k), 1θ =− ∂

∂rk
ψ(k)− 1

rk

∂2

∂θk∂z
χ(k), �

(k)
1 = ∂2

∂r2k
+ 1
rk

∂

∂rk
+ 1

r2k

∂2

∂θ2k

,

u(k), 1z = (λ(k)+μ(k))−1

(
(λ(k)+ 2μ(k))Δ(

k)
1 + (μ(k)+ σ (k), 0zz )

∂2

∂z2

)
χ(k); (22)

The ψ(k) and χ(k) functions here provide the following equations:(
�
(k)
1 +

(
ξ
(k)
1

)2 ∂2
∂z2

)
ψ(k) = 0,

(
Δ
(k)
1 +

(
ξ
(k)
2

)2 ∂2
∂z2

)(
Δ
(k)
1 +

(
ξ
(k)
3

)2 ∂2
∂z2

)
χ(k) = 0 (23)

ξ
(k)
i (k= 21, 22, 1; i= 1, 2, 3) in (23) are fixed as follows:

ξ
(k)
1 =

√√√√μ(k)+ σ (k),0zz

μ(k)
, ξ

(k)
2 =

√√√√μ(k)+ σ (k),0zz

μ(k)
, ξ

(k)
3 =

√√√√λ(k)+ 2μ(k)+ σ (k),0zz

λ(k)+ 2μ(k)
(24)

Thus, the solution of Eq. (23) is obtained by considering the expressions on the right side of
Eq. (21) as follows:

ψ(1),1 = α sinα z
2∑

k=1

∞∑
n=−∞

C(1)kn Kn(ξ
(1)
1 α rk) exp (inθk)

χ(1),1 = cosα z
2∑

k=1

∞∑
n=−∞

[
A(1)kn Kn(ξ

(1)
2 αrk)+ B(1)kn Kn(ξ

(1)
3 αrk)

]
exp (inθk) (25)

ψ(2k),1 = α sinα z
∞∑

n=−∞

{
C(2k)n In(ξ

(2k)
1 αrk)+D(2k)n Kn(ξ

(2k)
1 αrk)

}
exp (inθk)

χ(2k),1 = cosα z
∞∑

n=−∞

⎧⎨
⎩
A(2k)n In(ξ

(2k)
2 αrk)+B(2k)n In(ξ

(2k)
3 αrk)+

E(2k)n Kn(ξ
(2k)
2 αrk)+F (2k)n Kn(ξ

(2k)
3 αrk)

⎫⎬
⎭ exp (inθk) (26)
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In (25) and (26), α = 2π/� and In(x), Kn(x) are the Bessel functions with imaginary arguments

and Macdonald functions, respectively. A(1)kn , B(1)kn , C(1)kn ,A(2k)n , B(2k)n , C(2k)n , D(2k)n , E(2k)n , and F (2k)n
unknowns are complex constants and provide the following relationships:

A(1)kn =A(1)k−n , B(1)kn =B(1)k−n , C(1)kn =C(1)k−n , Im
(
A(1)k0

)
= Im

(
B(1)k0

)
= Im

(
C(1)k0

)
= 0

A(2k)n =A(2k)−n , B(2k)n =B(2k)−n , C(2k)n =C(2k)−n , Im
(
A(2k)0

)
= Im

(
B(2k)0

)
= Im

(
C(2k)0

)
= 0

D(2k)n =D(2k)−n , E(2k)n =E(2k)−n , F (2k)n = F (2k)−n , Im
(
D(2k)0

)
= Im

(
E(2k)0

)
= Im

(
F (2k)0

)
= 0 (27)

In order to write the (r2, θ2) coordinates in (r1, θ1) coordinates or, on the contrary, (r1, θ1) in
(r2, θ2) coordinates, we will make use of the summation theorem [26] and the relations between
cylindrical coordinate sets.

rm exp iθm =Rmn exp iφmn+ rn exp iθn

Kν(crn) exp iνθn =
∞∑

k=−∞
(−1)νIk(crm)Kν−k(cRmn) exp

[
i(ν− k)φmn

]
exp ikθm

mn= 12; 21; m; n= 1, 2; rm <Rmn; R12 =R21; φ12 = 0; φ21 = π . (28)

Thus, an infinite dimensional system of algebraic equations is obtained from (21) in terms of
unknown constants (27) by using (22)–(26). If this system is solved using the convergence criterion
and the unknowns are determined, then the desired stress values are determined. Let us show that
the convergence criterion is satisfied in order for this system to be replaced by a finite one. Let
us introduce the following notations:

C(2k)n In
(
ξ
(2)
1 κ1

)
= y(2)kn1 + iz(2)kn1 , A(2k)n In

(
ξ
(2)
2 κ1

)
= z(2)kn2 + iy(2)kn2 , B(2k)n In

(
ξ
(2)
3 κ1

)
= z(2)kn3 + iy(2)kn3

D(2k)n Kn
(
ξ
(2)
1 κ1

)
= y(2)kn1 + iz(2)kn1 , E(2k)n Kn

(
ξ
(2)
2 κ1

)
= z(2)kn2 + iy(2)kn2 , F (2k)n Kn

(
ξ
(2)
3 κ1

)
= z(2)kn3 + iy(2)kn3

C(1)kn Kn
(
ξ
(1)
1 κ2

)
= y(1)kn1 + iz(1)kn1 , A(1)kn Kn

(
ξ
(1)
2 κ2

)
= z(1)kn2 + iy(1)kn2 , B(1)kn Kn

(
ξ
(1)
3 κ2

)
= z(1)kn3 + iy(1)kn3

C(2k)n In
(
ξ
(2)
1 κ2

)
= y(3)kn1 + iz(3)kn1 , A(2k)n In

(
ξ
(2)
2 κ2

)
= z(3)kn2 + iy(3)kn2 , B(2k)n In

(
ξ
(2)
3 κ2

)
= z(3)kn3 + iy(3)kn3

D(2k)n Kn
(
ξ
(2)
1 κ2

)
= y(3)kn1 + iz(3)kn1 , E(2k)n Kn

(
ξ
(2)
2 κ2

)
= z(3)kn2 + iy(3)kn2 , F (2k)n Kn

(
ξ
(2)
3 κ2

)
= z(3)kn3 + iy(3)kn3

Z(k)qn =

⎡
⎢⎢⎢⎣
z(k)qn1

z(k)qn2

z(k)qn3

⎤
⎥⎥⎥⎦ , Y (k)q

n =

⎡
⎢⎢⎢⎣
y(k)qn1

y(k)qn2

y(k)qn3

⎤
⎥⎥⎥⎦ , T (1)qnm =

[
t(1)qrs (n, m)

]
, T (2)qn =

[
t(2)qrs (n)

]
, W (1)q

nv =
[
w(1)qrs (n, v)

]
,

W (2)q
n =

[
w(2)qrs (n)

]
, q= 1, 2; k= 1, 2, 3; r; s= 1, 2, 3, κ1 = 2πR

�
, κ2 = 2π (R+H)

�
(29)
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The system of infinite algebraic equations in terms of defined notations is written as:

Z(1)1n +
∞∑
m=0

T (1)2nm Z(1)2m +T (2)1n Z(2)1n = 0, Z(1)2n +
∞∑
m=0

T (1)1nm Z(1)1m +T (2)2n Z(2)2n = 0 (30)

Y (1)1
n +

∞∑
m=0

W (1)2
nm Y (1)2

m +W (2)1
n Y (2)1

n = 2πδ3nσ
(21), 0
zz

Y (1)2
n +

∞∑
m=0

W (1)1
nm Y (1)1

m +W (2)2
n Y (2)2

n = 2πδ3nσ
(22), 0
zz (31)

Z(1)1n +
∞∑
m=0

T (1)2nm Z(1)2m +T (2)1n Z(3)1n = 0,Z(1)2n +
∞∑
m=0

T (1)1nm Z(1)1m +T (2)2n Z(3)2n = 0 (32)

Y (1)1
n +

∞∑
m=0

W (1)2
nm Y (1)2

m +W (2)1
n Y (3)1

n = 2πδ3n(σ
(1), 0
zz − σ (21), 0zz )

Y (1)2
n +

∞∑
m=0

W (1)1
nm Y (1)1

m +W (2)2
n Y (3)2

n = 2πδ3n(σ
(1),0
zz − σ (22), 0zz ),

n= 0, 1, 2, . . . , ∞; δmn =
{
1 m= n

0 m �= n
(33)

It is obtained from (31) and (33) that Z(k)qn = 0, k= 1, 2 and q= 1, 2. Also, from mechanical

considerations and Eqs. (31) and (33), it is seen that Y (k)1
n = Y (k)2

n . Thus, from (31) and (33) we
get the following:

Y (1)1
n +

∞∑
m=0

W (1)2
nm Y (1)2

m +W (2)1
n Y (2)1

n = 2πδ3nσ
(2), 0
zz

Y (1)1
n +

∞∑
m=0

W (1)2
nm Y (1)2

m +W (2)1
n Y (3)1

n = 2πδ3n(σ
(1), 0
zz − σ (2), 0zz ) (34)

The infinite system of algebraic Eq. (34) must be approximated by the finite one to obtain
numerical results. To make this displacement possible, the determinant of the algebraic infinite
system of equations must be of normal type [27]. This is achieved if we show that the following
series is convergent:

M =
∞∑
n=0

∞∑
m=0

∣∣∣W (1)2
nm

∣∣∣ (35)

The functions In(x) and Kn(x) are satisfied in the following asymptotic estimates:

In (x) < c1
1
n!

( |x|
2

)n
, Kn (x)≈ c2 (n− 1) !

(
2
|x|
)n

, n→∞, c1, c2 are constants. (36)
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Since the hollow fibers do not touch each other, the following inequalities are achieved:

(R+H) / (R12− 2L) > (R+H) /R12, R12/ (R+H) > 2 (37)

From (36)–(37), and analyzing W (1)2
nm , we show the convergence of the series (35) as follows:

M < c3
∞∑
n=0

nc4
(

R12

R+H
− 1
)−n

, c3, c4 const. (38)

Similar proof is made in [11,12]. Thus, the infinite algebraic system can be replaced by a finite
one. The number of equations the finite system will consist of, will be decided by the convergence
of the numerical results.

4 Numerical Results

In this study, the numerical results have been obtained using the zeroth and first approxima-
tions. Next approaches can only contribute quantitatively to the results. In addition, Poisson ratios
are taken as ν(1) = ν(2) = 0.3, and the dimensionless parameter ρ =R12/ (R+H), which shows the
contribution of the interaction of hollow fibers to the stress values, is defined. Furthermore, by
examining the contribution of the parameters E = E(2)/E(1), γ1 = 2π(R+H)/� = α (R+H) and
γ2 = H/(R+H) to the stress distribution, the ratio of elasticity modulus and the effect of the
thickness and radius of the hollow fibers will be calculated. While calculating the stresses, since
they have maximum values, θ = 0, αt3 = π/2 for σnn, θ = 0, αt3 = 0 for σne and θ = 0, αt3 = 0 for
σnτ are used.

Figure 2: The graph of dependencies between σnn/ |p| and (a) γ1 (γ2 = 0.3) (b) γ2 (γ1 = 0.5) for
various values of ρ for the case where E= 50, ε= 0.015
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Figure 3: The graph of dependencies between σnτ/ |p| and (a) γ1 (γ2 = 0.3) (b) γ2 (γ1 = 0.5) for
various values of ρ for the case where E= 50, ε= 0.015

Figure 4: The graph of dependencies between σne/ |p| and (a) γ1 (γ2 = 0.3) (b) γ2 (γ1 = 0.5) for
various values of ρ for the case where E= 50, ε= 0.015
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Table 1: The stresses in γ1 = 0.6, γ2 = 0.4 and various E, ρ, ε

E ρ ε σnn/ |p| σnτ / |p| σne/ |p|
10 2.1 0.010 0.0142 −0.4253 −0.0432

0.015 0.0214 −0.6380 −0.0648
0.020 0.0285 −0.8507 −0.0865

2.2 0.010 0.0196 −0.3296 −0.0455
0.015 0.0294 −0.4944 −0.0683
0.020 0.0393 −0.6593 −0.0911

5.0 0.010 0.0594 −0.1463 −0.0487
0.015 0.0892 −0.2195 −0.0730
0.020 0.1189 −0.2926 −0.0974

50 2.1 0.010 0.0437 −1.7108 −0.1841
0.015 0.0656 −2.5662 −0.2762
0.020 0.0874 −3.4216 −0.3682

2.2 0.010 0.0541 −1.0815 −0.1951
0.015 0.0812 −1.6223 −0.2927
0.020 0.1083 −2.1631 −0.3903

5.0 0.010 0.1937 −0.3005 −0.2116
0.015 0.2906 −0.4508 −0.3175
0.020 0.3875 −0.6010 −0.4233

100 2.1 0.010 0.0614 −2.5159 −0.2667
0.015 0.0922 −3.7739 −0.4001
0.020 0.1229 −5.0319 −0.5335

2.2 0.010 0.0724 −1.5016 −0.2791
0.015 0.1086 −2.2525 −0.4186
0.020 0.1448 −3.0033 −0.5582

5.0 0.010 0.2661 −0.3806 −0.3024
0.015 0.3992 −0.5709 −0.4537
0.020 0.5323 −0.7612 −0.6049

150 2.1 0.010 0.0712 −2.9623 −0.3118
0.015 0.1069 −4.4434 −0.4677
0.020 0.1425 −5.9246 −0.6236

2.2 0.010 0.0819 −1.7238 −0.3234
0.015 0.1229 −2.5857 −0.4852
0.020 0.1639 −3.4476 −0.6469

5.0 0.010 0.3040 −0.4223 −0.3502
0.015 0.4561 −0.6334 −0.5253
0.020 0.6081 −0.8446 −0.7004

In Figs. 2–4, the dependencies between σnn/ |p|, σnτ / |p|, σne/ |p| and γ1 (a), γ2 (b), respectively
are given where E = 50 and ε= 0.015, and γ2 = 0.3 in (a) and γ1 = 0.5 in (b). According to Figs. 2
and 3, as the hollow fibers approach each other, the values of σnτ / |p| are increasing, but the
absolute values of σnn/ |p| are decreasing. Although the relationship between the absolute values of
these stresses and fiber thickness is monotone, the relationship between these values and the outer
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radius of the hollow fiber is non monotone. From Fig. 4, it is observed that while the absolute
value of σne/ |p| increases as the hollow fibers approach each other up to about γ1 = 0.35, these
values then decrease. The same change exists between the fiber thickness and the absolute values
of σne/ |p|. In this case, the change occurs around γ2 = 0.12. In addition, it is seen that the σnτ / |p|
shear stress values, as absolute values, are higher than the other stress values. According to these
results, attention should be paid to the σnτ / |p| shear stress.

With the increase of the distance between the hollow fibers, the interaction between the fibers
disappears and thus the same values are reached with the stress values obtained in case [25]. This
shows the accuracy of both the algorithms used and the programming made by the authors with
the FTN77 programming language.

In Tab. 1, the values of σnn/ |p|, σnτ / |p| and σne/ |p| are given for γ1 = 0.6, γ2 = 0.4 and
various E, ρ, ε. From this table, it is seen that the values of the stresses are increasing with the
parameters ε and E which define the degree of defect and modulus of elasticity ratio, respectively.
Also, when γ1 = 0.6, γ2 = 0.4, as the hollow fibers approach each other, the values of σnn/ |p| and
the absolute values of σne/ |p| decrease, but the absolute values of σnτ / |p| increase.

Tab. 2 shows how the values of the stresses converge with the number of equations where
E = 50, γ1 = 0.6, γ2 = 0.4, ρ = 2.1, ε= 0.015. From this, it is seen that 186 equations are sufficient
for convergence, and therefore, all values are calculated according to this number of equations.

Table 2: Convergence of the values of the stresses with the number of equations where E =
50, γ1 = 0.6, γ2 = 0.4, ρ = 2.1, ε= 0.015

Stress Number of equations

87 96 114 123 132 177 186

σnn/ |p| 0.0663 0.0663 0.0658 0.0657 0.0656 0.0655 0.0656
σnτ / |p| −2.4423 −2.4781 −2.5222 −2.5354 −2.5450 −2.5648 −2.5662
σne/ |p| −0.2764 −0.2764 −0.2762 −0.2762 −0.2762 −0.2762 −0.2762

5 Conclusions

In this study, the normal and shear stresses at the fiber-matrix interface are studied in the case
of two neighboring hollow fibers with infinite length (at least ten times the bending amplitude)
with the same phase periodic curvature embedded in an infinite elastic medium. It is thought that
the object in question has uniformly distributed normal forces acting along the hollow fibers at
infinity, and the midlines which pass through the centers of the fibers have the same plane and
phase curvature. The case in which the thicknesses and outer radii of the fibers are the same and
where these values do not change along the fibers is discussed. The hollow fibers may be close
to each other, but they do not come into contact. The research has been carried out using the
piecewise-homogeneous body model and the three-dimensional geometric linear exact equations
of elasticity theory. Thus, it is aimed to obtain better quality results than the numerical results
obtained using approximate theories.

Within the framework of the above assumptions, the governing field equations provided
separately in the hollow fibers and in the matrix are written in accordance with the piecewise-
homogeneous body model. Added to these are the conditions provided by the inner surfaces of the
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fibers and the ideal contact conditions provided at the surfaces where the fibers come into contact
with the matrix. Thus, the problem has been formulated as a boundary-value problem which
has been solved by using the boundary form perturbation method. According to this method,
all expressions related to the surface equations, hollow fibers and matrix are serialized in terms
of the small parameter defining the bending degree of the fibers. When these series are used in
the governing field equations and boundary conditions, the boundary-value problems provided
separately for each approach are obtained. Naturally, the k-th boundary-value problem includes
the magnitudes of the previous boundary value problems. Numerical results have been obtained
by solving the boundary value problems of the zeroth and first approach. Since the solution of the
boundary value problems belonging to the next approaches will affect the numerical results only
quantitatively, and not qualitatively, the solutions up to the first approach are considered to be
sufficient. With some simple assumptions, the boundary-value problem of the zeroth approach can
be solved analytically, while the solution of the boundary-value problem of the first approach is
brought to the infinite system of algebraic equations. It has been shown that this infinite system of
algebraic equations can be replaced by a finite one by using the convergence criterion. Numerical
results are produced by taking a sufficient number of equations according to this criterion.

The obtained numerical results consist of the calculations made at the points where the
normal stress of σnn and the values of σnτ and σne shear stresses are maximum. Dimensionless
parameters related to the distance between the hollow fibers, the ratio of elasticity constants
and fiber bending amplitude are defined, and the effects of these parameters on the stresses are
discussed. Accordingly, the following conclusions have been made:

• The relationship between the σnn normal stress and the inner radius of the hollow fibers is
non-monotone. In addition, as the fibers approach each other, the values of the σnn normal
stress decrease.

• The relationship between the σnτ shear stress and the inner radius of the hollow fibers is
also non-monotone. However, as the fibers approach each other, the absolute values of the
σnτ shear stress increase. This increase is remarkable.

• The relationship between the σne shear stress and the inner radius of the hollow fibers is
also non-monotone. However, the approach of the hollow fibers to each other increases the
absolute values of these stress values up to a certain value of the inner radius of the fiber
and decreases after this value.

• The relationship between the stresses under consideration and the thickness of the hollow
fibers is monotone.

• The increase in the bending degree and in the ratio of elasticity constants increases the
values of the stresses as absolute values.

• The numerical results obtained when the distance between the hollow fibers is increased so
that there is no interaction between them, coincides with those obtained in [25]. In addition,
the numerical results obtained by taking the inner space of fibers to zero are consistent with
the results of [12], in which problem the fibers are filled. This demonstrates the accuracy
of the numerical results.

The numerical results obtained should be taken into account in the production of materials
which have the properties discussed here, when used as structural elements. In addition, for certain
values of the parameters (given in [24]), instead of hollow fibers, carbon nanotubes can be
considered, and stress distribution and stability problems can be examined.
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